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Abstract. Some new methods of construction of rectangular designs
which are 3-associate partially balanced incomplete block designs
with a rectangular association scheme are presented. Such rectangular
designs which may be new are tabulated under the range of r, k £ 10.

1. Introduaction

Rectangular designs introduced by Vartak (1955) form a special
class of 3-associate:partially balanced incomplete block (PBIB) de-
signs based on a rectangular association scheme. The rectangular
association scheme 1is also called a 3-associate Kronecker product
assocliation scheme or a 3-associate extended group divisible associ-
ation scheme. These designs have been studied by Hinkelmann (1964),
Kageyama (1974), Raghavarao and Aggarwal (1974), Aggarwal (1975,
1977, 1983), Sinha et al. (1979), Kageyama and Tanaka (1981), Bhag-
wandas et al. (1985), Chang and Hinkelmann (1987), Suen (1989), and
so on. These rectangular designs are useful as factorial experiments,
having balance as well as orthogonality. Even so, any exhaustive
list of such designs is not available. A recent review of construct-
ional procedures for these designs is given by Gupta and Mukerjee
(1989).

In this paper, some new methods of constructing rectangular PBIB
designs from nested balanced incomplete block (BIB) designs, self-
complementary BIB ‘designs and semi-regular group divisible (GD) de-
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signs are given.

Definitions of nestedness, BIB and GD designs, and a difference
set as well as a 3-associate PBIB design can be found in Preece (1967)
and Raghavarao (1971).

2. Rectangular designs

Let there be v = mn treatments arranged in a rectangle of m rows
and n columns. With respect to each treatment, the first associates
are the other n-1 treatments of the same row, the second associates
are the other m-1 treatments of the same column, and the remaining
(m-1)(n-1) treatments are third associates. For the rectangular
association scheme, we get n; = n-1, n, = m-1, ng = {(m-1)(n-1). The
treatments which are 1-th associates are repeated Ai times, i=1,2,3,
in the design. We are interested in constructing rectangular designs
with the concurrence number X3 bigger than x; and x., because when
these designs are used as the mxn complete confounded factorial ex-
periments, the loss of information on the main effects 1is small
(Suen (1989)). However, the designs as in Theorem 2.4 have x; small-
er than x;, x-

2

but the construction is of combinatorial interest.

Let IS be the identity matrix of order s and Jsxt be an sxt

matrix with unit elements everywhere. OS><t denotes an sXt zero matrix
and A®B denotes the Kronecker product of matrices A and B. A’ is the
" transpose of the matrix A.
2.1. Using nested BIB designs
Nested BIB designs have been studied by Preece (1967), and so on.
These designs shall be used to construct rectangular designs.
Theorem 2.1. The existence of a nested BIB design with parame-
ters
v', r'; ki = 2k3, ki ; bj, bd ; i, A3 (2.1)
implies the existence of a rectangular design with parameters
v=2v', Db 2bs, r=1r', k = 2ks, X3 =0, Xxo = X35,
Xg = A} — X3; m=vVv', n-= 2.
Proof. A nested BIB design with parameters (2.1) has each block

divided into two sub-blocks. Let N; be the incidence matrix for the

treatments in the first half blocks and N. be the corresponding inci-
dence matrix from the second half blocks. In this case, consider 1:®N;
+ (1:14-I,)8N, (= N, say) as the incidence matrix of a design, having
the rectangular association scheme of the form
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1 v'+l

2 vir2 (2.2)

v' 2v'
Here ® denotes the Kronecker product and ls = (1,...,1)' of size s,
Since N;+N; and [N,:N;] are BIB designs with concurrence numbers X}
and A}, respectively, our incidence matrix N can yield the required
rectangular design. o

2.2. Using self-complementary BIB designs

A block design with parameters v, b, r and k is said to be self-
complementary if v = 2k (and then b = 2r).

Theorem 2.2. The existence of a self-complementary BIB design
with parameters

v' = 2k', b'" = 2r', r', k', x' (2.3)
implies the existence of a rectangular design with parameters
v=2v',b=Db'", r=r", k=2K", Xy =0, o = 21",
Xz =r'-2'; m=v', n= 2,

Proof. Let N be the incidence matrix of the BIB design with
parameters (2.3). Then it follows that [N' 1b'1§‘—N']' (= M, say)
is the 1incidence matrix of the required rectangular design. The
association scheme is the same as in (2.2).. O

Remark 1. When r' > 2x', by using M in the proof of Theorem 2.2,
the incidence matrix [M:l;._2l.®(12®1v.)] yields a semi-regular GD
design with parameters v = 2v', b = 4(r'-Xx"), r = 2(r'-1"), k = 2k’',
X, =0, Xz =1r'-2"'", m=v', n= 2, which is resolvable if the design
with (2.3) is resolvable.

2.3. Using semi-regular GD designs

We consider a GD design with parameters v' = mn (i.e. m groups
of n treatments each), b', r', k', Xxi, X%, having the association
scheme as

1 m+l .. (n-1)m+1
2 m+2 e (n-1)m+2
m 2m “ e nm

Here, the treatments in the same row (column) are first (second)
associates. In this case, we have )

Theorem 2.3. The existence of a semi-regular GD design with
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parameters v' = mn, b', r', k' = m, A} = 0, Xz, having a set of n
blocks as (1,2,...,m),(m+1,m+2,...,2m),...,{((n-1)m+1,(n-1)m+2,...,nm),
implieé the existence of a rectangular design with parameters
v=mn, b=D>b'-n, r=r'-1, k =K', Xy =0, X = x3-1, X35 = X=2.

Proof. By deleting the set of n blocks described above from the
solution of the original semi-regular GD design, we can get the
required rectangular design. ' g

Remark 2. In Theorem 2.3, 1f the semi-regular GD design has gq
sets of n blocks (1,...,m),(m+1,...,2m),...,((n-1)m+1,...,nm) each,
then the deletion of p sets for 1 < p £ q ylelds a rectangular design
with parameters v = mn, b = b'-np, r = r'-p, k = k', 1y = 0, X3 = Xi-
P, X3 = X». The case q = 1 is always possible to choose, because one
set of n blocks as in Theorem 2.3 can be obtained by renaming treat-
ments properly.

2.4. Using difference sets

Theorem 2.4. If 4t-1 is a prime or a prime power, then there
exist rectangular designs with parameters

v =b = 3(4t-1), r = k = 4t-1, A; = 2t-1, 1o = 2(t-1),
XAs = t, m = 4t-1, n = 3; (2.4)
vV =b=3(4t-1), r = k = 4t-2, Ay = 2t-1, Ay = 2(t-1),
Xz = t-1, m = 4t-1, n = 3; (2.5)
v = 3(4t-1), b = 12t, r = 4t, k = 4t-1, Ay = A, = 2t-1,
(2.6)

[}

L}

[}
w

X3 = t, m = 4t-1, n

Proof. Let R = GF(3) GF(4t-1), a set of 3(4t-1) elements, be
the direct sum of Galoils fields of orders 3 and 4t-1, respectively.

+

The addition and multiplication are defined in the usual way, i.e.,
(X1,X2) + (¥1,¥2) = (X1+Y1,X2+Y2)
(X1,X2)(¥y1,¥2) = (X¥1,X2Y2)
where (X;,X3), (yi1,¥2) € R. Let us consider the following array of
3(4t-1) elements of R given as: for q = 4t—1

(00), (10), (20)
(01), (11), (21)

(0q), (1q), (2q).

Two elements of R are first or second associates according as they

belong to the same row or the same column of the array, otherwise
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they are third associates. Let X = (2,a) where 2 and a are primitive
roots of GF(3) and GF(4t-1), respectively. Then the initial blocks
{(O,O)?(l,l),x,xg,...,x4t_3} and {(1,1),x,x2,...,x4t~3} developed mod

" '3(4t-1), yield the required rectangular designs with parameters (2.4)
and (2.5), respectively. Furthermore, by adding three blocks each
consisting of 4t-1 elements of the three columns of the above array
to a design with (2.4), we can get a rectangular design with parame-
ters (2.8). In fact, the initial block of the rectangular design with
parameters (2.4) consists of (0,0),(1,1),(1,a2),(1,a%),...,(1,a*t™%),
(2,a),(2,a%),...,(2,a%""3) . since it follows that (1,a2,a%,...,a%t ™%

5.a%,...,a%t™3) are two difference sets of a BIB design with

parameters v' = b' = 4t-1, r' = k' = 2t-1, X' = t-1, the set of dif-
ferences in the difference sets contain each element of the form

(0,b), b # 0, 2(t-1) times and each element of the form (a,0), a # O,

occur 2t-1 times, and the elements of the form (a,b), a,b # 0, occur

and (a,a

t times. Thus we get the parameters (2.4). The parameters of the
other designs follow in the similar way. o

Theorem 2.5. There exists a rectangular design with parameters

v = 8t, b = 2(4t-1), r = 4t-1, k = 4t, x; = 0, x, = 2t-1,

X3 = 2t, m = 4t, n = 2

when 4t-1 is a prime or a prime power.

Proof. It is known (cf. Dey (1986;page 136)) that there exists a
BIB design with parameters v = 4t, b = 2(4t-1), r = 4t-1, k = 2t, A =
2t-1, when 4t-1 is a prime or a prime power. This design is generated
by two initial blocks (w,xo,xz,x4,...,x4(t”l)) and (0,x,x%,...,x%t73).
Now let N; and N, be the incidence matrices of the subdesigns genera-
ted by the above two 1nitial blocks réspectively. Since [N;:N:] and
N;+N. are a BIB design and a complete block design with concurrence

numbers 2t-1 and 4t-1 respectively, the pattern

*

N = TI.® N; + (1;14-I,)® N:
gives the incidence matrix of a rectangular design with the required
parameters. In fact, x3 = 4t-1-(2t-1) = 2t. o

Theorem 2.6. There exists a rectangular design with parameters
v =b = 2(4t+1), r = k = 4t, x; = 0, x; = 2t-1, x3 = 2t,
m = 4t+1, n = 2
when 4t+1 is a prime or a prime power.
Proof. Let N; and N, be the incidence matrices of the designs

X4t-—2

generated by the initial blocks (x°,x%,..., ) and (x,x%,...,
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x4t—l). Then [N;:N-] 1is the incidence matrix of a BIB design with

parameters v = 4t+1, b = 2(4t+1), r = 4t, k = 2t, 1 = 2t-1, and N;+N:
is a BIB design with x = 4t-1. Hence it follows that the pattern
I-® N; + (1,11-1-)® N- provides a rectangular design with the required
parameters. In fact, i3 = 4t-1-(2t-1) = 2t. g

Table 1 gives a list of rectangular designs with r, k < 10 which
can be constructed by Theorems 2.1 to 2.6. In Source, for example,
R-Ser. 1 means a BIB design of Series 1 in Raghavarao (1971; Table
5.10.1), while P-No. 1 means a nested BIB design of No. 1 in Preece
(1987; Table 3). Further, the GD designs in the table (denoted by SR
6, SR 7, etc.) are the designs listed by Clatworthy (1973). In the
design of No.7, we interchange treatments 4 and 10, and also 6 and 8,
before application of Theorem 2.3 to SR 11.

Table 1. Rectangular designs with r, k < 10

No. \' m n r k X1 Xo X3 Theorem Source
i 6 2 8 6 2 2 0 0 1 2.3 "SR 6
2l 6 2 3 15 5 2 0o 1 2 2.3 SR 7
3] 6 2 3 24 8 2 o0 2 3 2.3 SR 8
4/ 6 2 3 21 7 2 0 1 3 | Remark 2 SR 8, p=2
s| 6 2 3 18 6 2 0 0 3 | Remark 2 SR 8, p=3
6/ 8 2 4 12 3 2 0 0 1 2.3 SR 9
7+l 10 2 5 20 4 2 0 0 1 2.3 SR 11
g8/ 12 2 6 3 5 2 0 0 1 2.3 SR 13
14 2 7 42 6 2 0 0 1 2.3 SR 14
10016 2 8 56 7 2 0 0 1 2.3 SR 15
1118 2 9 72 8 2 o 0 1 2.3 SR 16
1220 2 10 %0 9 2 o0 0 1 2.3 SR 17
13 9 83 3 6 2 3 0 0 1 2.3 SR 23
14/ 15 3 5 20 4 3 0o 0 1 2.3 SR 28
15021 3 7 42 6 8 0 0 1 2.3 SR 31
16| 24 3 8 56 7 3 0 0 1 2.3 SR 32
17{ 27 3 9 72 8 3 0o 0 1 2.3 SR 33
19 8 4 2 6 3 a4 0o 1 2 |,Z22 R-Ser. 1
20/ 8 4 2 18 9 4 0 4 5 2.3 SR 40
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591 32 8 4 28 7 8 O 1 2 2.3 SR 95

60| 64 8 8 56 7 8 0 0 1 2.3 SR 97

61y 72 8 9 72 8 8 0 0 1 2.3 SR 98

62 18 9 2 12 7 9 O 3 4 2.3 SR 100

63] 27 9 3 24 8 9 O 2 3 2.3 SR 102

64 81 9 9 72 8 9 O 0 1 2.3 SR 105

65| 20 10 2 18 9 10 O 4 5 2.2 R-Ser. 286
66 22 11 2 22 10 10 O 4 5 2.1 P-No. 8
67| 33 11 3 33 10 10 5 4 2 2.4

Remark 3. Since BIB designs of R-Ser. 1 and 15 and copies of BIB
designs of R-Ser. 7 and 26 are resolvable -ones with r' > 2x', by
Remark 1, we can get some resolvable semi-regular GD designs.

Additional remark. In Table 1, we do not list designs constructed
easily by the Kronecker product of incidence matrices of two BIB de-
signs. Another fundamentai method of constructing rectangular designs
is by some patterned approach of using incidence matrices of BIB de-
signs. Mostly, the approach will produce designs of relatively large
values of parameters and with small values of m. Hence they are not
discussed here.
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