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A Short Course on b-Functions and Vanishing Cycles

SAITO, Mutsumi (Tohoku Univ.)

§0. Introduction.

In this article, we use the notation appearing in [H] freely, and a
D-module means a left D-module. Let X be a complex manifold, f a holo-
morphic function on X, and M a regular holonomic system on X. By
Riemann-Hilbert (RH) correspondence, DR(M) is a perverse sheaf. Hence
its nearby cycle ?¢; (DR(M)) and vanishing cycle ¢4 (DR(M)) are perverse
sheaves on f~1(0). If £~1(0) is a smooth hypersurface, again by RH corre-
spondence there should be holonomic Dy-1(g)-modules M’ and M" such that
P43 (DR(M)) = DR(M') and ?¢;s(DR(M)) = DR(M"). Malgrange [Ma]
and Kashiwara [Kv] have given such M’ and M" by using the notion of V-
filiration. When f~1(0) is not smooth, the situation is reduced to the smooth
case by the graph map of f. There are already excellent surveys [MS], [S]
of this topic. This article may be considered as a very short version of [MS]
or [S]. Although most proofs of assertions are omitted, those of Proposition

4.2 and 4.4 are exposed in order to convince readers that morphisms 7', can,

and var correspond to the counterparts mentioned there.
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In §1 we define b-functions and look at some examples. In §2 we
define V-filtrations, which can be calculated by b-functions. We also look
at some examples again. In §3 we state the stability under standard oper-
ations of the category of coherent c¢!D-modules which admit the canoﬁical
V-filtrations. In §4 we define moderate nearby cycles and moderate vanish-
ing cycles, which turn out to be quasi-isomorphic to certain graded pieces of
the canonical V-filtration. In §5 we recall nearby cydes and vanishing cycles,

and state the main theorem (Theorem 5.1).

§1. b-Functions.

Let X be a complex manifold and f a holomorphic function on it.
We set Dx[s] := Dx ®c C[s] where s is an indeterminate central element.
Let Z; denote the left ideal of Dx[s] cohsisting of all operators P(s,z, D) in
Dx[s] such that P(s,z, D)f(z)* = 0 holds for a generic z. A Dx[s]-module
N; := Dx|[s]/Z; has a Dx-linear endomorphism ¢ defined by P(s)f* —

P(s+1)f**1. Since we have [t,5] =¢t, M; := N, /tN} is a Dx[s]-module.

DEFINITION 1.1 [SSM], [Be]: The minimal polynomial b(s) of the multi-

plication by s on My is said to be the b-function of f.

THEOREM 1.2 [Be], [Bj], [Kb]. The Dx-module My is holonomic and the
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b-function of f locally exists.

ExampLE 1.3 [Mi], [Y]: Let X = C", z,,...,2, a coordinate system on

-~ X and D; = % (1 < i< n). We assume f to have an isolated singularity

at the origin and f(0) = 0. We suppose that there exist v = } [, H=; D;,
r € Zyq, 71,...,mn € I>o such that v(f) = f. The b-function of f at a
point where df does not vanish is s + 1. Hence s + 1 is also a factor of
the b-function b(s) of f at the origin. Since vf* = sf*, My is a singly
generated Dx-module. Let M; = (s + 1)M; and b(s) denote the minimal
polynomial of s on M;. Then we see that b(s) = (s + 1)b(s) and M; =
Dx/Dxfi+ -+ Dxfn where f; = D;(f). Let v* be the adjoint operator
of v, ie, v* = —5 o, Z(z;D; +1). Then we see b(s) = the minimal
polynomial of s on M s = the minimal polynomial of v on M 4 = the minimal
polynomial of v* on Ox/(f1,...,fn). For a monomial z* where « is a
multi-index, we have v*(z*) = — 3 _; Z(a; + 1)z*. We define a set R by

R = {3/ %(ei +1)|{2* }« is & basis for Ox/(f1,...,fa)}. Then we

obtain b(s) = (s + 1) [I5¢r(s + B)-

EXAMPLE 1.4: Let X =C" and f = z{'--- 2" where e; € Z5¢ (1 <i < n).
It is easy to check Dit--- Den f*+l = [T [Tii,(eis + k)f°. On the other

hand we suppose that there exist an operator P(s) € Dx|[s] and a nonzero



polynomial ¥'(s) € C[s] such that P(s)f**t! = b'(s)f*. By the relative
invariance under the action of (C*)™, it is easy to see that there exists
Q(s) € C[z1D1, ... ,2n Dy, s] such that P(s) = Q(s)D3* --- DE. Therefore

we see that the b-function of f at the origin is []\—; [T;, (s + ).

There are many other examples of b-functions which can be calcu-
lated. See [Y], for instance, and [SKKO] for b-functions of relative invari-
ants of prehomogeneous spaces. More generally Kashiwara has proved in
[K2] that for a holonomic Dx-module M and a section u € M there exists

locally an operator P(s) € Dx[s] and a nonzero polynomial b(s) € C[s]

such that P(s)f**'u = b(s)f°u. As an application, the holonomicity of

H{le_l(o)](M) has been proved there.

§2. V-Filtration.

First of all we introduce the lexicographical order in C = R@R/-1.
Let Y be a smooth closed submanifold of X of codimension one, Zy the

defining ideal of Y. For k € Z we define

ViDx :=={P e€Dx |PL, cIiy* (Vjiel)}

where I{, = Ox for j < 0. Then { Vi Dx }rez is an exhaustive increasing

31
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filtration. Let ¢ be a local equation of Y and D; a local vector field such that
[D;,t] = 1. We have t € V_1Dx, D; € 1Dy, gry Dx = VoDx/V_1Dx =

Dy[tDt] and ViDx = {Eij—i a‘t'j(ya Dy)t‘Di }

DerINITION 2.1 [Kv], [Ma]: Let M be a coherent Dx-module. An in-
creasing filtration { VoM },ec satisfying the following conditions is called

the canonical V-filtration.
1) M= UaecVaM . BEach V,M is a coherent V5D x-submodule.
(2) (ViDx)(VaM) C VayiM (Ve € C,Vi € Z).

(3) tVaM) = Vot M (Va < 0).

(4) The action of (tD; + 1 + ) on gry M (Ya € C) is nilpotent where

gr¥ M = VoM /VeaM and VoM = Usca Vo M.

REMARKS 2.2: (1) The definition of the canonical V-filtration does not
depend on the choice of ¢t and D;. The canonical V-filtration is unique if it

exists.

(2) Since the adjoint of (¢D; +1 + «) is —(¢D; — &), the eigenvalue of ¢t D,

on gr¥ N is « for a right Dx-module V.

(B) t:g¥Y M — gr¥_ M and D, : gr¥_; M — gr¥ M are bijective for



a # 0.

DEFINITION 2.3: We say that a coherent Dx-module M is specializable
along Y and we denote M € By if the following equivalent conditions are

satisfied:

(1) For any system of local generators u, ... , u; of M there exists a nonzero

polynomial b(s) € C[s] such that b(¢D;)u; € Zj-:l(V_lDX)uj 1<vi.

(2) M admits the canonical V-filtration with respect to ¥ and there exists

a finite set A C C such that {@ € C| gty M #0} C A+ Z.

Let M € By and u € M. Then there exists a nonzero polynon;ial
b(s) € C[s] such that b(tD;)u € (V_1Dx )u. The minimal polynomial among
such is called the b-function of the section u. The canonical V-filtration of
M is known to be given by V,M = {u € M| all roots of the b-function of

u are greater than or equal to —a—1 }. °

ProPOSITION 2.4. Let 0 - M’ — M — M" — 0 be an exact sequence of
coherent Dx-modules. Then we have

(1) M€ By <= M', M" € By.

(2) The induced sequence 0 — Vo M' — VM — V,M" — 0 is exact for
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Va € C if M € By.

(3) The induced sequence 0 — gry M’ — gr¥ M — gr¥ M" — 0 is exact

forVa € C if M € By.

REMARK 2.5: Let M € By. Then gr¥ M is a coherent gry Dx = Dy[tD;]-
module for any & € C. Since the action of (¢D;+1+c) is nilpotent on gry M,

it is a coherent Dy-module.

EXAMPLE 2.6: Let M be a coherent Dx-module with Supp(M) C Y, and
u € M. Then there exists i € Z5¢ such that t'u = 0. So we have H;zl(tDt +
k)u = Dit'u = 0. Hence we obtain M = @,z  M; where M; = {u €

M| (ED; +1+i)u=0}, and VoM = D, , M:.

ExampPLE 2.7: Let M be a coherent 'Dx-module.» We assume Y to be non-
characteristic for M, i.e., Ch(M)NTy X C Tx X. Then M € By. The proof
could be reduced to the case of Dxv = Dx/Dx P with P € VyDx, P =
DY € VyDx/Vn_1Dx and N € Z»( where the bar indicétes the canonical
image. Since Pv =0, in (VyDx)v/(VN-1Dx)v we have Pov = DNv =0, i.e.,
DNv € Viy_1Dxv. Hence we obtain [[rop (tD; — k)v =tV DNv € V., Dxv.

In general, any root of the b-function of any section of M is a nonnegative
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integer. Therefore we see by Definition 2.1 (3)

¢le=1 pq a< -1
VM =

M a> -1

where [o¢] =max{n €Z|n < a}.

Let f be a holomorphic function, M a holonomic Dx-module, u €
M and Y = f7*(0). Let i; denote the graph of f : X — X x C and ¢
the coordinate of C in X x C. Then we see M € By & iy M € Bx (0}
Furthermore there is the following correspondence under the isomorphism of

Dx|s,t] onto Vo(Dx|[t, D;]) = Dx[t,tD:]:

s +— —D;t
Dx[s]f*u «— Vo(Dx[t, D Ju® 6(t — f)

P(s)f*tu =b(s)f°u e P(=Dit)tu ® §(t — f) = b(—=D;t)u ® §(t — f).
By Kashiwara’s result recalled in §1, we obtain:

ProprosITION 2.8. All holonomic Dx-modules belong to By.

§3. Operations in By.

ProprosITION 3.1. LetY ={t=0} and M € By. Then
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1) M[t_l] € By.

(2) H(M*) € By for Vj. Moreover for Vj locally we have isomorphisms
gx (36 (M*)) = 7 (g¥_y (M)*) (=1 < & < 0) and gz (3 (M*))
M (gry (M)*) (8 = —1,0). Under these isomorphisms the transpose 't :
Hi(gr¥, (M)*) — HI(gry (M)*) corresponds to —D; : gr’,(H (M*)) —
gry (H? (M*)) and the transpose *Dy s M (gry (M)*) — H (gr¥ (M)*) cor-

responds to t : gr¥ (M) (M*)) — gr¥, (H (M*)).

ProPOSITION 3.2. Let M be a holonomic Dx-module and i the inclusion

of Y into X. Then

(1) The restriction i* M is quasi-isomorphic to 0 — gr¥, M2 gry M — 0

where the dot indicates the place of degree zero.

(2) For any a € C, grl M is a holonomic Dy -module.

Proor: (1) By Remark 2.2 (3) and Proposition 3.1 (2) we have

M5 (0 — grd (M) S gr¥y (M*) — 0)

gis .

= (0 — (g0 M)* 2 (grly M)T = 0).

gis

Since i* M = (i' M*)*, we obtain the assertion.
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(2) We know that

M : holonomic & M/ (M*) =0 for j #0.

Hence by Proposition 3.1 (2) we obtain H ((gr¥ M)*) = 0 for j # 0. This

means the holonomicity of gr¥ M.

ProposiTioN 3.3. Let g : X' — X be a proper mvorphism of smooth mani-
folds. We suppose that Y’ := g=(Y) is a smooth hypersurface and M € By
has a global good filtration. Then for any j, we have H’(Rg.M) € By and

the canonical V-filtration of M induces the one for (Rg. M).

§4. Moderate Nearby Cycles and Moderate Vanishing Cy-

cles.

Let Y be a smooth hypersurface defined by ¢t : X — C. For a

coherent Dx-module M € By, p € ILyp and —1 < a < 0, we define

Ma,p = @ M[t_1]®6a,k

0<k<p

where e, r = t*t1(Logt)* /k!. It is clear that for any 8 € C

VeMayp = @ Vatrar1(M[71]) ® eq -

0<k<p
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Then the monodromy T = exp(2nitD;) induces a Dy-automorphism on

Map by T(m ® eq k) = m ® T(eq,r), and accordingly on gry (Ma,,).

DerINITION 4.1: For —1 < a < 0, we define the moderate nearby cycle
$ia(M) by
P (M) = lim g, (M)

4

where 977, (M) := i*(Ma,,)[-1]-
By Proposition 3.2 we see

m ~ D,
1»bt,a,p (M) ;) (0— grYl(Mmp) - gr(‘),(Ma.p) — 0).

We remark that T' acts on 97", (M) as well.

ProposITION 4.2. For M € By and —1 < a < 0, we have a quasi-iso-
morphism gr¥ M — ™ (M). Here the action of T on ¥ (M) corre-
qis ! ’

sponds to that of exp(—2mit D).
PROOF: Since VoM = Vo(M[t71]), we have

g1l (Mop) = D grtM[tT ) @eap = P g1l (M) @ e

0<k<p 0<k<p

As My, = Mg p[t71], we know HO (¥, ,(M)) = Ker(D;) = Ker (tD; :

g’ (Ma,p) — gr¥i(Mg,p)). Since tDi{(m ® eqx) = [(tD: + o + 1)m] ®



ek + M ® eq k1, Wesee Y F_ mi ® eqr € Ker(tDy) = HO(Y, ,(M)) &
(tDi+a+1)mp+mey1 = 0 (0 < Vk < p—1) & my = [—(tDs+a+1)]*mqg (0 <
Vk < p). Hence for p such that (¢D; +a+1)? = 0 on gr’ (M), the morphism
gra (M) 3 mo = 34 o[—(D: + a + 1)[*mo ® ear € HO(Pfu ,(M)) is

isomorphic.

Let ¢ = Y0 _ [-(tD; + a+1)]*mo®eq ;. € Ker(tD;). Then we have

0 = (tDe)z = Fhol~(tD: + a+ 1)]*(tDy)mo ® eap + Fohool—(tD: + o +
1))*mo ® (tD;)ea,k, and thus 5% _[—(¢D: + o + 1)]Fmo ® (27itD;)eq s =
r_ol=(tD: + a + 1)]F((—27itD;)mo) ® eax- Hence the monodromy T

corresponds to exp(—2witD;).

Since ¢ induces an isomorphism gry (Mg, ,) — gr¥;(Mag,p), we see

H (Y7, ,(M)) = Coker(D;) = Coker(Dyt : gry (Ma,p) — g1 (Ma,p)). For
2 k=0 ™Mk ® €a € EBogkgp €IX+1(M[F1 ]) ® ear = 818 (Ma,p), We have
D3k _ome ®ear) = 2 poo((Deit + o+ 1)mp ®@ ear + Mk @ €ak—1) =
F oM, ®eqr where m}, = (Dit +a+1)my +my41. Hence for I such that
(Det+a+1)! =0ongry ;(M[t71]), we have m®e,t = DA(S_ [—(Dit+

a+1)]"'m ® eq k1) and thus K (p]%, (M)) = 0.

DEFINITION 4.3: We define the moderate vanishing cycle #7%(M) to be

the inductive limit of the mapping cone ¢}, ,(M) of the natural morphism
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M[-1] ;*i*M—l,p[“l] L —l,p( ), Le,

—Dt t
¢t0p (0 —gr’ 1MJ@—" gr-lM—lpEBgroM "—t’JgoM—lp“"O)

where j is the natural morphism M — M_; , = @0<k<p [ ll®e 1.

We define morphisms can : 9" ; (M) — ¢75(M) and var : ¢7(M)
— P71 (M) by the morphisms id : ¢* ; (M) — 87 (M) and T —id :

fo,p(M) — P (M) respectively.

PROPOSITION 4.4. For M € By, we have a quasi-isomorphism gry M =

gis

¢7(M). Moreover can corresponds to D, : gr¥; M — gry’ M and var to

RPN gl — g, M.

PROOF: Let z = Y% _mp ®e_1p +no € griyM_y1, ® grf M =
(B _oer¥i M ®e_11) ®gry M. Then we can check
my = —tDtmo - t‘no

z € Ker(D; + j) & (%) {

Mig41 = —tDtmk (k Z 1)

Hence we obtain an isomorphism gr¥, M@gry M —— Ker(D;+j) defined by
mo+no — Y. mg®e_1,x+no with (*). So we see gry’ M — H°(¢7%). Since
m = Dym mod Im(j &~ D;) for m € gr¥; M, the morphism can corresponds

to Dy : gr¥y M — grf M. The element 2oi>1(— —tD) 1 (—tn) @ e_1 5 +



n € Ker(D; + j) corresponds to n € gry M. Since the coefficient of (T —

id)(Tgo1 (~1De)F 1 (—tn) ® e_14) at e_10 is Yy, (2mi)* CBL " (—tn),

the morphism var corresponds to [(exP(-ig:Dt)_l)]t cgrg M — gr¥, M.

§5. Nearby Cycles and Vanishing Cycles.

Let f be a nonconstant holomorphic function on X, ¢ the inclusion
of f=1(0) into X and K € D%(Cx). Let C* denote the universal covering
of C* and p the natural map X* := X x¢ C* — X. Following [SGAT]
we define the nearby cycle ¥;(K) by ¢;(K) :=i"'Rp.p™ K € DZ(Cf—l(O)).
The natural morphism K — Rp.p~! K induces a morphism i 71K — ;(K),
whose mapping cone ¢;(K) € D8(C #-1(0)) is called the vanishing cycle. By
the definition of ¢;(K) we have the canonical morphism can : ¥ (K) —
#5(K). Associated to the ce;nonical generator of m1(C*) the monodromy
automorphism 7" acts on 4 (K) and ¢4(K). Since (T —id)|;-1x =0, T —id
induces the variation var : ¢;(K) — 9¥;(K). For A € C* we define a

subcomplex Y5 1 (K) of ¥;(K) by

Yia(K) ={z € (K)|(T - Aid)"z=0 (m >>0)}.

Since 15 (K) € D%(Cy-1(p)), we have a quasi-isomorphism Dircex Y1 (K)

— 7 (K). Similarly we have @,cex 5,1(K) — ¢7(K) as well. For
qis

qis
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convenience we set ?1; (K) := 9y (K)[—1] and P¢;(K) := ¢4 (K)[-1].

Let Y be a smooth hypersurface of X defined by t = 0. When M is

a regular holonomic Dx-module, we have quasi-isomorphisms

DR(YI(M)) 22 "y, came (DR(M)) (1< @< 0)

is

DR(#F5(M)) =2 7441 (DR(M))

(see [SGAT]). Hence we obtain ;

THEOREM 5.1 [Kv], [Ma]. For a regular holonomic Dx-module M, we

have

DR(gry M) —

gis

{wt,eaf-amw)) (1< a<0)

P@, saria (DR(M)) (=1 < a < 0).

Moreover under the above quasi-isomorphisms we have the following corre-

spondences:

exp(—2mitD;y) & T

Dy gty i M — grf M« can : Py 1 (M) — P, 1 (M)

[exp(—27it D;) — 1]

D, t:grg M — gr¥y M o var : ¢, 1 (M) — Py 1 (M).
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COROLLARY 5.2. For a regular holonomic Dx-module M, we have

?4:(Dx (DR(M))) = Dy 74:(DR(M))

?¢:(Dx (DR(M))) q—:> Dy ?¢:(DR(M)).
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