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APPLICATIONS OF HODGE MODULES
— KOLLAR CONJECTURE AND KODAIRA VANISHING -

BY
MAsA-HIKO SAITO

Department of Mathematics, Faculty of Science, Kyoto University

§0 Hodge Modules.

(0.1). In this note, we will give an exposition of some applications of Morihiko Saito’s
theory of Hodge modules. All of these applications are due to Moriaiko Saito himself.

Though there is a good exposition by Shimizu[Sh], in §0, we will recall quickly
the definition of the category M H(X,Q,n) of Hodge Modules of weight n, mainly
for preparing the notations. In §1, we will give the statements of the stability of
polarized Hodge modules by projective direct images and the decoraposition theorem
for the intersection complexes of Beilinson-Bernstein-Deligne-Gakber type, and we
will explain how these results imply existence of the natural pure Hodge structures on
the intersection cohomology groups.

In §2, we will discuss about Saito’s proof of Kollar conjecture on the direct images
of the edge components of “generic variation of Hodge structures”. §3 is devoted to
a generalization of vanishing theorem of Kodaira-type, which follews naturally from
the theory of Hodge modules.

(0.2). Let X be a complex manifold. In this note, we will use the filtered right D x-
Modules. Let MF,(Dx) be the category of filtered Dx-Modules (M, F') such that
M is regular holonomic and Grf(M) is coherent over GrDx. 3y Kashiwara, we
have a faithful and exact functor DR : M Fy(Dx) — Perv(Cx) (Riemann-Hilbert
correspondence), and we define M F,(Dx,Qx) to be a fiber product of M F,(Dx)
and Perv(Qx) over Perv(Cx). That is, the objects are (M, F),K) € MF(Dx) X
Perv(Qx) with an isomorphism a : DR(M) — K ®g, Cx, and the morphisms are
the pairs of the morphisms compatible with «.

(0.3). Leti: X — Y be a closed embedding locally defined by X = {z, =--- =2} =
0} with (z1,--- ,zp) local coordinates of Y. Then for a filtered holoriomic D x-modules

(M, F), the direct image (M, F) = i,(M, F) is defined by (M, F)@p, (Dx_y, F) (see
[Sh]), and locally we have

M:M®CC[817 )ak},
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FPM = @uéNka—WlM & 8”,
where 0¥ =[], ¢, <, 0/, |v| = > vi,0; = 0/0x;. Then we have DRo i, =i, 0 DR and

we get the functor

iv: MFy(Dx,Q) — MFy(Dy,Q).

(0.4). Let g be a holomorphic function on X, and ¢4 : X — X x C the embedding by
the graph of g. We say that (M, F,K) € MFy(Dx,Q) is reqular and quasi-unipotent
along g, if the monodromy of ¥,K[—1] is quasi-unipotent and (M, F) = 14(M,F)

satisfies
(0.4.1) | (F,VoM) -t = F, Vo 1 M for a<0
(0.4.2) (F,Gr¥ M) 0, = Fpy1Grl M for a>-—1,

where , t is the coordinate of C and V is the filtration of Kashiwara-Malgrange indexed
by Q such that td; — « is nilpotent on GrY M. (See [Ka)).

We need the notions of “nearby cycle sheaves” ¥ ,(K) and the “vanishing cycle
sheaves” ® (K), for K a constructible sheaves on X and ¢ a non-constant holomorphic
function on X (cf. [SGA7]). They are constructible complexes of sheaves on g~1(0).
Gabber proved that, for a non-constant holomorphic function g : X — C, if K is a
perverse sheaf on X, then ¥ (K)[—1] and ®,(K)[—1] are perverse sheaves on ¢~*(0).

Via the Riemann-Hilbert correspondence, there should exist the corresponding func-
tors ¥ and @ in the category of holonomic D-modules, and they were constructed
explicitly by Malgrange (in the case of Ox), and by Kashiwara [Ka] in the case of
regular holonomic D-modules. (For details, see expositions [Sh]| and [S.Mul)).

Under the condition (0.4.1-2), we define the nearby cycles functor and the vanishing
cycle functor on the level of filtered D x-modules

U, (M,F,K) = (®-1<a<oGry (M, F[1]), ¥,K)

$,(M,F,K)=(GrY,(M,F),%,,K),

and can : ¥, — ®,; and Var : &, — ¥, ;1(—1) are induced respectively by —0;
and ¢, where F[m}; = F;_,,. Here ¥, ; is the unipotent monodromy part of ¥, (same

for ®,). We have
U,(M,F)=0, &,,=(MF), if suppM C ¢7(0),

because the conditions (0.4.1-2) is equivalent to (FpM) - g C Fp_1 M in this case.
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(0.5) Lemma. (cf. [S1, 5.1.4]). If (M,F,K) € MF,(Dx,Q) is regular and quasi-
unipotent along ¢ for a locally defined holomorphic function g on X, the following
conditions are equivalent:

(0.5.1) In the category M F,(Dx,Q), one has a decomposition

®, (M, F) =Im can @ Ker Var,

(0.5.2) One has a unique decompositioﬁ in MFy(Dx,Q)
(M, F,K) = (M, F, K1) ® (Ma, F, K>)

where M, has a support contained in Xy 1= ¢~ 1(0) and (M., F, K, ) has no sub-object
or quotient object supported in Xg.

Let (M,F,K) € MF,(Dx,Q). We say that (M, F, K) has a strict support Z if
supp M = supp K = Z and admits no sub-object or quotient object with strictly
smaller support.

As a corollary of this lemma, we have the following

(0.6) Proposition. ([S1, 5.1.5]). If (M, F,K) € MFy(Dx,Q) is regular and quasi-
unipotent along g, for any ¢ locally defined on X, the following co: ditions are equiv-
alent:

(0.6.1) In the category M Fy(Dx,Q), one has a decomposition
@, (M,F)=1Im can ® Ker Var,

for any ¢ locally defined on X

(0.6.2) For any Zariski open set U of X, (M, F, K )|y has the canonical decomposition
®z(Mz,F,Kz) for Z closed irreducible subspaces of U, such that My has strict
support Z.

Moreover M has strict support Z, if and only if supp M = Z and can is surjective,
Var is injective for any locally defined ¢ such that dim ¢~*(0)N Z < dim Z.

(0.7). Let MF(Dx,Qx)(o) be the full subcategory of M Fy(Dx,Qx) whose objects
are regular and quasi-unipotent along ¢ and satisfies the condition (0.5.1) (or equiv-
alently (0.5.2)), for any ¢ locally defined on X. Moreover, let M F,(Dx,Q)z be the
full subcategory of M Fy(Dx,Qx)o) whose objects have strict sunport Z. Then by
Proposition (0.6) we have the canonical decomposition (locally finite on X):

(0.7.1) MF(Dx,Q)0) = ®@zMF1(Dx,Q)z

where Z is running over all irreducible subspaces of X.
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Let (M,F,K) € MFy(Dx,Q)z, and ¢ a holomorphic function on X such that
Z ¢ g71(0) and can : U, (M, F) — &, (M, F) is strictly surjective. Then we have

(0.7.2) F,M = (VoM N juj ' FpiM) - 3

with j : X xC* < X xC and (M, F) = i4.(M, F) as above. In this case, the ﬁltrafjon

on M is uniquely determined by its restriction to the complement of ¢~1(0).

(0.8) Definition of the Hodge modules.

Now we can define the category of Hodge modules of weight n. First we will give
the definition for smooth X, and later mention about the definition for singular X.

(0.8.1) Smooth case. (See [Sh]). Let X be a smooth complex analytic variety. The
category M H(X,Q,n) of Hodge modules of weight n is the largest full subcategory of
MF(Dx,Qx) (o) satisfying the following conditions;

(HM1) An object of MH(X,Q,n) with support {z} is of the form (M,F,K) =
iz+(He, F, Hg) for the inclusion i, : {z} — X, where (Hc, F, Hg) is a pure Q-Hodge

structure of weight n with increasing filtration Fj, = F~P.

(HM2)If M € MH(X,Q,n), M is regular and quasi-unipotent along g, and Gr/V®, M,
Gr¥, 1M € MH(U,i) for any i, Uy ; = Im (can) @ Ker (Var), for any holomorphic
function ¢ on an open subset U of X, where W is the monodromy filtration shifted
by n - 1 and n.

One can check the well-definedness of this definition by the induction on dim supp
M.

(0.8.2) Singular case. Let X be a reduced, separated complex analytic spaces, and
take a locally finite covering X = U;U; and a set of embeddings U; <« V; where V; are
smooth varieties. Then a Hodge module of weight n on X can be defined by patching
local pieces with compatibility conditions. See Shimizu’s exposition [Sh] for detail.

Let .
MHz(X,Q,n)=MH(X,Q,n)NMF(Dx,Q)z,

so that we have the strict support decomposition
(0.8.3) MH(X,Q,?’L) = GBZMHz(X,Q,n).

according to (0.7.1).

(0.9). Every morphism in the categories M H(X,Q,n) and MHz(X,Q,n) is strict
with respect to the filtrations F. Furthermore, these subcategories of M Fj(Dx,Q)
are stable under the operation of taking a direct summand.
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(0.10) Objects. In order to see what objects are in M H(X,Q,n), we will recall the
definition of intersection (co-)homology complex. Let X be an irreducible analytic
variety of dimension n with a Whitney stratification X = X,, D X,,—1 D --- D X by
analytic subvarieties. The stratums S; = X;~X;_; are smooth manifolds of dimension
¢ if it is non-empty. Let Uy = X — X be Zariski open sets of X: U_,, C U_p41 C
... CUy=X, and let j; : Ug_1 < Uy be the inclusions. Note that U_,, = X — X,,_;
is a smooth Zariski open subset of X. Let L be a local system of Q-vector spaces on
U_,. Then we define the intersection (co-)homology complex (with middle perversity)
with coefficients in L to be

(0.10.1) ICx(L) = 7<_1Rjox - - - T<—nRj1-nxL[n] in DY(Qx)

where 7 is the truncation functor. In [BBD], this is denoted by

(0.10.2) JwLn] = Im(j1L[n] — j.L[n])

where j : U_,, — X. It can be proved that ZCx(L) is independent of stratification.
Let (Vg,F) be a variation of Hodge structure of weight n on a smooth complex

manifold X (see Usui’s exposition [U]), and set V = VRO x. We define (M, F,K) €
MF,(Dx,Qx) for (Vg, F) by setting

(0.10.3) M= X 00V, F,M=QimX gy Frp-dimXy
(0.10.4) K = VgldimX].

(0.11) Proposition. ([S1, 5.1.10]). Let (M,F,K) € MHz(X,Q,n), then K is an
intersection homology complex ICz(Vq) and (M, F, K) is generically a variation of
Hodge structure of weight n — dz, i.e. there exists a smooth Zariski dense open set
U of Z and a variation of polarized Hodge structure (Vq, F') of weight n —dz on U
such that (M, F, K)y is isomorphic to (Q4™Y @0 V, F,Vg[dz]) where the filtration
F is given by (0.10.3). ‘

In order to state the stability of the category of Hodge module under the direct
image, one has to introduce the notion of “polarization” of a Hodge module. For k£ € Z,
Let Q(k) denote the Hodge structure of Tate of weight —2k and of type (~k, —k).

(0.12) Definition. Assume that ((M, F), K) belongs to MHz(X,Q,n) for some

irreducible Z. A polarization is a pairing
S: K@K — axQ(—n)

which satisfies the following conditions.
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(1) If Z = {z}, there is a polarization S’ of Hodge structure M' such that S = ¢,,.5",
where ¢, and M’ as in (i).

(2) S is compatible with the Hodge filtration F, i.e. the corresponding isomorphism
K ~ (DK)(—n) is extended to an isomorphism (M, F, K) &< D(M, F, K)(—n).

(3) For any holomorphic function g on X such that g=!(0) € Z, the induced pairing
PT,So(id®@NY) : GriV Y K[-1]®@GrY ¥, K[-1] — ayQ(n — 1 1)

is a polarization on the primitive part PNGTZV_I_H\I’Q(M, F,K). Here, Py denotes the
primitive part with respect to IV, and one uses the fact that ¥ commutes with Verdier
duality, and the self-duality of the monodromy weight filtration W.

We can give the following examples of polarizable Hodge module.
Let X be a smooth complex manifold of dimension dx, (Vo, F.Vg) a Q-VHS of
weight (n — dx) with the polarization

S VeV — Q(dx —n).

We define M = (M,F,K) € MF,(Dx,Qx) as in (0.10.3-4), and let S be a polariza-
tion on M induced by S’ (see, (2.3.4) of [Sh] or, (5.2.12) of [S1]).

(0.13) Theorem. ([S1, 5.4.3]). Under the above notation, ((M,F,K), S) is a polar-
ized Hodge module of weight n.

Moreover, in relation to (0.11), Saito proved that a polarizable Hodge modules
with strict support Z (i.e. its underlying perverse sheaf is an intersection homology
complex ZCz(L)) is a polarizable variation of Hodge structure on a dense Zariski open
subset of Z. (See (5.1.10) and (5.2.12) in [S1}). In later article [S2], Saito proved
that the converse is also true, i.e. any polarizable variation of Hodge structure with
quasi-unipotent local monodromies! defined on a smooth dense Zariski open subset of
Z can be uniquely and funtorially extended to a polarizable Hodge module with strict
support. Therefore, we obtain the following

(0.14) Theorem. ((3.21) in [S2]). For a reduced irreducible separated complex an-
alytic space X of dimension dx, we have the equivalence of categories:

MHx(X,Q,n)" 2 VHSen(X,Q,n — dx)P.

Here VHS j,,(X,n—dx) is the inductive limit of VHS(U,Q,n—dx )P the categories of
polarizable variation of Q-Hodge structures of weight n — dx on smooth dense Zariski
open subsets U. Moreover the polarization corresponds bijectively.

1This condition is always satisfied if L has a Q-structure, i.e., if L is a Q-VHS.
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(0.15) Direct images. Let f : X — Y be a proper morphism of smooth algebraic
varieties, ¢y : X — X XY the embedding by graph, and p: X xY — Y the natural
projection. Then the direct image of filtered Dx-module (M, F') is defined by

(0.15.1) f«(M,F) = Rp,DRx xy/y(i5)«(M, F),

where (2), is as in (0.3), Rp, is the sheaf theoretic direct image. For (M, F,K) €
MF.1,(Dx,Q), we define :

FiM = (fu(M,F), £ K),  H'f M= (H'fo(M,F)PH fK)
with the isomorphisms
DR(fuM) = f,K ®9C, DR(H'fuM)= PH'f,K 99 C
induced by DRo f, = f.o DR, DRH! =P H'o DR.

§1 Stability and Decomposition Theorem.

Now we can state the stability theorem of Hodge modules by tke projective direct
image, which is one of the main theorems in [S1].

(1.0) Stability Theorem. (Théorém (5.3.2) in [S1]). Let f : X -— Y be a projec-
tive morphism between smooth complex analytic varieties, and | be the first Chern
class of a relative ample line bundle. Assume that (M, F),K) € MHz(X,Q,n) is

endowed with a polarization S. Then:
(1.0.1) the complex f.(M,F) is strict and Hf.((M,F),K) € MH(Y,Q,n + 1)
(1.0.2) the hard Lefschetz theorem holds, i.e.,

o HT (M, F), K) ——— Hf(M, F), K)

is an isomorphism;

(1.0.3)
(=1)M-D/2 P fSo(id®1"): PPHT f,K @ PPH™ f, K — a{Q(—n + i)
is a polarization of the primitive part PPH™ f,K(:= Kerl'*! C H " f.K). |

The proof is also due to the induction of dimension supp M = Z.

Saito also proved Kahler package of the stabilty theorem for the constant sheaf
(M,F,K) = (Ox, F,Rx[dx]) with GrfOx =0 for i # 0.
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(1.1) Theorem. (Theorem (3.1) in [S3]). Let f : X — Y be a proper morphism
of complex analytic spaces. Assume that X is smooth Ké&hler with Kahler class I.
Then we have the stability theorem (1.0.1-3) for the constant sheaf (M,F,K) =
(Q%x‘x, F,Rx[dx]).

Let X be an irreducible smooth complex projective variety, L a polarized variation of
Hodge structure over a Zariski dense open subset of X, and (M, F, K') a Hodge module
corresponding to ZC(L) (see theorem (0.14)). In case Y is a point, the assertion that
the differential of f,(M, F) is strict with the filtration F' is equivalent to say that

(1.1.4)  EP4 = HPYY(X,GrP (TC(L))) = IHP (X, L) = H"*4(X,IC(L))

degenerates at E,. This is a generalization of the E;-degeneration of Hodge to de
Rham spectral sequence, and this gives the canonical Hodge filtration of the inter-
section cohomology group THP19(X, L), and from (1.0.2) one can obtain the prim-
itive decomposition of TH?*4(X,L). And primitive part PIH (X, L) has a natural
a polarization induced from the polarizations of X and L. In order to obtain the
canonical Hodge structure on IH (X, L), when X is projective and irreducible, but
not necessarily smooth, one needs the decomposition theorem of Beilinson-Bernstein-
Deligne-Gabber type.

(1.2) Decomposition Theorem. Let f : X — Y be a projective morphism be-
tween analytic manifolds, L a local system which underlies the variation of Hodge
structure on a Zariski open set U on X. We have the decomposition theorem of
Beilinson-Bernstein-Deligne-Gabber type for f.ZCx L the direct image of intersection
complex, i.e.

(1.2.1) HICxL ~ ®;(PH f.ICxL)[—j] in DYQy),

(1.2.2) PHIFICKL = ®72ICs LYy in Perv(Qy),

where Z' are irreducible closed subvarieties of Y and sz, are local systems on smooth
Zariski open sets of Z'.

The assertion (1.2.1) follows from the hard Lefschetz theorem (1.0.2), and the
decomposition (1.2.2) was induced by the decomposition by strict support (0.8.1) and
theorem (0.14).

There is also a Kahler package of the decomposition theorem (Theorem (0.6), [S3]).
We say that a variation of R-Hodge structure L is “geometric” if L is a direct factor of
the restriction of R?7,R ; to a smooth Zariski open subset for some proper surjective

holomorphic map 7 : X — X between analytic varieties with X smooth Kahler.
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(1.3) Theorem. Let f : X — Y be a proper morphism between irreducible analytic
spaces. Assume that there is a proper surjective morphism 7 : X — X with X smooth
Kahler. Assume that L is ”"geometric” variation of R-Hodge structure on a Zariski
open subset U on X. Then we have the decomposition theorem for f,ICxL as in
(1.2.1-2) (with replacing the coefficient Q by R).

(1.4) The canonical Hodge structure on the intersection cohomology.

Let X be an irreducible complex projective variety. First we will show how one can
show the existence of the “canonical” Hodge structureon IH (X, Qx) := H(X,ICx(Qx)).

Let 7 : X — X be a resolution of singularities, so that 7 is a projective morphism
and X is a irreducible smooth projective variety. The decomposition theorem implies
that the perverse Leray spectral sequence

(1.4.1) " EY =H(X, "H'r.Qz) = H(X,Qy)
degenerates at Ey. Moreover from (1.2.1) one has the strict support decomposition
(1.4.2) T(Qg) =ICx(Qx) P T a direct sum

where T is a sum of perverse sheaves whose strict supports Z are proper irreducible
subvarieties of X. From F, degeneration of (1.4.1), H (X,7,Q% can be written as
Gr@(H (X,Qy)) where G is the filtration induced by the Leray spectral sequence.
Moreover from (1.4.2), H'(X,ICxQx) is a direct factor of Gr®(H (X,Q%)) = H(X,Qx).
Since the filtration G and the decomposition (1.4.2) respect the Hodge filtration F,
cohomology groups Gr¢(H(X,Qx)) and H'(X,ICxQx) admit the canonical Hodge
structures induced from H'(X,Qy). This result can be generalized to the case of
compact complex analytic space in class C in the sense of Fujiki by using (1.3). Fur-
thermore, by using a result in [KK2| Saito proved the following

(1.5) Theorem. Let X be an irreducible analytic variety in the class C, L a local
system of R-modules on a Zariski dense open subset of X which underlies a polarized
variation of R-Hodge structure of weight n. Then the intersection cohomology group
IHYX,L) = H'X,IC(L)) admits the canonical Hodge structure of weight n+i+dx?.
Moreover, one has a primitive decomposition IH(X, L), and its primitive parts carry
natural polarized Hodge structures.

2The index i is shifted by —dx, so it varies from —dx to dx



116

§2 Kollar’s conjecture.

In [Kol], Kollar showed the following torsion-freeness of higher direct images of dual-
izing sheaves and the vanishing theorem, which are powerful tools in the classification
theory of higher dimensional projective varieties. '

(2.0) Theorem. ([Kol], Theorem 2.1). Let X and Y be a complex projective vari-
eties and assume that X is smooth. Let f : X — Y be a surjective map and L an
ample line bundle on Y, and wx = Q4™X the dualizing sheaf of X. The we have

(1) Rif.wx is torsion-free for i > 0,

(2) H(Y,R'fuwx ® L) =0 for j > 0.

In [Ko2], he proceeded to study the sheaves R'f,wx more deeply, a1.d obtained locally
freeness of the sheaves R'f.wx,y under certain conditions. In oruer to explain this
result more explicitly, we introduce the following notations.

Let f : X™"™ — Y™ be a surjective map from X to Y, where X is a smooth
projective variety of dimension n+r and Y is a projective variety of dimension n. Let
Y? C Y be the smooth locus, X° = f~3(Y?) and f° = fixo. Then f°: X% — Y?©
is a smooth morphism, hence a topological fiber bundle. Therefore, the topological
sheaves R'f,Cxo are local systems, and they underlie variations of Hodge structures.
If Y 1s smooth and the branch locus of f is a divisor with normal crossings in Y, then

(2.0.1) Rifwyy ~ "Fro{(RrFH f0C)
and
(2.0.2) R'f.0x ~ 'Gr'(Rf{C),

where we set wx/y = wx Qox f*w?l. Here, the sheaves “*F""% a1 d 'Gr® denote the
Deligne’s upper and lower canonical extensions of F™~*(R*~*+¢fOC) and Gr°(R'f.C)
on Y respectively. These are locally free sheaves on Y, hence so are R’ f,wx sy and
R'f.0x. .

Moreover, he obtained the following decomposition theorem of R f.wx.

(2.1) Theorem. ([Ko2], Theorem 3.1). Let f : X — Y be as in Theorem (2.0).
Then we have the following isomorphism in the derived category D(QOy).

(2.1.1) Rfwx ~ Y Rifwx.

This theorem yields, for example,
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(2.2) Corollary. Under the same assumption, one has
P . .
WP (X,wx) =Y R(Y,RP™ fuwx).
=0

(2.3) The conjectures and the results.

In [Ko2], he also explained about the relation between the sheaves R!f.w x/vy and
the intersection complex ZCy (R f2C%), and also obtained conjectures about ab-
stract (not necessarily geometric) variation of Hodge structures {see Ch.4 and 5 of
[Ko2]), which are natural generalizations of Theorem (2.0) and (2.1).

A proof of these conjectures are given by Morihiko Saito by using his theory of
polarized Hodge modules. After getting the definition of Hodge modules and the
result like theorem (0.14) and decomposition theorem (1.2), torsion freeness of Rf.wx
and the decomposition theorem (2.1) naturally follow from them. (Of course, all of
these results are rather deep.)

Let X be an irreducible complex algebraic variety (assumed always separated and
reduced) of dimension dx, and

V =(V,F,Vg)

a polarizable variation of Q-Hodge structure of weight w on a Gense Zariski open
set U of the smooth locus of X. Then, by Theorem (0.14), V extends uniquely to
a polarizable Hodge module M = (M, F,Kg) on X where K¢ == ZCx(Vg[dx]).
(See (0.10.3-4)). For simplicity, assume that X is a closed subvariety of a smooth
complex variety X'. Then M = (M, F, Kg) belongs to MHx(X',Q,n + dx), and
M is obtained as the regular holonomic Dxs-modules corresponding to K ®g C. The
Hodge filtration F'M on M is determined by its restriction to any open dense subset
using the filtration V' of Kashiwara-Malgrange and the formula (0.7.2).

Let

(2.3.1) p' =min{p: F,M #0}.

Then p' depends only on V, and F, M depends on V and X (i.~. independent of
embedding X into smooth varieties) as an O x-module. We denote them by

(2.3.2) p(M) =p' =min{p: F,M # 0}, Sx(M) = FpanM.
Set moreover

(2.3.3) ¢(V) = max{p, Gr¥.V # 0}, Sx(V):=Sx(M",
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and ¢'(V) = min{p : GrkV # 0}. Comparing (2.3.3) with (2.3.2) and (0.10.3), we
have the relation
(2.34) p(M) = —dx — ¢(V),
and
Sx(V)jy = Q5 @ F1Vy.
We also define Qx (V) = D(Sx(V*)) € D? ,(Ox), where D is the dual functor for
- O-Modules and V* = Hom(V,C) the dual VHS of V.

(2.4) Lemma. Under the same notations and assumption as above, assume moreover
that X is smooth and the D = X —U the singularity of V is a normal crossing divisor.
Then we have

(2.4.1) Sx(V) =% @0 (V3 N F1VV),
(2.4.2) Qx(V) =12°/y2° 0 j,FTV+1y[dy).

Here V3 (resp. V)Z(a) denotes Deligne’s extension of V with eigenvalues of residue

of connection in (a,a + 1] (resp. [a,a + 1)). In particular, the sheaves Sx(V) and
R x (V) are locally free.

(2.5) Remark. Even if one has no assumptions on X and the singularity of V, one
can show that Sx(V) is a torsion-free sheaf by using (0.7.2).

(2.6). Let f: X — Y be a proper surjective morphism of irreducible varieties with
r=dmX — dimY, and M = (M,F,K) € MHx(X,n)?. Then by Theorem (0.14)
there exists a variation of Hodge structure V of weight w on a smooth dense Zariski
open set U on X such that K = ZCx(V). Here we have w = n — dx. Then from
(2.3.3), one has

(2.6.1) o(V)=—pM) —dx, ¢(V)=w-g(V)=pM)+ dx.
Taking the direct image, one obtains fuM = (fu (M, F), f.K) ¢ MF.,(Dx,Q) so
that
(2.6.2) Fomy(fxM) = RfSx(M) = Rf.5x(V),
and H!fuM € MH(Y,n + i) from the stability theorem (0.1).

Moreover from the decomposition theorem (1.2), one has a decomposition f.M =
®;H’ f.M[—7], which induces the decompositions f.(M, F') and

(2.6.3) FICXx(V) = 6;(PH f.ICx(V))[-j] in DYQy).
Let
(2.6.4) HifoM = B zcy M,

be the decomposition by strict supports. Then, by theorem (0.14), the Hodge modules
M3, € MHy(Y,n + j) corresponds to a variation of Hodge structiure V7 on a dense
smooth Zariski open set U of Y.

The following is a key lemma of the proof of Kollar conjecture.
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(2.7) Lemma. (Proposztlon 2.6 in [SK]). Under the notations and the assumptions
as above, we have

(2.7.1) p(M%) > p(M),

if Z C Y is a proper irreducible subvariety of Y.
Now we can state Saito’s theorem, which is a generalization of Kollar’s results.

(2.8) Theorem. (Theorem (3.2), [SK]). Under the same notation and assumption as
in (2.6), we have the canonical isomorphisms in D ,(Oy):

(2.8.1) RfSx(V)= P ‘Sy(V"')[—i],

a(Vi)=q(V)+r

(2.8.2) RAQx(V)= P Qv(VH[-i,

¢ (Vi)=¢(V)
where we set ¢'(V) = n—g(V). Moreover one has canonical isomorphisms R' f,Sx(V) =
Sy(V?Y) for ¢(VY) = ¢(V) +r, and *H'Rf,.Q x(V) = Qy(V?) for ¢'(V?) = ¢'(V).

Sketch of proof. Since the decomposition (2.6.3) respects the Hodge filtration F', from
(2.6.2), one has

Rf.Sx(V) = Fyoa fuM = @F(M)Hff* [—3)-

We also have the decomposition by strict supports (2.6.4), and this implies that

FyanH foM[=j] = By My =51 @ (D FpmyM%1—i))-

ZCY

Lemma (2.7) shows that F, (M)Mz = 0 unless Z = Y, and the Hodge module M vi=7]
corresponds to a variation of Hodge structure V7 on a smooth demnsse Zariski open set
of Y. Thus we obtain the assertion on Rf.Sx(V). Since D(M%) = (DM)3* by
duality so that Sy ((V*)?) = Sy((V™9)*) and ¢(V?) +¢(V™7) = w -+ dx, the assertion
on Rf,Qx (V) follows from this by taking dual.

Together with remark (2.5), this yields the following

(2.9) Corollary. Under the same notations and assumptions as in (2.6), the higher
direct images R'f.Sx(V) are torsion-free sheaves.
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(2.10) Example. Under the same notations as in (2.6), assume moreover X is smooth
and of dimension d. Let V = Qx denote the trivial variation of Hodge structure of
rank one and type (0,0). If f : X — Y = pt is the structure morphism, one have
Vo= HH_d(XaCX)a Sx(V) = wx = Qg(a Qx(V) = Ox[d], q(V) = qI(V) = 0,
and S,(V?) = H{(X,wx) for ¢(V?) = d, Qp(V*) = HF(X,Ox) for ¢'(V*) = 0.
Let f: X — Y be as in (2.6), V = Qx as above, and assume X is smooth and
Y is arbitrary. Then one has Rf,Sx(Qx) = Rf.wx and V! = R!'f2Qx, where
f%: X% — YO is the smooth part of f.
Then we have canonical isomorphisms

Rifuwx = Sy (R f2Qx).

(2.11) Remark. (1) If X is embeddable into the smooth variety, we have

(2.11.1) Qx(V)=Grf, \y_,DR(M),

(2.11.2) GrfDR(M) =0  forp>—p(M)—n,
by Gr'DRoD = DGrF DR, D(M) = M(n), and we get canonical morphisms
Sx(V)— DR(M),  DR(M) — Qx(V).

(2) Theorem (2.8) can be generalized to the analytic case as in (1.3).

83 Kodaira vanishing.
(3.1) Mixed Hodge Modules.

Let X be a complex manifold. We denote by MHM(X)P the category of po-
larizable Mixed Hodge Modules. An object in MHM(X)? can be written as M =
((M,F),K;W) where ((M, F),K) belongs to MF,(X,Q) and W is a filtration of
((M,F),K) such that Gr/V(M,F,K) € MH(X,i)P. These objects have to satisfy
more conditions, but we will not mention the details here. (See [S2] or [Sh]). An
Mixed Hodge Module M € MHM(X)P is called smooth if K is a local system. A
variation of Mixed Hodge structure is called admissible if it is graded polarizable and
for any morphism HFS — X with demS = 1, its pull-back by f is admissible in the
sense of Steenbrink-Zucker. (See [SZ] or (3.1) in [U]). Then a smooth Mixed Hodge

module on X corresponds to an admissible variation of Mixed Hodge structure. We
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also have the decomposition of a Mixed Hodge Module by strict support. For an
irreducible subvariety Z C X, we denote by MHMz(X,Q)P the full subcategory of
MHM(X,Q)? whose objects have strict support Z.

The following theorem is a generalization of Kodaira vanishing theorem.

(3.2) Theorem. ([S2], Proposition (2.33)). Let Z be a (reduced) irreducible projec-
tive variety with an ample invertible sheaf L and i : Z «— X = P" the embedding by
L™ for some positive integer m. Then for M = (M, F),K;W) € MHMz(X)? (or
M=((M,F),K)e MHz(X,Q,n)?), ’

(1) GTII:DRX(M, F) belongs to D¥(Oy) and it is independent of the embedding of

Z into a complex manifold.

(2) We have the Kodaira vanishing theorem

(3.2.1) HY(Z,Gr'DRx(M,F)®@ L)y=0 for i>0,

(3.2.2) HY(Z,Gr]DRx(M,F)®@L™")=0 for i<0.

Sketch of Proof. The first assertion of (1) follows from (3.2.6) in !S1], and since the
direct image is compatible with DR and Grf the independence of embedding of Z
into a smooth variety follows from the argument like (5.1.9) in [S1].

From this fact, we may assume that m > 2 to prove the Kodaira vanishing (2).
Since Grf DR is exact, we may also assume that M € M Hz(X, n). By duality, it is
enough to show (3.2.2).

Let Y be a generic hyperplane of X = P", strictly non-characteristic to (M, F') (cf.
(3.5.1), [S1]), and take a section s of H°(Z,L™) such that s defines Y N Z. Then we
define the O z-algebra structure on @ogi<mLi by (@OSiLiti)/Im(tm — s), and obtain -
a finite covering

w7 = S’pecanz(@OSKmLi) — 7

ramified along Y N Z. Let 7 : U = X\Y < X be the natural inclusion. Set
5 TIM = (M(sY), F), juj K, W) € MEW(X)?
M = (M,F,K) = Coker(M — m,n*M) € MHz X, n)?
L = Coker(07 — 1,03)

so that L™! is a direct factor of L. Here 7, 7*M can be regarded as the unique
extension to Z of its restriction to the smooth open set U’ where m is unramified.
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We can see that M is a direct factor of m,7*M, and we have ¢ natural injection
M — m,* M induced by its restriction to U'. Moreover one has an exact sequence

(3.2.3) 0 —M—j,j M —HY'M—0

so that Hi' M € M H zny(Y,n + 1) by the non-charactericity, where ¢ : ¥ — X is the
natural inclusion, (cf. [S2] 2.11 and [S1], (3.5.9)).

Now applying the stability theorem (1.0) for Z — pt, we have the following
(3.2.4) Lemma. The spectral sequence
EY? = HP*9(Z,Grf DRxM) = H?*9(Z,DRxM) ~ H**4(Z,K ® C)

degenerates at E;.

This yields the following implication
(3.2.5) HY(Z,K)=0 = H'(Z,Gr]DRx(M))=0.
On the other hand, by the non-charactericity, we have
HY(Z,K)=HYZ,j;j;'K) = H'Z,j,j *K).
Since U” = Z — Z NY is an affine variety, one has
HY(Z,j,j 'K)~ H(U”,;7'K)=0, for i>0

and by duality ' }
H' (Z,5557'K)=0 for i<0.

Therefore one has

HY(Z,K)=0 for i+#0,
and from (3.2.5) we get
(3.2.6) H'(Z,Gr]DRx(M))=0 for i#0.

(3.2.7) Lemma. Under the same notation and the assumption as above, we have
the following isomorphism

(3.2.8) GrlM ~ GrlM(+xY)® L
In particular, we get

(3.2.9) HY(Z,GrJM(xY)® L") =0, for i#0
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One can check the assertion (3.2.8) by considering the structure of Dx-modules of
M and M(*Y) ® L, and using the V-filtration to give the filtration F. (See (2.33) in
[S2]). Since L™ is a direct factor of L, we have the second assertion.

Because the functor Grf DRy is exact, from (3.2.3), we obtain an exact sequence

(3.2.10)
0 — Grl DRx(M)SL™" — Grf DRy(M(+Y))®L ™" — GrEDRx(H'{ M)SL™ — 0.

Together with this and (3.29), we obtain isomorphisms
H™N(Z0Y,GriDRx(H''M)® L™Y) ~ H(Z,GrI DRx(M)® L™") for i<0,

then induction on dimZ finishes the proof of (3.2.2). q.e.d.

We have many corollaries of Theorem (3.2). For example, setting M = Qz[dz], we
obtain the following

(3.3) Kodaira-Nakano Vanishing Theorem. Let Z be a projective smooth com-
plex variety, and L an ample invertible sheaf on Z. Then we have

HYZ,Q%, @L)=0 for p+q>dimZ,
HYZ,Q,@L')y=0 for p+q<dimZ.

Moreover if we apply theorem (3.2) for the edge components of Hodge modules (cf.
(2.3)), we obtain the following

(3.4) Theorem. ([S5]). Let Z be a projective variety, V a variation of Hodge struc-
ture defined on a dense smooth Zariski open subset of Z, and Sz(V) and Qz(V) as
in (2.3). For an ample invertible sheaf L on Z, we have

HY(Z,Sz(V)®L)=0 for i>0,
HY(Z,Qz(V)®L)=0 for i<0.

Let f:Y — Z be a projective morphism such that Y is smooth, and L an ample
invertible sheaf on Z. If we set M = M’ f,Qy[dy] and use theorem (2.8), we obtain
the following theorem as a special case of (3.4).

(3.5) Ohsawa-Kollar vanishing. ([Kol]). Under the notations and assumption as
above, we have

HY(Z,Rfuwy ® L) =0 for i>0.



124

REFERENCES

[BBD] Beilinson, A.A., Bernstein, P. Deligne, Faisceauz pervers, Astérisque, vol. 100,
1982, pp. 5-171.

[SGAT] P. Deligne, Le formalisme des cycle évanscents, SGA 7 II, Springer Lecture
Notes in Math., vol. 340, 1973, pp. 82-115.

[Ka] Kashiwara, Masaki, Vanishing cycle sheaves and the holonomic systems of dif-
ferential equations, Springer Lecture Notes in Math., vol. 1016, 1983, pp. 134-142.

[K-K1] Kashiwara, Masaki, & Kawai, Takahiro, The Poincaré lemna for a variation
of Hodge structure, Publ. RIMS 23 (1987), 345-407.

, Hodge structure and holonomic systems, Proc. Japan Acad. 62A
(1985), 1-4.

[Kol] Kollér, J., Higher direct images of dualizing sheaves, I, Ann. of Math. 123
(1986), 11-42.

[Ko2] ____, Higher direct images of dualizing sheaves, II, Ann. of Math. 124
(1986), 171-202.

[S1] Saito, Morihiko, Modules de Hodge polarisables, Publ. RIMS. Kyoto Univer-
sity 24 (1988), 849-995.

[K-K2]

[S2] , Mized Hodge Modules, Publ. RIMS. Kyoto University 26 (1990),
221- 333

[S3] —, Decomposition Theorem for P?"oper Kihler morphisms, Tohoku Math.
7. 42 (1990), 127-148.

[S4] —, Introduction of mized Hodge Modules, Astérisque 179-180 (1989),
145—162.

[S5] , On Kolldr’s conjecture, Proceedings of Symposia inn Pure Math. 52 ,

Part 2 (1991), 509-517.

[S.Mu] Saito, Mutsumi, A short course on b-functions and vanishing cycles, In this
volume.

[Sh] Shimizu, Yuji, An introduction to Morihiko Saito’s Theory of Mized Hodge
Modules, In this volume.

[SZ] Steenbrink, J., Zucker, S., Variation of mized Hodge strcuture I., Invent. math
80 (1985), 485-542.

U] Usui, Sampei, Period maps and their extensions, In this volume.

(Z] Zucker, S., Hodge theory with degenerating coefficients: L,-cohomology in the

' Poincaré metric, Annals of Math. 109 (1979), 415-476.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KyoTo UNIVERSITY, KYOoTO, 606, JAPAN

E-mail: mhsaito@kusm.kyoto-u.ac.jp



