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APPLICATIONS OF HODGE MODULES
– KOLL\’AR CONJECTURE AND KODAIRA VANISHING –

BY
MASA-HIKO SAITO

Department of Mathematics, Faculty of Science, Kyoto University

\S 0 Hodge Modules.

(0.1). In this note, we will give an exposition of some applications of Morihiko Saito’s
theory of Hodge modules. All of these applications are due to Moriniko Saito himself.

Though there is a good exposition by Shimizu[Sh], in \S 0, we will recall quickly
the definition of the category $MH(X, \mathbb{Q}, n)$ of Hodge Modules of weight $n$ , mainly
for preparing the notations. In \S 1, we will give the statements of the stability of
polarized Hodge modules by projective direct images and the decol aposition theorem
for the intersection complexes of Beilinson-Bernstein-Deligne-Gakber type, and we
will explain how these results imply existence of the natural pure Hodge structures on
the intersection cohomology groups.

In \S 2, we will discuss about Saito’s proof of Koll\’ar conjecture on the direct images
of the edge components of “generic variation of Hodge structures“. \S 3 is devoted to
a generalization of vanishing theorem of Kodaira-type, which follcws naturally from
the theory of Hodge modules.

(0.2). Let $X$ be a complex manifold. In this note, we will use the filtered right $\mathcal{D}_{X^{-}}$

Modules. Let $j\psi F_{h}(\mathcal{D}_{X})$ be the category of filtered $\mathcal{D}_{X}$-Modules $(M, F)$ such that
$M$ is regular holonomic and $Gr^{F}(M)$ is coherent over $Gr^{F}\mathcal{D}_{X}$ . $13y$ Kashiwara, we
have a faithful and exact functor $DR$ : $MF_{h}(D_{X})arrow Perv(\mathbb{C}_{X})$ (Riemann-Hilbert
correspondence), and we define $MF_{h}(\mathcal{D}_{X}, \mathbb{Q}_{X})$ to be a fiber product of $MF_{h}(\mathcal{D}_{X})$

and Perv $(\mathbb{Q}_{X})$ over Perv $(\mathbb{C}_{X})$ . That is, the objects are $((M, F),$ $K$ ) $\in MF_{h}(D_{X})\cross$

$Perv(\mathbb{Q}_{X})$ with an isomorphism $\alpha$ : $DR(M)arrow K\otimes_{\mathbb{Q}_{X}}\mathbb{C}_{X}$ , and the morphisms are
the pairs of the morphisms compatible with $\alpha$ .

(0.3). Let $i:Xarrow+Y$ be a closed embedding locally defined by $X=\{x_{1}=\cdots=x_{k}=$

$0\}$ with $(x_{1}, \cdots x_{m})$ local coordinates of Y. Then for a filtered holonomic $\mathcal{D}_{X}$ -modules
$(M, F)$ , the direct image $(\tilde{M}, F)=i_{*}(A/I, F)$ is defined by $(M, F)\otimes_{\mathcal{D}_{X}}(\mathcal{D}_{Xarrow Y}, F)$ (see
[Sh]), and locally we have

$\tilde{M}=M\otimes_{\mathbb{C}}\mathbb{C}[\partial_{1}, \cdots\partial_{k}]$ ,
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$F_{p}\tilde{M}=\oplus_{\nu\in N^{k}}F_{p-|\nu|}M\otimes\partial^{\nu}$ ,

where $\partial^{\nu}=\prod_{1<i\leq k}\partial_{i}^{\nu;},$ $| \iota/|=\sum\nu_{i},$ $\partial_{i}=\partial/\partial x_{i}$ . Then we have $DRoi_{*}=i_{*}oDR$ and
we get the functor

$i_{*}$ : $MF_{h}(\mathcal{D}_{X}, \mathbb{Q})arrow MF_{h}(\mathcal{D}_{Y}, \mathbb{Q})$ .

(0.4). Let $g$ be a holomorphic function on $X$ , and $i_{g}$ : $Xarrow X\cross \mathbb{C}$ the embedding by
the graph of $g$ . We say that $(M, F, K)\in MF_{h}(\mathcal{D}_{X}, \mathbb{Q})$ is regular and quasi-unipotent
along $g$ , if the monodromy of $\Psi_{g}K[-1]$ is quasi-unipotent and $(\acute{M}, F)=i_{g*}(M, F)$

satisfies

(0.4.1) $(F_{p}V_{\alpha}\tilde{M})\cdot t\cong F_{p}V_{\alpha-1}\tilde{M}$ for $\alpha<0$

(0.4.2) $(F_{p}Gr_{\alpha}^{V}\tilde{M})\cdot\partial_{t}\cong F_{p+1}Gr_{\alpha+1}^{V}\tilde{M}$ for $\alpha>-1$ ,

where, $t$ is the coordinate of $\mathbb{C}$ and $V$ is the filtration of Kashiwara-Malgrange indexed
by $\mathbb{Q}$ such that $t\partial_{t}-\alpha$ is nilpotent on $Gr_{\alpha}^{V}\tilde{M}$ . (See [Ka]).

We need the notions of “nearby cycle sheaves” $\Psi_{g}(K)$ and the “vanishing cycle
sheaves” $\Phi_{g}(K)$ , for $K$ a constructible sheaves on $X$ and $g$ a $non- cor_{\perp}stant$ holomorphic
function on $X$ (cf. [SGA7]). They are constructible complexes of sheaves on $g^{-1}(0)$ .
Gabber proved that, for a non-constant holomorphic function $g:Xarrow \mathbb{C}$ , if $K$ is a
perverse sheaf on $X$ , then $\Psi_{9}(K)[-1]$ and $\Phi_{g}(K)[-1]$ are perverse sheaves on $g^{-1}(0)$ .

Via the Riemann-Hilbert correspondence, there should exist the corresponding func-
tors $\Psi$ and $\Phi$ in the category of holonomic D-modules, and they were constructed
explicitly by Malgrange (in the case of $\mathcal{O}_{X}$ ), and by Kashiwara [Ka] in the case of
regular holonomic $\mathcal{D}$-modules. (For details, see expositions [Sh] and [S.Mu]).

Under the condition (0.4.1-2), we define the nearby cycles functor and the vanishing
cycle functor on the level of filtered $\mathcal{D}_{X}$ -modules

$\Psi_{g}(M, F, K)=(\oplus_{-1\leq\alpha<0}Gr_{\alpha}^{V}(\tilde{M}, F[1]), \Psi_{g}K)$

$\Phi_{g,1}(M, F, K)=(Gr_{-1}^{V}(\tilde{M}, F),$ $\Phi_{g,1}K$ ),

and can: $\Psi_{g,1}arrow\Phi_{g,1}$ and $Var:\Phi_{g,1}arrow\Psi_{g,1}(-1)$ are induced respectively $by-\partial_{t}$

and $t$ , where $F[m]_{i}=F_{i-m}$ . Here $\Psi_{g,1}$ is the unipotent monodromy part of $\Psi_{g}$ (same
for $\Phi_{g}$ ). We have

$\Psi_{g}(M, F)=0$ , $\Phi_{g,1}=(M, F)$ , if $suppM\subset g^{-1}(0)$ ,

because the conditions (0.4.1-2) is equivalent to $(F_{p}M)\cdot g\subset F_{p-1}fvI$ in this case.
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(0.5) Lemma. (cf. $[Sl,$ $5.1.4]$). If $(M, F, K)\in MF_{h}(\mathcal{D}_{X}, \mathbb{Q})$ is regular and quasi-
unipotent along $g$ for a $loc$ally defined holomorphic function $g$ on $X$ , the following
$con$ditions are equi$1^{f}al$en$t$ :

(0.5.1) In th$e$ category $MF_{h}(\mathcal{D}_{X}, \mathbb{Q})$ , one has a decomposition

$\Phi_{g,1}(M, F)={\rm Im} can\oplus Ker$ Var,

(0.5.2) One has a unique decomposition in $MF_{h}(\mathcal{D}_{X}, \mathbb{Q})$

$(M, F, K)=(M_{1}, F, K_{1})\oplus(M_{2}, F, K_{2})$

where $M_{2}h$as a suppor$tcon$tain$ed$ in $X_{0}$ $:=g^{-1}(0)$ and $(M_{1}, F, K_{1})$ has no $su$ b-obje $ct$

or quotien$tob$ject $s$uppor$ted$ in $X_{0}$ .

Let $(M, F, K)\in MF_{h}(D_{X}, \mathbb{Q})$ . We say that $(M, F, K)$ has a $c\llcorner trict$ support $Z$ if
$suppM=suppK=Z$ and admits no sub-object or quotient ooject with strictly
smaller support.

As a corollary of this lemma, we have the following

(0.6) Proposition. $([Sl, 5.1.5])$ . If $(M, F, K)\in MF_{h}(\mathcal{D}_{X}, \mathbb{Q})$ is regular and quasi-
unipoten$t$ along $g$ , for any $gloc$ally defined on $X$ , th $e$ following $co$ tdition$s$ are equiv-
alent:

(0.6.1) In the category $MF_{h}(D_{X}, \mathbb{Q})$ , one has a decomposition

$\Phi_{g,1}(M, F)={\rm Im} can\oplus Ker$ Var,

for any $gloc$ally defined on $X$

(0.6.2) For any Zariski open set $U$ of $X,$ $(M, F, K)_{|U}$ has the canonical decomposition
$\oplus_{Z}(M_{Z}, F, K_{Z})$ for $Z$ closed irreducible $su$ bspaces of $U$ , such that $M_{Z}h$as strict
support $Z$ .

Moreover $M$ has strict support $Z$ , if and on$ly$ if supp $M=Z$ an$dc$an is surjecti $ve$,
Var $is$ injective for any locally defined $g$ such that $dimg^{-1}(O)\cap Z<dimZ$ .

(0.7). Let $MF_{h}(D_{X}, \mathbb{Q}_{X})_{(0)}$ be the full subcategory of $MF_{h}(\mathcal{D}_{X}, \mathbb{Q}_{X})$ whose objects
are regular and quasi-unipotent along $g$ and satisfies the condition (0.5.1) (or equiv-
alently (0.5.2)), for any $g$ locally defined on $X$ . Moreover, let $MF_{h}(\mathcal{D}_{X}, \mathbb{Q})_{Z}$ be the
full subcategory of $MF_{h}(\mathcal{D}_{X}, \mathbb{Q}_{X})_{(0)}$ whose objects have strict $su.$ )

$I$)$ortZ$ . Then by
Proposition (0.6) we have the canonical decomposition (locally finite on $X$ ):

(0.7.1) $MF_{h}(\mathcal{D}_{X}, \mathbb{Q})_{(0)}=\oplus_{Z}MF_{h}(\mathcal{D}_{X}, \mathbb{Q})_{Z}$

where $Z$ is running over all irreducible subspaces of $X$ .
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Let $(M, F, K)\in MF_{h}(\mathcal{D}_{X}, \mathbb{Q})_{Z}$, and $g$ a holomorphic function on $X$ such that
$Z\not\leqq g^{-1}(0)$ and can : $\Psi_{g,1}(M, F)arrow\Phi_{g,1}(M, F)$ is strictly surjective. Then we have

(0.7.2) $F_{p} \tilde{M}=\sum_{i}(V<0^{\tilde{M}}\cap j_{*}j^{-1}F_{p-i}\tilde{M})\cdot\partial_{t^{i}}$

with $j$ : $X\cross \mathbb{C}^{*}\llcorner_{arrow X}\cross \mathbb{C}$ and $(\tilde{M}, F)=i_{g*}(M, F)$ as above. In this case, the filtration
on $M$ is uniquely determined by its restriction to the complement of $g^{-1}(0)$ .

(0.8) Definition of the Hodge modules.

Now we can define the category of Hodge modules of weight $n$ . First we will give
the definition for smooth $X$ , and later mention about the definition for singular $X$ .

(0.8.1) Smooth case. (See [Sh]). Let $X$ be a smooth complex analytic variety. The
category $MH(X, \mathbb{Q}, n)$ of Hodge modules of weight $n$ is the largest full subcategory of
$MF_{h}(\mathcal{D}_{X}, \mathbb{Q}_{X})_{(0)}$ satisfying the following conditions;

(HM1) An object of $MH(X, \mathbb{Q}, n)$ with support $\{x\}$ is of the form $(M, F, K)=$
$i_{x*}(H_{\mathbb{C}}, F, H_{\mathbb{Q}})$ for the inclusion $i_{x}$ : $\{x\}arrow*X$ , where $(H_{\mathbb{C}}, F, H_{\mathbb{Q}})$ is a pure $\mathbb{Q}$-Hodge
structure of weight $n$ with increasing filtration $F_{p}=F^{-p}$ .

(HM2) If $M\in MH(X, \mathbb{Q}, n),$ $M$ is regular and quasi-unipotent along $g$ , and $Gr_{i}^{W}\Phi_{g}M$ ,
$Gr_{i^{W}}\Psi_{g,1}M\in MH(U, i)$ for any $i,$ $\Psi_{g,1}={\rm Im}(can)\oplus Ker$ (Var), for any holomorphic
function $g$ on an open subset $U$ of $X$ , where $W$ is the monodromy filtration shifted
by n- 1 and $n$ .

One can check the well-definedness of this definition by the induction on $\dim supp$

$M$ .

(0.8.2) Singular case. Let $X$ be a reduced, separated complex analytic spaces, and
take a locally finite covering $X= \bigcup_{i}U_{i}$ and a set of embeddings $U_{i^{c}}arrow V_{i}$ where $V_{i}$ are
smooth varieties. Then a Hodge module of weight $n$ on $X$ can be defined by patching
local pieces with compatibility conditions. See Shimizu’s exposition [Sh] for detail.

Let
$MH_{Z}(X, \mathbb{Q}, n)=MH(X, \mathbb{Q}, n)\cap MF_{h}(\mathcal{D}_{X}, \mathbb{Q})_{Z}$ ,

so that we have the strict support decomposition

(0.8.3) $MH(X, \mathbb{Q}, n)=\oplus_{Z}MH_{Z}(X, \mathbb{Q}, n)$ .

according to (0.7.1).

(0.9). Every morphism in the categories $MH(X, \mathbb{Q}, n)$ and $MH_{Z}(X, \mathbb{Q}, n)$ is strict
with respect to the filtrations $F$ . Furthermore, these subcategories of $MF_{h}(\mathcal{D}_{X}, \mathbb{Q})$

are stable under the operation of taking a direct summand.
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(0.10) Objects. In order to see what objects are in $MH(X, \mathbb{Q}, n)$ , we will recall the
definition of intersection (co-)homology complex. Let $X$ be an irreducible analytic
variety of dimension $n$ with a Whitney stratification $X=X_{n}\supset X_{n-1}\supset\cdots\supset X_{0}$ by
analytic subvarieties. The stratums $S_{i}=X_{i}-X_{i-1}$ are smooth manifolds of dimension
$i$ if it is non-empty. Let $U_{k}=X-X_{k}$ be Zariski open sets of $X:U_{-n}\subset U_{-n+1}\subset$

. . . $\subset U_{0}=X$ , and let $j_{k}$ : $U_{k-1}carrow U_{k}$ be the inclusions. Note that $U_{-n}=X-X_{n-1}$

is a smooth Zariski open subset of $X$ . Let $L$ be a local system of $\mathbb{Q}$-vector spaces on
$U_{-n}$ . Then we define the intersection (co-)homology complex (with middle perversity)
with coefficients in $L$ to be

(0.10.1) $\mathcal{I}C_{X}(L)=\tau\leq-1Rj\tau Rj_{1-n*}L[n]$ in $D_{c}^{b}(\mathbb{Q}_{X})$

where $\tau$ is the truncation functor. In [BBD], this is denoted by

(0.10.2) $j_{!*}L[n]={\rm Im}(j_{!}L[n]arrow j_{*}L[n])$

where $j$ : $U_{-n}arrow*X$ . It can be proved that $\mathcal{I}C_{X}(L)$ is independent of stratification.
Let $(V_{\mathbb{Q}}, F)$ be a variation of Hodge structure of weight $n$ on a smooth complex

manifold $X$ (see Usui’s exposition [U]), and set $\mathcal{V}=V_{\mathbb{Q}}\otimes_{\mathbb{Q}}\mathcal{O}_{X}$ . We define $(M, F, K)\in$
$MF_{h}(\mathcal{D}_{X}, \mathbb{Q}_{X})$ for $(V_{\mathbb{Q}}, F)$ by setting

(0.10.3) $M=\Omega_{X}^{dimX}\otimes 0\mathcal{V}$ , $F_{p}M=\Omega_{X}^{dimX}\otimes_{\mathcal{O}}F^{-p-dimY}\mathcal{V}$

(0.10.4) $K=V_{\mathbb{Q}}[dimX]$ .

(0.11) Proposition. $([Sl$ , 5.1.10]$)$ . Let $(M, F, K)\in MH_{Z}(X, \mathbb{Q}, n)$ , then $K$ is an
intersection Aomology complex $\mathcal{I}C_{Z}(V_{\mathbb{Q}})$ an$d(M, F, K)$ is generically a variation of
Hodge structure of weight $n-d_{Z},$ $i.e$ . there exists a smooth Zariski dense open set
$U$ of $Z$ and a variation of polarized Hodge structure $(V_{\mathbb{Q}}, F)$ of weight $n-d_{Z}$ on $U$

$sucb$ that $(M, F, K)_{|U}$ is isomorphic to $(\Omega_{U}^{dimU}\otimes 0\mathcal{V}, F, V_{\mathbb{Q}}[d_{Z}])$ where the filtration
$F$ is given by (0.10.3).

In order to state the stability of the category of Hodge module under the direct
image, one has to introduce the notion of “polarization” of a Hodge module. For $k\in Z$ ,
Let $\mathbb{Q}(k)$ denote the Hodge structure of Tate of weight $-2k$ and of type $(-k, -k)$ .

(0.12) Definition. Assume that $((M, F),$ $K$ ) belongs to $MH_{Z}(X, \mathbb{Q}, n)$ for some
irreducible $Z$ . A polarization is a pairing

$S$ : $K\otimes Karrow a_{X}^{!}\mathbb{Q}(-n)$

which satisfies the following conditions.
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(1) If $Z=\{x\}$ , there is a polarization $S’$ of Hodge structure $M’$ such that $S=i_{x*}S’$ ,
where $i_{x}$ and $M’$ as in (i).

(2) $S$ is compatible with the Hodge filtration $F$ , i.e. the corresponding isomorphism
$K\simeq(DK)(-n)$ is extended to an isomorphism $(M, F, K)\cong D(M, F, K)(-n)$ .

(3) For any holomorphic function $g$ on $X$ such that $g^{-1}(O)\not\subset Z$ , the induced pairing

$p\Psi_{g}So(id\otimes N^{i})$ : $Gr_{n-1+i}^{W}\Psi_{g}K[-1]\otimes Gr_{n-1+i}^{W}\Psi_{g}K[-1]arrow o^{!_{U}}Q(n-1-i)$

is a polarization on the primitive part $P_{N}Gr_{n-1+i}^{W}\Psi_{g}(M, F, K)$ . Here, $P_{N}$ denotes the
primitive part with respect to $N$ , and one uses the fact that $\Psi$ commutes with Verdier
duality, and the self-duality of the monodromy weight filtration $T\phi^{r}$ .

We can give the following examples of polarizable Hodge module.
Let $X$ be a smooth complex manifold of dimension $d_{X}$ , ( $V_{\mathcal{O}}$ , F. $V_{\mathbb{Q}}$ ) a $\mathbb{Q}$-VHS of

weight $(n-d_{X})$ with the polarization

$S’$ : $V\otimes Varrow Q(d_{X}-n)$ .

We define $\mathcal{M}=(M, F, K)\in MF_{h}(\mathcal{D}_{X}, \mathbb{Q}_{X})$ as in (0.10.3-4), and let $S$ be a polariza-
tion on $\mathcal{M}$ induced by $S’$ (see, (2.3.4) of [Sh] or, (5.2.12) of [S1]).

(0.13) Theorem. $([Sl, 5.4.3])$ . Under the above notation, $((M, F’, K), S)$ is a polar-
ized Hodge module of weight $n$ .

Moreover, in relation to (0.11), Saito proved that a polarizable Hodge modules
with strict support $Z$ (i.e. its underlying perverse sheaf is an intersection homology
complex $\mathcal{I}C_{Z}(L))$ is a polarizable variation of Hodge structure on a dense Zariski open
subset of Z. (See (5.1.10) and (5.2.12) in [S1]). In later article [S2], Saito proved
that the converse is also true, i.e. any polarizable variation of Hodge structure with
quasi-unipotent local monodromies1 defined on a smooth dense Zariski open subset of
$Z$ can be uniquely and funtorially extended to a polarizable Hodge $Il\perp odule$ with strict
support. Therefore, we obtain the following

(0.14) Theorem. ($(3.21)$ in $[S2]$). For a reduced irreduci$blesep$ara$ted$ complex an-
alytic space $X$ of dimension $d_{X}$ , we $have$ the $eq$ uivalence of categories:

$MH_{X}(X, \mathbb{Q}, n)^{p}\cong VHS_{gen}(X, Q, n-d_{X})^{p}$ .

Here $VHS_{gen}(X, n-d_{X})$ is the inducti $1^{\gamma}e$ limit of $VHS(U, Q, n-d_{X})^{p}$ the categories of
polariza$ble$ variation of Q-Hodge stru $ct$ ures of weight $n-d_{X}$ on smooth dense Zariski
open $subs$ets U. More$0$ver the polarization correspon$ds$ bijectively.

1 This condition is always satisfied if $L$ has a $\mathbb{Q}$-structure, i.e., if $L$ is a $\mathbb{Q}$-VHS.
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(0.15) Direct images. Let $f$ : $Xarrow Y$ be a proper morphism of smooth algebraic
varieties, $i_{f}$ : $Xarrow X\cross Y$ the embedding by graph, and $p:X\cross\iota\nearrowarrow Y$ the natural
projection. Then the direct image of filtered $\mathcal{D}_{X}$-module $(M, F)$ is defined by

(0.15.1) $f_{*}(M, F)=Rp_{*}DR_{X\cross Y/Y}(i_{f})_{*}(M, F)$ ,

where $(i_{f})_{*}$ is as in (0.3), $Rp_{*}$ is the sheaf theoretic direct image For $(M, F, K)\in$
$MF_{rh}(\mathcal{D}_{X}, Q)$ , we define

$f_{*}\mathcal{M}=(f_{*}(M, F),$ $f_{*}K$ ), $\mathcal{H}^{i}f_{*}\mathcal{M}=(\mathcal{H}^{i}f_{*}(M, F)^{p}\mathcal{H}^{i}f_{*}K)$

with the isomorphisms

$DR(f_{*}M)=f_{*}K\otimes_{\mathbb{Q}}\mathbb{C}$ , $DR(\mathcal{H}^{i}f_{*}\mathcal{M})=p\mathcal{H}^{i}f_{*}K\otimes_{\mathbb{Q}}\mathbb{C}$

induced by $DRof_{*}=f_{*}oDR,$ $DR\mathcal{H}^{i}=^{p}\mathcal{H}^{i}o$ DR.

\S 1 Stability and Decomposition Theorem.

Now we can state the stability theorem of Hodge modules by tf $\rho$ projective direct
image, which is one of the main theorems in [S1].

(1.0) Stability Theorem. (Th\‘eor\’em (5.3.2) in $[Sl]$). Let $f$ : $X-arrow Y$ be a projec-
ti $1^{\gamma}e$ morphism between smooth complex analytic varieties, and $l$ be th$e$ first Chern
class of a relative ample line bun$dle$ . $Ass$um$e$ that $((M, F),$ $K$ ) $\in MH_{Z}(X, \mathbb{Q}, n)$ is
endowe$d$ with a polarization S. Then:

(1.0.1) the complex $f_{*}(M, F)$ is strict an$d\mathcal{H}f_{*}((M, F),$ $K$ ) $\in MH(Y, \mathbb{Q}, n+i)$

(1.0.2) the hard Lefschetz theorem Aolds, i.e.,
$\simeq$

li : $\mathcal{H}^{-i}f_{*}((M, F),$ $K$ ) $arrow \mathcal{H}^{i}f_{*}((M, F),$ $K$ )

$is$ an isomorphism;
(1.0.3)

$(-1)^{i(i-1)/2.p}\mathcal{H}f_{*}So(id\otimes l^{i})$ : $P_{l^{p}}\mathcal{H}^{-i}f_{*}K\otimes P_{l^{p}}\mathcal{H}^{-i}f_{*}Karrow 0_{Y}^{!}\mathbb{Q}(-n+i)$

$is$ a polarization of the primitive $p$ar$tP_{l}^{p}\mathcal{H}^{-i}f_{*}K(:=Kerl^{i+1}\subset \mathcal{H}^{-7}f_{*}K)$ .

The proof is also due to the induction of dimension $suppM=Z$ .

Saito also proved K\"ahler package of the stabilty theorem for the constant sheaf
$(M, F, K)=(\mathcal{O}_{X}, F, \mathbb{R}_{X}[d_{X}])$ with $Gr_{i}^{F}\mathcal{O}_{X}=0$ for $i\neq 0$ .
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(1.1) Theorem. (Theorem (3.1) in $[S3]$). Let $f$ : $Xarrow Y$ be a proper morphism
of complex analytic spaces. $A$ ss$ume$ that $X$ is smooth Kahler with Kahler class $l$ .
Then we $h$ave the $sta$bility theorem (1.0.1-3) for the $con$stant sheaf $(M, F, K)=$
$(\Omega^{d_{X}}x, F, \mathbb{R}_{X}[d_{X}])$ .

Let $X$ be an irreducible smooth complex projective variety, $L$ a polarized variation of
Hodge structure over a Zariski dense open subset of $X$ , and $(M, F, K)$ a Hodge module
corresponding to $\mathcal{I}C(L)$ (see theorem (0.14)). In case $Y$ is a point, the assertion that
the differential of $f_{*}(M, F)$ is strict with the filtration $F$ is equivalent to say that

(1.1.4) $E^{p,q}=H^{p+q}(X, Gr_{-p}^{F}(\mathcal{I}C(L)))\Rightarrow IH^{p+q}(X, L)=H^{p+q}(X,\mathcal{I}C(L))$

degenerates at $E_{1}$ . This is a generalization of the $E_{1}$ -degeneraticjn of Hodge to de
Rham spectral sequence, and this gives the canonical Hodge filtration of the inter-
section cohomology group $IH^{p+q}(X, L)$ , and from (1.0.2) one can obtain the prim-
itive decomposition of $IH^{p+q}(X, L)$ . And primitive part $PIH$ (-X, $L$ ) has a natural
a polarization induced from the polarizations of $X$ and $L$ . In order to obtain the
canonical Hodge structure on $IH(X, L)$ , when $X$ is projective artd irreducible, but
not necessarily smooth, one needs the decomposition theorem of Beilinson-Bernstein-
Deligne-Gabber type.

(1.2) Decomposition Theorem. Let $f$ : $Xarrow Y$ be a projective morphism be-
tween analytic manifolds, $L$ a $local$ system which underlies the variation of Hodge
structure on a Zariski $op$en set $U$ on X. We have the decomposition theorem of
Beilinson-Bernstein-Deligne-Gabber type for $f_{*}\mathcal{I}C_{X}L$ the $di$rect irnage of intersection
complex, $i.e$ .

(1.2.1) $f_{*}\mathcal{I}C_{X}L\simeq\oplus_{j}(p\mathcal{H}^{J}f_{*}\mathcal{I}C_{X}L)[-j]$ in $D_{c}^{b}(\mathbb{Q}_{Y})$ ,

(1.2.2) $p\mathcal{H}^{j}f_{*}\mathcal{I}C_{X}L=\oplus_{Z’}\mathcal{I}C_{Z’}L_{Z}^{l}$, in Perv $(\mathbb{Q}_{Y})$ ,

where $Z$ ‘ are irreducible closed subvarieties of $Y$ an$dL_{Z}^{j}$ , are local systems on smooth
Zariski open sets of $Z’$ .

The assertion (1.2.1) follows from the hard Lefschetz theorem (1.0.2), and the
decomposition (1.2.2) was induced by the decomposition by strict support (0.8.1) and
theorem (0.14).

There is also a K\"ahler package of the decomposition theorem (Theorem (0.6), [S3]).
We say that a variation of R-Hodge structure $L$ is “geometric” if $L$ is a direct factor of
the restriction of $R^{j}\pi_{*}\mathbb{R}_{\overline{X}}$ to a smooth Zariski open subset for some proper surjective
holomorphic map $\pi$ : $\tilde{X}arrow X$ between analytic varieties with $\tilde{X}$ smooth K\"ahler.
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(1.3) Theorem. Let $f$ : $Xarrow Y$ be a proper morphism between irreducible analytic
spaces. Assume that there is a proper surjective morphism $\pi$ : $\tilde{X}arrow X$ with $\tilde{X}$ smooth
Kahler. Assume that $L$ is “geometric” variation of $R$-Hodge structure on a Zariski
open subset $U$ on X. Then we have the decomposition theorem for $f_{*}\mathcal{I}C_{X}L$ as in
(1.2.1-2) (with replaci$ng$ the coefficien$t\mathbb{Q}$ by $\mathbb{R}$).

(1.4) The canonical Hodge structure on the intersection cohomology.

Let $X$ be an irreducible complex projective variety. First we will show how one can
show the existence of the “canonical” Hodge structure on $IH(X, \mathbb{Q}_{-X})$ $:=H(X, \mathcal{I}C_{X}(Qx))$ .

Let $\pi$ : $\tilde{X}arrow X$ be a resolution of singularities, so that $\pi$ is a projective morphism
and $\tilde{X}$ is a irreducible smooth projective variety. The decomposition theorem implies
that the perverse Leray spectral sequence

(1.4.1) $E_{2}^{i,j}=H(X, pH^{j}\pi_{*}Q_{\overline{X}})\Rightarrow H^{i+j}(\tilde{X}, \mathbb{Q}_{\tilde{X}})$

degenerates at $E_{2}$ . Moreover from (1.2.1) one has the strict support decomposition

(1.4.2) $\pi_{*}(\mathbb{Q}_{\overline{X}})=\mathcal{I}C_{X}(Q_{X})\oplus T$ a direct sum

where $T$ is a sum of perverse sheaves whose strict supports $Z$ are proper irreducible
subvarieties of $X$ . From $E_{2}$ degeneration of (1.4.1), $H(X, \pi_{*}Q_{\tilde{X}})$ can be written as
$Gr^{G}(H(\tilde{X}, Q_{\overline{X}}))$ where $G$ is the filtration induced by the Leray spectral sequence.
Moreover from (1.4.2), $H(X,\mathcal{I}C_{X}Q_{X})$ is a direct factor of $Gr^{G}(H(\tilde{X}, \mathbb{Q}_{\tilde{X}}))=H(\tilde{X}, \mathbb{Q}_{\overline{X}})$ .
Since the filtration $G$ and the decomposition (1.4.2) respect the Hodge filtration $F$ ,
cohomology groups $Gr^{G}(H(\tilde{X}, \mathbb{Q}_{\overline{X}}))$ and $H(X,\mathcal{I}C_{X}\mathbb{Q}_{X})$ admit the canonical Hodge
structures induced from $H(\tilde{X}, \mathbb{Q}_{\tilde{X}})$ . This result can be generalized to the case of
compact complex analytic space in class $C$ in the sense of Fujiki by using (1.3). Fur-
thermore, by using a result in [KK2] Saito proved the following

(1.5) Theorem. Let $X$ be $an$ irreducible analytic variety in the class $C,$ $L$ a local
syst$em$ of R-modules on a Zariski dense open subset of $X$ which $ur_{1}derlies$ a polarized
variation of R-Hodge structure of weight $n$ . Then the intersection cohomology group
$IH^{i}(X, L)=H^{i}(X,\mathcal{I}C(L))$ admits the canonical Hodge structure ofweight $n+i+d_{X}^{2}$ .
Moreover, on$e$ has a primitive decomposition $IH^{i}(X, L)$ , and its primitive parts carry
natural polariz$ed$ Hodge structures.

2The index $i$ is shifted by $-d_{X}$ , so it varies from $-d_{X}$ to $d_{X}$
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\S 2 Koll\’ar’s conjecture.

In [Kol], Koll\’ar showed the following torsion-freeness of higher direct images of dual-
izing sheaves and the vanishing theorem, which are powerful tools in the classification
theory of higher dimensional projective varieties.

(2.0) Theorem. ($[Kol]$, Theorem 2.1). Let $X$ and $Y$ be a complex projective vari-
eties and assume that $X$ is smooth. Let $f$ : $Xarrow Y$ be a surjecti$vemap$ an$dL$ an
ample $line$ bun$dle$ on $Y$ , and $\omega_{X}=\Omega_{X}^{dimX}$ the dualizing sheaf of X. The we $h$ave

(1) $R^{i}f_{*}\omega_{X}$ is torsion-free for $i\geq 0$ ,

(2) $H^{j}(Y, R^{i}f_{*}\omega_{X}\otimes L)=0$ for $j>0$ .

In [Ko2], he proceeded to study the sheaves $R^{i}f_{*}\omega_{X}$ more deeply, $aJd$ obtained locally
freeness of the sheaves $R^{i}f_{*}\omega_{X/Y}$ under certain conditions. In $0:(4er$ to explain this
result more explicitly, we introduce the following notations.

Let $f$ : $X^{n+r}arrow Y^{n}$ be a surjective map from $X$ to $Y$ , where $X$ is a smooth
projective variety of dimension $n+r$ and $Y$ is a projective variety of dimension $n$ . Let
$Y^{0}\subset Y$ be the smooth locus, $X^{0}=f^{-1}(Y^{0})$ and $f^{0}=f_{|X^{0}}$ . Then $f^{0}$ : $X^{0}arrow Y^{0}$

is a smooth morphism, hence a topological fiber bundle. Therefore, the topological
sheaves $R^{i}f_{*}\mathbb{C}_{X^{0}}$ are local systems, and they underlie variations of Hodge structures.
If $Y$ is smooth and the branch locus of $f$ is a divisor with normal crossings in $Y$ , then

(2.0.1) $R^{i}f_{*}\omega_{X/Y}\simeq u_{\mathcal{F}^{r-i}(R^{n-k+i}f_{*}^{0}\mathbb{C})}$

and

(2.0.2) $R^{i}f_{*}\mathcal{O}_{X}\simeq\iota_{\mathcal{G}r^{0}(R^{i}f_{*}^{0}\mathbb{C})}$

where we set $\omega_{X/Y}=\omega_{X}\otimes o_{X}f^{*}\omega_{Y}^{-1}$ Here, the sheaves $u_{\mathcal{F}^{r-i}}aId\iota \mathcal{G}r^{0}$ denote the
Deligne’s upper and lower canonical extensions of $\mathcal{F}^{r-i}(R^{n-k+i}f_{*}^{0}\mathbb{C})$ and $\mathcal{G}r^{0}(R^{i}f_{*}\mathbb{C})$

on $Y^{0}$ respectively. These are locally free sheaves on $Y$ , hence so are $R^{i}f_{*}\omega_{X/Y}$ and
$R^{i}f_{*}\mathcal{O}_{X}$ .

Moreover, he obtained the following decomposition theorem of $Rf_{*}\omega_{X}$ .

(2.1) Theorem. ($[Ko2]$, Theorem 3.1). Let $f$ : $Xarrow Y$ be as in Theorem (2.0).
Then we $h$a$ve$ the following isomorphism in the derive$d$ category $D(\mathcal{O}_{Y})$ .

(2.1.1)
$Rf_{*}\omega_{X}\simeq\sum_{i}R^{i}f_{*}\omega_{X}$ .

This theorem yields, for example,
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(2.2) Corollary. Under the same assumption, one $h$as

$h^{p}(X, \omega_{X})=\sum^{p}h^{i}(Y, R^{p-i}f_{*}\omega_{X})$ .
$i=0$

(2.3) The conjectures and the results.

In [Ko2], he also explained about the relation between the sheaves $R^{i}f_{*}\omega_{X/Y}$ and
the intersection complex $\mathcal{I}C_{Y}(R^{r+i}f_{*}^{0}\mathbb{C}_{X}^{0})$ , and also obtained con.iectures about ab-
stract (not necessarily geometric) variation of Hodge structures ( $\circ ee$ Ch.4 and 5 of
[Ko2]), which are natural generalizations of Theorem (2.0) and $(2.\perp)$ .

A proof of these conjectures are given by Morihiko Saito by using his theory of
polarized Hodge modules. After getting the definition of Hodge modules and the
result like theorem (0.14) and decomposition theorem (1.2), torsion freeness of $Rf_{*}\omega_{X}$

and the decomposition theorem (2.1) naturally follow from them. (Of course, all of
these results are rather deep.)

Let $X$ be an irreducible complex algebraic variety (assumed always separated and
reduced) of dimension $d_{X}$ , and

$V=(\mathcal{V}, F, V_{\mathbb{Q}})$

a polarizable variation of Q-Hodge structure of weight $w$ on a oense Zariski open
set $U$ of the smooth locus of $X$ . Then, by Theorem (0.14), V extends uniquely to
a polarizable Hodge module $\mathcal{M}=(M, F, K_{\mathbb{Q}})$ on $X$ where $K_{\mathbb{Q}}=_{-}^{-}\mathcal{I}C_{X}(V_{\mathbb{Q}}[d_{X}])$ .
(See (0.10.3-4)). For simplicity, assume that $X$ is a closed $subv^{\sigma}\circ rAety$ of a smooth
complex variety $X’$ . Then $\Lambda t=(M, F, K_{\mathbb{Q}})$ belongs to $MH_{X}(X\mathbb{Q}, n+d_{X})$ , and
$M$ is obtained as the regular holonomic $\mathcal{D}_{X’}$ -modules corresponding to $K\otimes_{\mathbb{Q}}\mathbb{C}$ . The
Hodge filtration F. $M$ on $M$ is determined by its restriction to an.$v$ open dense subset
using the filtration $V$ of Kashiwara-Malgrange and the formula (0.7.2).
Let

(2.3.1) $p’= \min\{p : F_{p}M\neq 0\}$ .

Then $p’$ depends only on V, and $F_{p’}M$ depends on V and $X(i$ . $\cdot$ . independent of
embedding $X$ into smooth varieties) as an $\mathcal{O}_{X}$-module. We denote them by

(2.3.2) $p( \mathcal{M})=p’=\min\{p:F_{p}M\neq 0\}$ , $S_{X}(\mathcal{M})=F_{p(,\vee t)}\prime M$ .

Set moreover

(2.3.3) $q( V)=\max\{p, Gr_{F}^{p}\mathcal{V}\neq 0\}$ , $S_{X}(V)$ $:=S_{X}(\mathcal{M}^{\backslash }$
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and $q’( V)=\min\{p : Gr_{F}^{p}\mathcal{V}\neq 0\}$ . Comparing (2.3.3) with (2.3.2) and (0.10.3), we
have the relation
(2.3.4) $p(\mathcal{M})=-d_{X}-q(V)$ ,
and

$S_{X}(V)_{|U}=\Omega_{U}^{d_{X}}\otimes F^{q(V)}\mathcal{V}$.

We also define $Q_{X}(V)=D(S_{X}(V^{*}))\in D_{coh}^{b}(\mathcal{O}_{X})$ , where $D$ is the dual functor for
$\mathcal{O}$-Modules and $V^{*}=Hom(V, \mathbb{C})$ the dual VHS of V.

(2.4) Lemma. Under the same notations and assumption as ab$ove$, assume moreover
that $X$ is smooth an$d$ the $D=X-U$ the singularity ofV $is$ a $n$ormal crossing divisor.
Then we $have$

(2.4.1) $S_{X}(V)=\Omega_{X^{X}}^{d}\otimes o(\mathcal{V}_{X}^{>-1}\cap j_{*}F^{q(V)}V)$ ,

(2.4.2) $Q_{X}(V)=\mathcal{V}^{\geq 0}/\mathcal{V}^{\geq 0}\cap j_{*}F^{q’(V)+1}V[d_{X}]$ .
Here $\mathcal{V}_{X}^{>\alpha}$ (resp. $\mathcal{V}_{X}^{\geq\alpha}$) den$ot$ es Deligne’s extension of V with eigenvalues of $r$esidue
of connection in $(\alpha, \alpha+1$ ] (resp. $[\alpha,$ $\alpha+1$ )). In particular, the sheaves $S_{X}(V)$ and
$Q_{X}(V)$ are $loc$ally free.

(2.5) Remark. Even if one has no assumptions on $X$ and the singularity of $V$ , one
can show that $S_{X}(V)$ is a torsion-free sheaf by using (0.7.2).

(2.6). Let $f$ : $Xarrow Y$ be a proper surjective morphism of irreducible varieties with
$r=dimX-dimY$ , and $\mathcal{M}=(M, F, K)\in MH_{X}(X, n)^{p}$ . Then by Theorem (0.14)
there exists a variation of Hodge structure V of weight $w$ on a smooth dense Zariski
open set $U$ on $X$ such that $K=\mathcal{I}C_{X}(V)$ . Here we have $w=7\iota-d_{X}$ . Then from
(2.3.3), one has
(2.6.1) $q(V)=-p(\mathcal{M})-d_{X}$ , $q’(V)=w-q(V)=p(\mathcal{M})$ -r $d_{X}$ .

Taking the direct image, one obtains $f_{*}\mathcal{M}=(f_{*}(M, F),$ $f_{*}K$ ) $\epsilon-\eta IF_{rh}(\mathcal{D}_{X}, \mathbb{Q})$ so
that
(2.6.2) $F_{p(\Lambda 4)}(f_{*J}W)=Rf_{*}S_{X}(\mathcal{M})=Rf_{*}S_{X}(V)$ ,

and $\mathcal{H}^{i}f_{*}\mathcal{M}\in MH(Y, n+i)$ from the stability theorem (0.1).
Moreover from the decomposition theorem (1.2), one has a decomposition $f_{*}\mathcal{M}=$

$\oplus_{j}\mathcal{H}^{j}f_{*}\mathcal{M}[-j]$ , which induces the decompositions $f_{*}(M, F)$ and

(2.6.3) $f_{*}\mathcal{I}C_{X}(V)\cong\oplus_{j}(p\mathcal{H}^{J}f_{*}\mathcal{I}C_{X}(V))[-j]$ in $D_{c}^{b}(Q_{1}, )$ .
Let
(2.6.4) $\mathcal{H}^{j}f_{*J}l4=\oplus_{Z\subset Y}\mathcal{M}_{Z}^{j}$

be the decomposition by strict supports. Then, by theorem (0.14), the Hodge modules
$\mathcal{M}_{Y}^{j}\in MH_{Y}(Y, n+j)$ corresponds to a variation of Hodge $struct_{1}\rceil reV^{j}$ on a dense
smooth Zariski open set $U$ of $Y$ .

The following is a key lemma of the proof of Koll\’ar conjecture.
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(2.7) Lemma. (Proposition 2.6 in $[SK]$). Under the notations and the assumptions
as above, we $h$ave

(2.7.1) $p(\mathcal{M}_{Z}^{j})>p(\mathcal{M})$ ,

if $Z\subset Y$ is a proper irreducible $su$bvariety of Y.

Now we can state Saito’s theorem, which is a generalization of Koll\’ar’s results.

(2.8) Theorem. (Theorem (3.2), $[SK]$). Under the same notation and as$s$umption as
in (2.6), we have the canonical isomorphi$sms$ in $D_{coh}^{b}(\mathcal{O}_{Y})$ :

(2.8.1)
$Rf_{*}S_{X}(V)=\bigoplus_{q(V^{i})=q(V)+r}S_{Y}(V^{i})[-i]$

,

(2.8.2)
$Rf_{*}Q_{X}(V)=\bigoplus_{q(V^{i})=q(V)}Q_{Y}(V^{i})[-i]$

,

where we set $q’(V)=n-q(V)$ . Moreover one Aas canonical isomorphisms $R^{i}f_{*}S_{X}(V)=$

$S_{Y}(V^{i})$ for $q(V^{i})=q(V)+r$ , and $d\mathcal{H}^{i}Rf_{*}Q_{X}(V)=Q_{Y}(V^{i})$ for $q’(V^{i})=q’(V)$ .

Sketch of proof. Since the decomposition (2.6.3) respects the $Hodg\epsilon$ filtration F., from
(2.6.2), one has

$Rf_{*}S_{X}(V)=F_{p(\vee 1)}\prime f_{*}\mathcal{M}=\bigoplus_{j}F_{p(\mathcal{M})}\mathcal{H}^{j}f_{*}\mathcal{M}[-\gamma\rfloor$
.

We also have the decomposition by strict supports (2.6.4), and this implies that

$F_{p(\mathcal{M})} \mathcal{H}^{j}f_{*}\mathcal{M}[-j]=F_{p(\lambda 4)}\mathcal{M}_{Y}^{j}[-j]\oplus(\bigoplus_{\neq^{Y}}F_{p(\mathcal{M})}\mathcal{M}_{Z}^{j}r_{-j])}z\subset$

Lemma (2.7) shows that $F_{p(\mathcal{M})}\mathcal{M}_{Z}^{j}=0$ unless $Z=Y$ , and the Hodge module $\mathcal{M}_{Y}^{j}[-j]$

corresponds to a variation of Hodge structure $V^{j}$ on a smooth den.,$e$ Zariski open set
of $Y$ . Thus we obtain the assertion on $Rf_{*}S_{X}(V)$ . Since $D(\mathcal{M}_{Y}^{J})=(D\mathcal{M})_{Y}^{-i}$ by
duality so that $S_{Y}((V^{*})^{j})=S_{Y}((V^{-j})^{*})$ and $q(V^{j})+q(V^{-j})=w-$ } $d_{X}$ , the assertion
on $Rf_{*}Q_{X}(V)$ follows from this by taking dual.

Together with remark (2.5), this yields the following

(2.9) Corollary. Under the same notation$s$ and assumptions as in (2.6), the higher
direct images $R^{i}f_{*}S_{X}(V)$ are torsion-free $sh$eaves.
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(2.10) Example. Under the same notations as in (2.6), assume moreover $X$ is smooth
and of dimension $d$ . Let V $=\mathbb{Q}_{X}$ denote the trivial variation of Hodge structure of
rank one and type $(0,0)$ . If $f$ : $Xarrow Y=pt$ is the structure morphism, one have
$V^{i}=H^{i+d}(X, \mathbb{C}_{X}),$ $S_{X}(V)=\omega_{X}=\Omega_{X}^{d},$ $Q_{X}(V)=\mathcal{O}_{X}[d],$ $q(V)=q’(V)=0$ ,
and $S_{pt}(V^{i})=H^{i}(X,\omega_{X})$ for $q(V^{i})=d,$ $Q_{pt}(V^{i})=H^{i+d}(X, \mathcal{O}_{X})$ for $q’(V^{i})=0$ .
Let $f$ : $Xarrow Y$ be as in (2.6), V $=\mathbb{Q}_{X}$ as above, and assume $X$ is smooth and
$Y$ is arbitrary. Then one has $Rf_{*}S_{X}(\mathbb{Q}_{X})\cong Rf_{*}\omega_{X}$ and $V^{i}=R^{i}f_{*}^{0}\mathbb{Q}_{X}$ , where
$f^{0}$ : $X^{0}arrow Y^{0}$ is the smooth part of $f$ .

Then we have canonical isomorphisms

$R^{i}f_{*}\omega_{X}\cong S_{Y}(R^{i}f_{*}^{0}Q_{X})$ .

(2.11) Remark. (1) If $X$ is embeddable into the smooth variety, we have

(2.11.1) $Q_{X}(V)=Gr_{-p(\mathcal{M})-n}^{F}DR(M)$ ,

(2.11.2) $Gr_{p}^{F}DR(\mathcal{M})=0$ for $p>-p(\mathcal{M})-n$ ,

by $Gr^{F}DRoD=DGr^{F}DR,$ $D(\mathcal{M})=jW(n)$ , and we get canonical morphisms

$S_{X}(V)arrow DR(M)$ , $DR(M)arrow Q_{X}(V)$ .

(2) Theorem (2.8) can be generalized to the analytic case as in (1.3).

\S 3 Kodaira vanishing.

(3.1) Mixed Hodge Modules.

Let $X$ be a complex manifold. We denote by $MHM(X)^{p}$ the category of po-
larizable Mixed Hodge Modules. An object in $MHM(X)^{p}$ can be written as $\mathcal{M}=$

$((M, F),$ $K;W$) where $((M, F),$ $K$ ) belongs to $MF_{h}(X, \mathbb{Q})$ and $T\phi^{7}$ is a filtration of
$((M, F),$ $K$ ) such that $Gr_{i}^{W}(M, F, K)\in MH(X, i)^{p}$ . These objects have to satisfy
more conditions, but we will not mention the details here. (See [S2] or [Sh]). An
Mixed Hodge Module $\mathcal{M}\in MHM(X)^{p}$ is called snooth if $K$ is a local system. A
variation of Mixed Hodge structure is called admissible if it is graded polarizable and
for any morphism $HFSarrow X$ with $dimS=1$ , its pull-back by $f$ is admissible in the
sense of Steenbrink-Zucker. (See [SZ] or (3.1) in [U]). Then a smooth Mixed Hodge
module on $X$ corresponds to an admissible variation of Mixed Hodge structure. We
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also have the decomposition of a Mixed Hodge Module by strict support. For an
irreducible subvariety $Z\subset X$ , we denote by $MHM_{Z}(X, \mathbb{Q})^{p}$ the full subcategory of
$MHM(X, Q)^{p}$ whose objects have strict support $Z$ .

The following theorem is a generalization of Kodaira vanishing theorem.

(3.2) Theorem. ($[S2]$, Proposition (2.33)). Let $Z$ be $a$ (reduced) irreducible projec-
tive variety with an ample inverti $ble$ she$afL$ and $i$ : $Zrightarrow X=\mathbb{P}^{r}$ the embeddin$g$ by
$L^{m}$ for some positive integer $m$ . Then for $\mathcal{M}=((M, F),$ $K;W$) $\in MHM_{Z}(X)^{p}$ (or
$\mathcal{M}=((M, F),$ $K$ ) $\in MH_{Z}(X, \mathbb{Q}, n)^{p})$ ,

(1) $Gr_{p}^{F}DR_{X}(M, F)$ belongs to $D^{b}(\mathcal{O}_{Z})$ and it is independent of the embedding of
$Z$ into a compl$ex$ manifold.
(2) We $h$a$ve$ the Kodaira vanishin$g$ theorem

(3.2.1) $H^{i}(Z, Gr_{p}^{F}DR_{X}(M, F)\otimes L)=0$ for $i>0$ ,

(3.2.2) $H^{i}(Z, Gr_{p}^{F}DR_{X}(M, F)\otimes L^{-1})=0$ for $i<0$ .

Sketch of Proof. The first assertion of (1) follows from (3.2.6) in Sl], and since the
direct image is compatible with $DR$ and $Gr^{F}$ the independence of embedding of $Z$

into a smooth variety follows from the argument like (5.1.9) in [S1].
From this fact, we may assume that $m\geq 2$ to prove the Kodaira vanishing (2).

Since $Gr^{F}DR$ is exact, we may also assume that $\mathcal{M}\in MH_{Z}(X, n)$ . By duality, it is
enough to show (3.2.2).

Let $Y$ be a generic hyperplane of $X=\mathbb{P}^{r}$ , strictly non-characteristic to $(M, F)$ (cf.
(3.5.1), [S1]), and take a section $s$ of $H^{0}(Z, L^{m})$ such that $s$ defines $Y\cap Z$ . Then we
define the $\mathcal{O}_{Z}$-algebra structure on $\oplus_{0\leq i<m}L^{i}$ by $(\oplus_{0\leq i}L^{i}t^{i})/Im(t^{m}-s)$ , and obtain
a finite covering

$\pi$ : $\tilde{Z}$ $:=Specan_{Z}(\oplus_{0\leq i<m}L^{i})arrow Z$

ramified along $Y\cap Z$ . Let $j$ : $U=X\backslash Y\llcorner_{arrow X}$ be the natural inclusion. Set

$j^{*}j^{-1}\mathcal{M}=((M(*Y), F),j_{*}j^{*}K;W)\in MHW_{Z}(X)^{p}$

$\tilde{M}=(\tilde{M}, F,\tilde{K})=Coker(\mathcal{M}arrow\pi_{*}\pi^{*}\mathcal{M})\in MH_{Z}X,$ $n)^{p}$

$\tilde{L}=Coker(\mathcal{O}_{Z}arrow\pi_{*}\mathcal{O}_{\overline{Z}})$

so that $L^{-1}$ is a direct factor of $\tilde{L}$ . Here $\pi_{*}\pi^{*}M$ can be regarded as the unique
extension to $Z$ of its restriction to the smooth open set $U’$ where $\pi$ is unramified.
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We can see that $\mathcal{M}$ is a direct factor of $\pi_{*}\pi^{*}\mathcal{M}$ , and we have $\vec{c}$ natural injection
$\mathcal{M}arrow\pi_{*}\pi^{*}\mathcal{M}$ induced by its restriction to $U’$ . Moreover one has an exact sequence

(3.2.3) $0arrow \mathcal{M}arrow j_{*}j^{-1}\mathcal{M}arrow \mathcal{H}^{1}i^{!}\mathcal{M}arrow 0$

so that $\mathcal{H}^{1}i_{J}^{!}W\in MH_{Z\cap Y}(Y, n+1)$ by the non-charactericity, where $i$ : $Yarrow X$ is the
natural inclusion, (cf. [S2] 2.11 and [S1], (3.5.9)).

Now applying the stability theorem (1.0) for $Zarrow pt$ , we have the following

(3.2.4) Lemma. The spectral sequence

$E_{1}^{p,q}=H^{p+q}(Z, Gr_{-q}^{F}DR_{X}\tilde{M})\Rightarrow H^{p+q}(Z, DR_{X}\tilde{M})\simeq H^{p+q}(Z,\tilde{K}\otimes \mathbb{C})$

degenera$t$es at $E_{1}$ .

This yields the following implication

(3.2.5) $H^{i}(Z,\tilde{K})=0$ $\Rightarrow$ $H^{i}(Z, Gr_{p}^{F}DR_{X}(\tilde{M}))=0$ .

On the other hand, by the non-charactericity, we have

$H^{i}(Z,\tilde{K})=H^{i}(Z,j_{!}j^{-1}\tilde{K})=H^{i}(Z,j_{*}j^{-1}\tilde{K})$ .

Since $U’=Z-Z\cap Y$ is an affine variety, one has

$H^{i}(Z,j_{*}j^{-1}\tilde{K})\simeq H^{i}(U’,j^{-1}\tilde{K})=0$ , for $i>0$

and by duality
$H^{i}(Z,j_{!}j^{-1}\tilde{K})=0$ for $i<0$ .

Therefore one has
$H^{i}(Z,\tilde{K})=0$ for $i\neq 0$ ,

and from (3.2.5) we get

(3.2.6) $H^{i}(Z, Gr_{p}^{F}DR_{X}(\tilde{M}))=0$ for $i\neq 0$ .

(3.2.7) Lemma. Under the same notation and the assumption as above, we have
th $e$ following isomorphism

(3.2.8) $Gr_{p}^{F}\tilde{M}\simeq Gr_{p^{F}}M(*Y)\otimes\tilde{L}$

In particular, we get

(3.2.9) $H^{i}(Z, Gr_{p^{F}}M(*Y)\otimes L^{-1})=0$ , for $i\neq 0$
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One can check the assertion (3.2.8) by considering the structure of $D_{X}$ -modules of
$\tilde{M}$ and $M(*Y)\otimes\tilde{L}$ , and using the V-filtration to give the filtration F. (See (2.33) in
[S2]). Since $L^{-1}$ is a direct factor of $\tilde{L}$ , we have the second assertion.

Because the functor $Gr_{p}^{F}DR_{X}$ is exact, from (3.2.3), we obtain an exact sequence
(3.2.10)
$0arrow Gr_{p^{F}}DR_{X}(M)\otimes L^{-1}arrow Gr_{p^{F}}DR_{X}(M(*Y))\otimes L^{-1}arrow Gr_{P}^{F}DR_{X}(\mathcal{H}^{1}i^{!}M)\otimes L^{-1}arrow 0$ .

Together with this and (3.2.9), we obtain isomorphisms

$H^{i-1}(Z\cap Y, Gr_{P}^{F}DR_{X}(\mathcal{H}^{1}i^{!}M)\otimes L^{-1})\simeq H^{i}(Z, Gr_{p^{F}}DR_{X}(M)\otimes L^{-1})$ for $i<0$ ,

then induction on $dimZ$ finishes the proof of (3.2.2). q.e. $d$ .

We have many corollaries of Theorem (3.2). For example, setting $\mathcal{M}=Q_{Z}[d_{Z}]$ , we
obtain the following

(3.3) Kodaira-Nakano Vanishing Theorem. Let $Z$ be a projective smooth com-
$plex$ variety, and $L$ an ampl$e$ inverti $ble$ sheaf on Z. Then we have

$H^{q}(Z, \Omega_{Z}^{p}\otimes L)=0$ for $p+q>dimZ$ ,

$H^{q}(Z, \Omega_{Z}^{p}\otimes L^{-1})=0$ for $p+q<dimZ$ .

Moreover if we apply theorem (3.2) for the edge components of Hodge modules (cf.
(2.3)), we obtain the following

(3.4) Theorem. ([S5]). Let $Z$ be a projective variety, V a variation of Hodge struc-
$t$ ure defined on a dense smooth Zariski open subset of $Z$ , and $S_{Z}(V)$ and $Q_{Z}(V)$ as
in (2.3). For an ample invertible sheaf $L$ on $Z$ , we have

$H^{i}(Z, S_{Z}(V)\otimes L)=0$ for $i>0$ ,

$H^{i}(Z, Q_{Z}(V)\otimes L^{-1})=0$ for $i<0$ .

Let $f$ : $Yarrow Z$ be a projective morphism such that $Y$ is smooth, and $L$ an ample
invertible sheaf on $Z$ . If we set $\mathcal{M}=\mathcal{H}^{j}f_{*}\mathbb{Q}_{Y}[d_{Y}]$ and use theorem (2.8), we obtain
the following theorem as a special case of (3.4).

(3.5) Ohsawa-Koll\’ar vanishing. $([Kol])$ . Under the notation$s$ and assumption as
$abo$ve, we $h$ave

$H^{i}(Z, R^{j}f_{*}\omega_{Y}\otimes L)=0$ for $i>0$ .
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