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HOLONOMIC D-MODULES, PERVERSE SHEAVES
AND RIEMANN-HILBERT CORRESPONDENCE

* NOBUYUKI TOSE AND*FNAOFUMI Honbpa

This is a brief survey of D-modules, Perverse Sheaves and Riemann-Hilbert correspon-
dence. The authors hope that this becomes quick guide for readers to learn these areas.
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Operations on D-modules

1.0. Definition of D-modules.

a)

Let X be a complex manifold. Then Dy denotes the sheaf of rings of differential

‘operators with holomorphic coefficients on X, which is constructed as follows. First

introduce the sheaf ©@x of holomorphic vector fields on X. Then Dy is generated by

Ox and O x under relations

(1.1) [0, fl=0f (f€Ox,0€0x).

Next we introduce, for a smooth separate scheme X of finite type over K, then sheaf
Dx of algebraic differential operators. First we assume X to be affine. Then D(X) is
defined as the ring generated by Ox(X) and O x(X) := Derg(O(X),O(X)) under the
relation (1.1). Let U be open affine in X. Since we have O(U) = Ox(U) @ Ox(U),

O x(X)
we deduce

(1.2) D(U) = Ox(U) & D)((X),
Ox(X)

which entails us a unique quasi-coherent Ox module Dx on X. Now we assume to be
given a general X. Then the last statement enables us to construct ’the sheaf Dx whose
restriction to an open affine set U is Dy.

From now on in this §1, unless otherwise stated we assume that X is a complex manifold
or a smooth separate scheme of finite type over K. The ring Dx is naturally filtered as

ring as follows. We set first Dx(0) = Ox. Next inductively we define Dx (k) by
(1.3) Dx(k) = {P € Dx;[P,Dx] C Dx(k —1)}.

Then we have

Dx(k) C Dx(k+1)
(1.4) Dx(k) - Dx(¢) C Dx(k+¢)
1 € Dx(0).

For a section P of Dy,
ord(P) = min{k; P € Dx(k)}
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18 called the order of P.

If we take a local coordinate system & = (z1,--- ,x,), P is written as
(1.5) P = Z aa(z)0°.
|| Sord(P)

Here 8% = 00" --- 82" with 8; = 8/0z;.
The graded ring gr Dx can be identified with a sheaf of ring on the cotangent bundle

T*X. In fact we have the isomorphism
Dx(k)/px(k - 1) >~ W*O[T*X](k‘)

with Opr« x)(k) being the sheaf of holomorphic functions on T*X polynomial along
fibers of 7 : T*X — X (resp. of coordinate ring of 7*X') homogeneous in degree k in
case X is a complex manifold (resp. a smooth separate scheme of finite type over ).

Hence the isomorphism
(1.6) g D =~ . (@O x1(H))
follows. The canonical morphism
0:Dx — grDx
is called the symbol map. For the P in (1.5), o(P) is written as

(1.7) o(P)= > aa(z)é®
|a|]=0rd (P)
Here £ = (&1, -+ ,&n) is the associated coordinates for fibers of 7.

d) Coherence of Dx.

We quote a theorem for Dx of fundamental importance due to M. Kashiwara.
Theorem 1.0.0. The sheaf Dx is a coherent ring.
This theorem can be proved from the coherence of gr Dx.

Definition 1.0.1.
1) The category of coherent Dx modules is denoted by Coh(Dx).
ii) Moreover D%(Dx ) stands for the derived category of bounded complex of D x modules

whose cohomologies are coherent.

We remark that if X is quasi-compact in algebraic case, we have the isomorphism

D’(Coh(Dx)) = DX(Dx).



1.1. Characteristic variety
Let M be a coherent Dx module. A family {Fr(M)} of Ox submodule of M is called a
filtration if the following conditions i), ii), iii) are satisfied.

, i) Fi(M) C Fryr(M),
(1.8) i)  UFM)=M,

iii)  Dx(k)Fe(M) C Fiqe(M).

More important is the following definition of a class of filtration.
Definition 1.1.0. Let {Fi(M)} be a filtration of a coherent Dx module M. Then
{Fr(M)} is a good filtration if 1) Fi(M) is Ox coherent, and ii) there exists k, satisfying

Dx(£)F(M) = Frpe(M) (k> ko, Y€ > 0).

We give several remarks concerning the above definition.

I) If F(M) and F(M) are two good filtrations for M, then for some ¢ we have
Fk_((M) C Fk(M) C Fk+e(./\/l).
IT) There exists locally a good filtration for M. In fact we take locally a resolution of

M.
P Y5 M|y — 0.

Then it suffices to put
Fi (M) =4(Dy(k)™).
III) In algebraic case, if X is proper over K, then there exists a global good filtration.

The following proposition plays an essential role in studying characteristic varieties of

coherent Dx modules.

Proposition 1.1.1. Let 0 —» M; — M LA My — 0 be an exact sequence in Coh(Dy),
and F(M) a good filtration of M. Then ‘
1) the induced filtration

Frp(My) = Fr(M)n M,

and the quotient filtration
Fi(Mz) = (Fr(M))
are good, and '

1) 0 — gr(My) — gr(M) — gr(Ms) — 0 is exact.

Now let M be a coherent Dx module with a good filtration Fi(M). Then we associate

to M an invariant on T*X.



Definition 1.1.2. We define the characteristic variety of M by

char(M) := supp(Or-x —1(®’D ) 1 gr(F(M))).
kig gr U/x

We remark that the above definition is in dependent of the choice of F(M). This fact
can be shown from the remark (I) just after Definition 1.1.0.
The following proposition is used when we extend several facts about single differential

equations (i.e. M = Dx/DxP) to those about general coherent Dx modules.

Proposition 1.1.3. Let 0 - M; - M — My — 0 be an exact sequence in Coh(Dx).
Then
Ch(M) = Ch(Ml) U Ch(Mg).

This result is a simple corollary of Proposition 1.1.1.

Next we give a general remark about ch(M) by

Proposition 1.1.4. Let M be a coherent Dx module. Then we have

1) ch(M) is an analytic variety (resp. algebraic variety) in case X is analytic (resp.
algebraic).
ii) dim ch(M) 2 dim X.

The first part of the proposition is easy to prove. The second are results from an
algebraic property of Dx.

We give an example.

Example. Let P be a section of Dx, and set M = Dx/DxP. Then

ch(M) = {q € T"X;0(P)(q) = 0}.

Now we can give the definition of holonomic Dx modules.

Definition 1.1.5.
i) If ch(M) = dim X, then M is holonomic.

ii) The full subcategory of D®(Dx), the derived of Dx module, consisting of bounded
complexes with holonomic cohomologies is denoted by D:(Dx). We also denote by

Cohp(Dx) by the full subcategory of Coh(Dx ) consisting of holonomic modules.



We are now in a good position to give some remarks about the characteristic variety.
The cotangent bundle T*X is endowed with the structure of homogeneous symplectic
manifold. For any coherent Dx module M, its characteristic variety ch(M) is involutive

in the sense that for any f,g € Or+x with flmam) =0, glen(m) = 0, we have

{fag}|ch(M) =0.

Here {,} denotes the Poisson bracket on T*X. The definition for M to be holonomic is
equivalent to the condition that ch(M) is Lagrangean manifold; i.e. ch(M) is involutive

and w|cy(a1) = 0 for the canonical 1-form of T*X.

1.2. Operations of D-modules
a) Left Dx modules and right Dx-modules

We have not yet paid any attention to the difference between left Dx-modules and
right Dx modules. It is, however, indispensable to tell the difference to discuss several
operations for Dx modules.

Let M be a Ox modules with an action of @X;‘ i.e. with a sheaf homomorphism
Ox 9 M— M: (v,m)— v-m.
Ox

Then M is given a structure of left Dx-modules if and only if

o -m) = fom) +o(f) -m
| f(om) = (fo)m
(1.9) v1(vam) — va(vim) = [v1,v2]m

(v,v1,v2 € Ox, f € Ox,m € M).

On the other hand, the above homomorphism entails to M a right Dx module structure

if and only if

f(vm) = (fo)m —v(f)m
o( fm) =(fv) -m
(1.10) v1(vam) — va(vim) = [vy,v2]m

(’U,’U],UQ € G)XafE OX7mEM)

Thus it is easy to see Ox is a left Dx-module. Moreover the sheaf of volume forms x is

a right Dy-module. In fact we define

v-w = Lyw



where L, is the Lie derivative of v.
Next we show that the category of left Dx modules and that of right Dx modules are

equivalent. Given a left Dx-module M, then M ® §x becomes a right Dx-module. In
Ox

fact for m®@w € M ®x and v € O, an action (m @ w)v can be defined by
(Muv=—-1mRuw+meuw - v.

On the other hand, let A’ be a right Dx module. Then Hom,, (Qx,N) is a left Dy

module. In this case we define an action ©x on Homy  (Qx,AN) by

o(h)(w) =h(w - v) = h(w) - v
(h € Homg, (Qx,N),v € Ox,w € Qx).

The above two correspondences give rise to functors which are inverse to each other. Thus
the category of left Dx modules and that of right Dx modules are equivalent.
b) Dual functor ’

Let M be a left Dx module, or more generally an element of D®(Dyx). We define its
dual M* or Dx(M) as

M* = Dx(M) = RHomy, (M, Dx)[n] 2 Q%
X
~ Homg  ($2x, RHomp , (M, Dx))[n].

We first explain that it does mean in case where X is an open subset of C" with

coordinates z and M is a single equation, i.e. M = Dx/Dx P. Using the resolution of M
0— M Dx <& Dx 0 (exact),
RHomyp, (M, Dx) can be calculated as
RHomy,, (M,Dx) ~ Dx/PDx.
Tensored by Q}l over Oy, this induces an isomorphism
Dx(M) = Dx/Dx P*

where P* is the dual operator of P = > a,(2)0°,

laj<m

Pr= )" (=10 aq(2).

laj<m



We remark that P* depends on a choice of a coordinate system and a volume element.

Now we lists up several properties of the dual functor.
i) If M € D¥(Dx), then M* € D¥(Dx).
ii) Let M € D%(Dx). Then we have isomorphisms
RHomy, (M*, Dx) ~ Homo, (%', RHomyp (RHomeX\(M ,Dx)[n],Dx))
~ RHomy, (RHomy, (M, Dx), Dx) (;X) Qx[—n],
X

which induce a homomorphism

M — M**,

This becomes isomorphic if M € D%(Dx).
ii1) Since the category of right Dx modules and left Dy modules are equivalent as seen in

a), we have an isomorphism for M, N € D*(Dx),

RHomp,  (M*, N*) o RHomyp (RHomyp, (M, Dx ), RHomyp (N, Dx)).
Thus we have a morphism
RH—O—mD)((M? N) - RM’DX (N*, M*)?

which is isomorphic if M, N € D}(Dx).
iv) For a left coherent Dx module M, or more generally for an element M in D¥(Dy), we

define its solution complex and de Rham complex respectively by
Sol(M) i= RHomyp, (M, Ox),
DR(M) := RHomyp, (Ox, M)[dim X].
Once we admit the fact that 0% ~ O x, we deduce an isomorphism, for M € D%(Dx),
Sol(M)[dim X| ~ DR(M™).

We give a further explanation in §1.3 about Sol(M) and DR(M).
c) Algebraic Local Cohomology
Let Y be a subvariety of X, and let Jy denote its defining ideal. Then for a Dx module
F, we define algebraic local cohomology of F supported in Y and X'\Y respectively by

RI'(y)(¥) = lim RHom,, . (Dx/Dx Ty, F),
RT(x|y)(F) = lim RHomp, (J¥, F).



We have distinguished triangles and a morphism of triangles

| "

——— ROy M M R x\y]M ———
. +1

— . RTyM y M Rj,j ‘M ——s

where j denotes the canonical injective X\Y — X. In case X algebraic, the morphism
above is isomorphic. If Y is hypersurface defined by a function f;Y = {f = 0}, then
RI[x}y](M) can be calculated as

. 0 (:>0)
H'RTxpy|(M) = 0@ M=M; (i=0)
X

with Oy the localization by f.
We have the distinguished triangle of Mayer-Vietoris type for two varieties Y7 and Y3
in X

— Rl [y, ny,) (M) — RI}y;1(M) @ R [y, (M)

— RTpy,uy, (M) 5

Finally we give

Example. The following plays an essential role when we define inverse image and direct
image for D-modules. Let Y be a smooth manifold. Then we have the vanishing of

~ cohomology

H'R[[y)Ox =0 (i #d=codimY).
The remaining cohomology group is denoted by By|x;
By|x = H{y)(Ox) = H'RTy)(Ox).

d) Inverse Image

Let f : Y — X be a morphism of complex manifolds or smooth separate schemes of
finite type over K. We define, for a Dx module M, its inverse image L f°M etc. For this
purpose, we first give a (Dy, f~1Dx) bi-module Dy _ x by

Dy_x =0y ® [ 'Dx.
f-1O0x
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Here the f71Ox module structure of Oy is given by
h-g=(hof)-g (hef'Ox,g9€Oy).

In case f is given, by coordinates, as (¢' = 0,2") — (2',2") with 2’ = (2, ,24). Then
we have
Dy_.x ~Dx/[(z1, -+ ,za)Dx.

In case f is written as (¢,z) — z, then

Dy
DY(Dtlv'” 7Dtk)

'Dy_.X ~

with ¢ = (¢1,- -+, tg).

Now we define the inverse images of a Dx-module M

0 L -1 L -1
LffM=Dy_x Qf-1p, [T M=0y & [fM,
f-1ox
Lf'M = (Lf'M)[dimY — dim X],

Lf*M = DyLf°Dx[dim X — dimY].

We explain how coherency is preserved. We associate to f two morphisms of vector

bundles

Y Ly xx T*X 2L 7*X.
In this situation we can formulate

Definition 1.2.1. Let M be a Dx module. Then f is non-characteristic for M if
Ty X N&; ' (ch(M)) CY xx T X.

Here Ty X := ker py.
Theorem 1.2.2. If f is non-characteristic for M, then Lf°’M ~ Dy_.x ® f~'M

f~1Dx
i.e. concentrated in degree zero) and Lf°M is a coherent Dx-module. Moreover
8

ch(Lf°M) C pyw(ch(M)).

This theorem can be proved by reducing it to the case where f is a embedding of

codimension 1 and M is a single equation. Note that there is not any difficult argument
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to make if f is a submersion.
e) Direct image

Let f:Y — X be as in d). We define the direct image Rf, M for a Dy module M.
First we introduce a (f~!Dx,Dy) bi-module by

Dx.y =Dy_x ® f_lQ;<1 ® Qy.
f—l(i) e Oy

X

Then we define, for a Dx-module M, its direct image by
L
Rf M := Rf*(DX@.Y Dy M)

As for the coherency, we have

Proposition 1.2.3. Let f be proper, and assume that M has a global good filtration.
Then
Rf.M € D}(Dx).

In the analytic case, this results from Grauert’s theorem on the direct image theorem
for coherent sheaves. ’

Next we give a relative duality theorem.
Proposition 1.2.4. Let f be proper, and M € D%(Dy) is assumed to have cohomologies
with global good filtrations. Then '

Rf(Dy M)+ Dx(Rf M).
1.3. Holonomic systems.

a) Examples and regular singularities of holonomic systems.

We have defined so far holonomic Dx-modules, which are coherent Dx-modules whose
characteristic varieties are Lagrangian. Throughout this section a), X is a complex mani-
fold or a smooth separate scheme of finite type over K.

We first see typical examples before entering into the notion of regular singularities for

holonomic systems.

Example 1.3.1. The Dx module Oy is holonomic. In fact we have
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This can be shown by taking a local coordinate system z = (21, -+ ,z,). Then we have

the isomorphism

- Dx/Dx(D4,--+ ,D,) ~ Ox.
Moreover we can construct canonically a global free resolution of Ox as follows. Let Oy

denote the sheaf of holomorphic vector fields. Then we have an exact sequence

0 — Dy ®A"@X—>~~-L>DX @ Ox — Ox — 0
Ox Ox

where the morphism § is given by
H(PRui A Avg)
k

Z(—l)ini®(v1/\---/\f),:/\~~/\vk)

=1

+ Y (F)MP@([oi, vl A AB A AD A Ag).
1<i<j<k

By means of this resolution we can calculate DR(M) for a Dx-module M by the complex
O—%M—»M%}Qk———»---—)M@Q}——AO.
Here the derivative is given by
mQuwir— VYmAw — (—1)deg“’m ® dw

with Vm = >~ 9/0z; - m ® dz;. In fact

=1
Homjp (Dx ® A*©x, M)
Ox
~ Hom, (A*@x, M)

~ QF M.

In case M = Oy, we have

0 G#n)

Ext), (Ox,Dx) =
XDX( X /\) {QX (]:n)

This implies O% ~ Ox.
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Example 1.3.2. Let Y be a closed variety of X. Then H, [].Y](O x) is holonomic. In case ¥’
is smooth of codimension d in X, H["Y]((’)X) =0 (j # d). We denoted by By |x H[dy]((’)x);

By|X = H[‘%/](Ox)
If we take local coordinates ¢ = (1, -+ ,z,) so that Y = {z; = --- =z, = 0},
By\x = Dx/Dx(z1, -+ ,24,Day1, -+, Dn).

Now we give the definition of regular holonomic Dx-modules, which is an extension of
the notion of ordinary differential equations with regular singularities. First we assume

that X is a complex manifold.

Definition 1.3.3. i) Let M be a holonomic Dx module. Then M is regular if M is
equipped locally with a good filtration Fi(M) satisfying

{ VP € Dx(k) with Uk(P)lch(M) =0, W
PFy(M) C Frye-1(M).

ii) Let D} _(Dx) denote the subcategory of D?(Dx) consisting of objects who cohomologies

are regular singular, and Coh;,.(Dx) also defined in the same way.

It is remarkable that if M is a regular holonomic D x-module, then we can find a global
good filtration satisfying the condition .

We give several examples.

Examples 1.3.4. i) Let X be C, and P be an ordinary differential operator with regular
singular points, i.e. if zy € C is a singular point of P(z,D,) = ao(2)D}* + - - 4+ an(z), the
meromorphic function ax(z)/ae(z) has a pole of order at most k.

In this situation M = Dx /Dx P is a regular holonomic Dx-modules.

ii) The examples of holonomic Dx-modules Ox and By|x given above are regular singular.

Next we define regular holonomicity in the algebraic case. Let X be a separate scheme

of finite type over K. We take a compactification of Nagata and Hironaka X of X

j: X — X

Then we have Rj,M € D!(Dx). Taking this into account, we give
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Definition 1.3.7. Let M be a holonomy Dx-module. Then M is regular singular if

(RjuM)an =Dx = @ Rj M
“* (Dy)
is regular singular.
b) Stability of holonomicity and regular holonomicity under operations.
Let X and Y be complex manifolds, f : Y — X be a holomorphic mapping, and Z be
a closed analytic subvariety of X. We have defined several operations. We give a brief
review of stability of | holonomicity and regular holonomicity by the operations.
i) Dual operator |
Let M be a holonomic Dx-module then M?* is concentrated in degree 0 and is
holonomic. Moreover if M is regular holonomic, then so is M*.
: ii)‘ Algebraic local cohomology
Let M be a holonomic (resp. regular holonomic) Dx-module, M are generally
M € D(Dx) (resp. Db (Dx)).
Then
'RI(z(M),RT x|z (M) € Dy(Dx) (resp. D} (Dx)).

111) Inverse image

Let M be an object of D¢ (Dx) (resp. D% (Dx)). Then

hr
Lf'M,Lf*M € D)(Dy) (resp. Db (Dy)).

iv) Direct image

Let f be proper. Then, for M € D}(Dy) (resp. D? (Dy)) we have

Rf.M € D}(Dx) (resp. D}, (Dx))-

2. Constructible and Perverse Sheaves

In this section, we introduce ( Whitney) stratification, constructible sheaves and pei“—
verse sheaves. We also give some results for the functorial properties of these sheaves
and, in the last subsection, quick review of D-G-M modules and minimal extension of D

modules.
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2.0 Stratification

Let X be a topological space.

Definition 2.0.0. A stratification (X, ), of X is a partition X = UX, satisfying
1) the family (X4 ) is a locally finite,
2) each X is locally closed smooth C” manifold (2 <y < oo or vy =w) and
3) for each pair (a, B) s.t. Xo NXg is non empty, X is connected in Xg (ie. Xo < Xg

Moreover the stratification which satisfies the Whitney conditions is said to be a Whit-
ney stratification. For the reader’s conveniencé, we give here the Whitney conditions. A
pair Z < Y satisfies the Whitney condition at z € Z if and only if it satisfies the following
two conditions (a) and (b).

(a) for any sequence y, € Y s.t. y, — 2z and such that tangent spaces T}, Y has a limit
rCT,X,onehas 7 DT,Z.

(b) for any sequence (z,,Yn,cn) In Z XY X RY sit. 2z, = 2,y — z,¢5(20n —yn) — v

and tangent spaces Ty, Y has a limit 7 C T, X, one has v C 7.

Definition 2.0.1. A filtration {X} of X is an increasing sequences ¢ = X_; C X; C

.. C X, = X satisfying each Xy — X}y is a submanifold.

We remark that any analytic space X has a Whitney stratification {X,} and X :=

U X, gives a filtration of X.
dim Xo <k
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2.1 Constructible sheaves

Let R be R or C and X an analytic space with dim = n. From now, we always assume

this situation.

Definition 2.1.0. F is a constructible sheaf if and only if there exists a filtration {X}

of X s.t. Flx,—x,_, is a locally constant sheaf of R module of finite rank.

Denote by D(X, R) the subcategory of bounded complexes of R modules whose coho-
mologies are constructible.
We give some stability theorems for the operation of constructible sheaves. Let f :Y —

X be a morphism of analytic spaces.

Proposition 2.1.1. For any F € D%Y,R) and G € D% X, R), we have fiF € DX, R)
and f*G, f'G € DY, R). Moreover if f is proper on Supp F, Rf.F € D}(X,R).

L
Proposition 2.1.2. For any F,G € D% X, R), we have RHom(F,G),F ® G € D}(X, R).
In particular, if Y is a point (i.e. f: X — pt), we have Dx := f'R € DX, R). The

dualizing complex Dy is very important and nothing but Rx[dim X,,,] if X is smooth.

Now we can define dualizing functor Dy as

Dx F := RHom(F, Dx) € D)X, R).

Proposition 2.1.3. Dyis involutive (i.e. Dx oDx = idx ) and we have f' = Dy o f*oDx
and fi = Dx o Rf, o Dy.

Typical examples of constructible sheaves are the solutions of holonomic D modules.

The following well known result is due to Kashiwara.

Theorem 2.1.4. Let X be a complex manifold and M € D%(Dx). We have DR(M),
Sol(M) € D% X, R). Moreover we have Dx(DR(M)) = DR(M*).

2.2 Perverse sheaves.

We first recall the notions of t-structures and t-categories. Let D be a triangulated
category. D2° and DS are the full subcategories of D which satisfies

(1) Hom(D<% D21) =0,

(2) DS ¢ D=! and D2° > D2! (here D™ := D<[—n], etc.) and

(3) for any X € D, there exists A € D<° and B € D2! s.t. we have

A-X B4,
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Definition 2.2.0. The category D equipped with (D<° D2°) is said to be t-category.
We list up some important properties of t-categories.

Lemma 2.2.1.
(1) DS™ (resp. D2") — D has a right ( left) ajoint functor denoted by T<n ( T>4).

(2) There exists an unique morphism d € Hom!(7>1X,7<oX) and a triangle
TS()X——)X——)TZIXi.

The above triangle is unique up to isomorphisms.

(3) For two integers a < b, we have
T>a © TSb—X >~ T<b OTZaX~

One of the important things is to show the perverse category is abelian. The following

theorem explains why we define t-category and t-structure.

Theorem 2.2.2.
(1) The category D° := 1<q 0 T>¢D is abelian.

(2) H° := 7<g 0 T»0 : D — D°’is a cohomological functor.

We apply the above argument to D!(X, R) and define perverse sheaves. Let {X4} be a
stratification of X and p: {X4} — Z. We set

"PDEO(X,R) = {F € D\X,R); HNiF=0 (VYa,k>p(X.))}

and

PDZ(X,R):={F € DX,R); H*.,F=0  (Ya,k <p(Xa))}.

Here 1, is inclusion map X, — X. The following proposition is key to define perverse

sheaves.
Proposition 2.2.3. (PDS%(X, R),”» DZ°(X, R)) is t-structure of D%(X, R).

Now we define the p-perverse category as M(p, X, R) :=? D=%(X,R)n? DZ°(X, R).

Using H°, several new functors are introduced in the perverse category. Let U be a
locally closed subset of X and j : U «— X. We always assume U is reunion of strata. The
functor Pjy,P j*,--- are respectively defined by H° o ji, H° 0 j*,---. For F € M(p, X, R),

we have the morphism P51 F —? j,F associated with the canonical map ) F' — j,F.



18

Definition 2.2.4. A new ( and important) functor ji, is defined by
JuF i=Im(PHF —?P . F).
( Remark that the perverse category is abelian.)

The next proposition clarifies the meaning of this functor. Set Uy = (\U) X4 and
p(Xa)<k
Jk : Ug—1 — Uyg. For any integer [, we have a concrete description of ¢ : U; — X as:

Proposition 2.2.5. Assume p(X,) > p(Xp) for X4 < X3 and LL<J Xy = X. Then for
F € M(p,U;, R), we have -

e = Tgm—l(jm)* O--- Tgl(jl—i—l)*F
where T« is an usual wayout functor.

Proposition 2.2.6. For any F' € M(p,U,R), G := ji, F is the unique extension of F to

M(p, X, R) satisfying the following conditions.
(+) H**G =0 (k> p(X4)) and H* G =0 (k < p(X,)) for any X, C X = U.

Finally we introduce a dual perversity and %-perverse.

Definition 2.2.7. The dual perversity p* of p is defined by
p*(Xo) = —p(Xq) — dim X.

Verdier duality shows Dx(M(p, X, R)) = M(p*, X, R). Moreover we have the following

functorial properties.
DX oP j! =P ]* ODU, DU Opj! =P j* 0 DX and ID)X Ojg* b j!* O]D)(j.
If dimension of each stratum is even, we have Dx(M(py, X, R)) = M(py, X, R) where

p%(Xa) = —1dim(X,) ( %—perversity N, M(X) = M(p%,X,R) is called %—perverse

sheaf. Since Dy is involution in M(X'), we have
Theorem 2.2.8. If X is compact, then M(X) is Noetherian and Artinian.

After Kashiwara established Riemann-Hilbert correspondence, Deligne characterized
the solutions of R.S holonomic modules (i.e. complexes concentrated in degree zero) as

perverse sheaves.

Theorem 2.2.9. Let X be a complex manifold and M € D% (Dx). Then M € Cohy,(Dx
if and only if DR(M) € M(X).
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2.3 D-G-M modules and minimal extensions

Let X be a complex manifold, j : ¥ — X an irreducible complex subvariety of X, Z
a subvariety with Y,y C Z C Y and L an irreducible local system in ¥ — Z. In this
subsection, we study simple objects in the both categories M(X ) and Cohp,(X) and their

relationship. First we give a complete description of a simple object in M(X).

Theorem 2.3.0. ju.(L[dimc Y)) is a simple object of M(X). Conversely all simple objects
of M(X) are described by the above form.

A simple object of M(X) is called D-G-M modules and denoted by 7y (L). Moreover
we have Dy (7y(L)) = my(L*) where L* = Hom¢(L,C). Using this sheaf, we can define

intersection homologies of the middle perversity due to G-M as follows.
IHW(Y,L) := H=*dimeY(y 7o (L)).

Then we have generalized Poincare duality.

Theorem 2.3.1. Assume Y is compact. Then IH(Y,L) ® IHgimgy-1(Y,L*) — C is
perfect.

Next we study a simple object in the category of regular holonomic modules.

Lemma 2.3.2. Let M be a simple holonomic module with Supp(M) C Y. Then there
exists a subvariety Z D Yiing and an irreducible local system L in'Y — Z satisfying the

following two conditions.
(1) Mlx_z=1L %BY—ZlX—Z-
(2) HY(M) = HY(M*) = 0.

Conversely we have

Proposition 2.3.3. Let Z be a subvariety with Yy;ny C Z CY and L a locally constant
sheaf of finite rank in Y — Z. Then there exists an unique regular holonomic module M

in X satisfying conditions (1) and (2) in Lemma 2.3.2.

We denote such a module by £(X,Y,L). Therefore a simple object of Cohy,(Dyx) is
described by £(X,Y, L). ,
One important fact is £(X,Y, L) and 7y (X)) are connected by the DR functor.

Theorem 2.3.4. We have DR(L(X,Y, L)) = ny(L).
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3. Riemann-Hilbert Correspondence

3.0. Introduction

The Riemann Hilbert correspondence between regular holonomic complexes and con-
structible complexes is originated in the classical problem of ordinary differential operators.
Let X be a smooth curve over C, and P be a differential operator on X with regular sin-
gular points {a1,--- ,an}. If we set M = Dy /DxP and F' = Homy, (M, Ox) satisfying
the condition that Fl{x\a,,..,ay} i @ local system of finite rank. Taking a base point

zo € X\{a1, - ,an}, we obtain a linear representation
m(X\{a1, -+ ,an},z0) — End(F;,)

called the monodoromy representation. In this situation, it was a classical Riemann-Hilbert
problem to fined an operator P enjoying a given monodoromy.

Now let X be a regular holonomic complexes. Then DR(M) is a constructible com-
plex. This correspondence entails a generalization of Riemann-Hilbert problem to higher

dimension;

DR: D},(Dx) — D¢(Cx),

where we abberaviate DY(X,C) by D(Cx) in this section. Given an object F € D(Cy),
the problem is to find M € D} (Dx) with DR(M) = F. It is shown by Kashiwara
that the DR functor gives rise to an equivalence of categories. Moreover the inverse is

constructed by using tempered distribution.

3.1. The functor TH
a) Tempered distributions
Let M be a real analytic manifold, and U be an open subset of M. Then temperedness

of distributions is defined by

Definition 3.1.1. Let u € Dby (U), a distribution on U, and p € M. Then u is tempered .
at p if there exist an open neighborhood W of p and w € Dby (W) with the property

u|lwnau = w|lwnu. Moreover u is tempered on M if so it 1s at any point of M.

Remark that u is tempered on M if and only if u is extended on M as distribution.

b) R-constructible sheaves.
Let M be a real analytic manifold, and F' is a sheaf on M. Then M is R-constructible

if there exists a subanalytic stratification M = |J, M4 for which F'|3, is locally constant
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of finite rank. We denote by R-const(M) the category of R-constructible sheaves on M.

We remark that we have the equivalent of categories
(3.1) DYR — const(M)) = D% _ (M)

where DY _ (M) denotes the category consisting of objects with R-constructible cohomolo-
gies.
¢) T — Hom

We follows the notation in b). Let F' be a R-constructible sheaf. Then a subsheaf
T — Homg,, (F, Dbyp) of Homg,, (F, Dbys) is the assigning to an open subset U in M the
space

{¢ € T(U; Homg,, (F, Dby ); ¢ satisfies the condition (T")}
where the condition (T') is that

for any relatively compact open
subanalytic set V of U and

(T) for any s € F(V),¢(s)is a

tempered distribution.

The sheaf T' — Hom(F,Dbys) is a sheaf of Dy module, which is written for short as
THy(F). Now we list up the principal properties of T'H s (F).

1) The sheaf THp(F) is a soft sheaf.

i1) Let U be a subanalytic open subset in M and {2 an open subset in M. Then

D TH,(Cy))
= {u € (U NQ; Dbps); u is tempered at any point in Q}.

ii1) Let Z be a closed subanalytic subset in M. Then we have
THJ\J(CZ) =T'z(Dbu).
Considering (3.1), we have the derived functor RT H p(-) of TH ().

iv) The following theorem concerning the functorial properties of RT H ps(-) with respect to

the direct image.
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Theorem 3.1.2. Let f : M — N be a morphism of real analytic manifolds, and F' ¢
D} _.(M). We assume that supp H/(F) is proper over N for any j. Then

L
Rf«(Dn—nm ’EX) RTHpy(P))
M
~ RTHN(Rf.F).
The above theorem is a crucial part of the construction of Riemann-Hilbert correspon-
dence.

3.2. Riemann-Hilbert correspondence

Let X be a complex manifold. Then we have the diagram of functors

. J():=DPx*®py () Vo
Drh(DX) ? Dh(DX)

S b
D?(Cx)orr.,

Here D is the sheaf of rings of differential operators of infinite order on X, D)(DS)

denotes the derived category of holonomic D§ modules, and ¥ and ¥ are constructed

as follows. For F € D¥(Cy),

¥°(F) := RHom¢, (F,Ox),
U(F):= RHomDY(O}{—, RTH x(F)).

In the above situation, Kashiwara has shown

Theorem 3.2.1. The functors J,®,¥ and ¥*° give rise to equivalence of categories. More-

over ® and ¥ (resp. &> and V) are inverse to each other.

The fact that ¥ o & = Id is proved by Kashiwara-Kawai, and thus there are two
facts shown by Kashiwara.
) W(DYX))C DY, (Dx),
i) ®oV¥=1Id
The fact ii) is relatively easy. The first one can be reduced, with the aid of Hironaka’s
resolution of singularities and the following Proposition 3.2.2; to the case where F' is a

R-constructible sheaf and, for a normal normal crossing subvariety ¥ of X, F|y = 0 and

F

x\y 1s a local system.
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Proposition 3.2.2. Let f : X — Y be a morphism of complex manifolds, and F" €
D& _.(Xr) satisfying the condition supp HI(F") is proper over Y.
Then

Rfu(Dy—x & ¥x(F))[dim X]
~ Uy (Rf,(F))[dim Y].

This theorem results from Theorem 3.1.2.
We have so far studied the correspondence between regular holonomic completes and con-
structible complexes through the solution functor Solx(-) = RHomp, (-, Ox). With the
aid of dual operation we can translate it the one with respect to the de Rham functor

DR(-) = RHomp, (Ox,-)[dim X].

Theorem 3.2.3. We have the equivalence of categories
DR: D! (Dx) —— D}(Cx).

Remark that in algebraic case, we take the DR functor as

DR(M) := RHoms (Ox,,,Dx,, ®py M)[dim X],

an?

and Riemann-Hilbert correspondence also holds.

By Theorem 2.2.9 and Theorem 2.3.4, we also have

Theorem 3.2.4. We have the equivalence of categories
DR : Coh® (Dx) — M(X).
Moreover simple objects of D% (Dx) are correspondent to D-G-M modules.

3.3. Several operations
We finally list up correspondence of functorial operations in both categories. Let Y — X
be a morphism complex manifolds.

a) Inverse image

Let M € D% (Dx). We have
DRy (Lf*M)~ f*DRx(M), and DRy(Lf'M)~ f'DRx(M).

Remark that we have defined Lf' and Lf* as no shift are needed in the above correspon-

dence. There are textbooks which give different definitions for the shift.
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b) Direct image
We assume the same situation as a). Moreover we assume f is proper in analytic case.
There always exist global good filtrations of coherent D modules in algebraic case, we need

no assumption. Let N € D% (Dy). we have
DRx(Rf,N) ~Rf,DRy(N).
This is direct consequence of Theorem 3.2.2.
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