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Abstract

N-homoclinic bifurcations (N>2) are found and studied in a piecewise-
linear vector field on R3.

1.Introduction

Consider a two parameter family of vector fields on R";

x=F(x;u)
Assume:

G) F(O,u)=0,peR?, n=(n;,1,)eR?

(i) DF(x,) has real eigenvalues ).1,7»2’?»3 satisfying
'Re.(?»;if)<?»2<?\.l<0<7»3<Rc(7»j)
where Re(A;) indicates the real part of other eigenvalues.
(iii) The dynamics has a homoclinic orbit through the origin X = 0
at some K
Homoclinic doubling bifurcation is the phenomenon schematically drawn

‘in Figl. Namely, a homoclinic orbit of the simplest type (l1-homoclinic)
orbit bifurcates into a "double-loop" (2-homoclinic orbit) orbit.

0 . 0

Figl-1 Simplest homoclinic orbit Figl-2."Double-loop” homoclinic orbit
Figl Schematic picture of homoclinic doubling bifurcation.

‘This phenomenon was first found and analyzed by Yanagida [1] during
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Fig 2 Critically twisted homoclinic orbit
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the course of his studies on generalized nerve axon equation. Analyzing
with the original partial differential equation, Yanagida derived an
ordinary differential equation and proved the existence of a double-pulse
traveling wave solution, which corresponds to the homoclinic doubling
bifurcation. Yanagida observed that there are three cases in which
homoclinic doubling bifurcation can occur:

The original 1-homoclinic orbit is
(1) a homoclinic orbit with resonant eigenvalues, or
(2) a critically twisted homoclinic orbit, or
(3) a non-principal homoclinic orbit.

Case(l) refers to 7\.1+ 9‘3 =0 while cases (2) and (3) are schematically

shown in Fig2 and Fig3,respectively. M.Kisaka [3] proved that an N(>2)-
homoclinic orbit dose not bifurcate from a 1-homoclinic orbit in case (1)
and (2). Nothing is known about N(>2)-homoclinic orbits for case(3),
however. Details are found in [11,[2],[3],[4]. The purpose of this paper is
to give an example which suggests that N(>2) homoclinic orbit bifurcate
from 1-homoclinic orbit for case(3).

2.Normal Forms of 2-Region Continuous
Piecewise-Linear Vector Field.

Consider the 2-region continuous piecewise-linear vector field in R3:

A'X (<a/,x'>-1<0)

X’=f(X’)= (2.1)
B'x’' -p’ (<a/,x'>-120)

where A” and B’ are 3x3 matrices and p' €R3. The plane < @',x'>=1 is
the boundary of the vector field. Assume that A’has 3 real eigenvalues
A, Ay Ay (A3>0>A,>A,) and B’ has a pair of complex conjugate
eigenvalues o,+iw, and a real eigenvalue v,.(0,<0,,>0,v,>0). According

to the normal form theorem [5],[6], f is uniquely determined up to linearly
conjugacy as follows (provided that f has no eigenspace parallel to the
boundary); :

X7 =S,x" + %p"{|< o, x> -1 +(<a”,x”>-1)}

S,x” (x”€R_)
= (2.2)
SB(X”"P”) (X/,ER+)
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where

Ri = {X” G'R3:i'(< G”,X” S _1) S O} (X” =T (1’0,0)

P” =" (¢1,¢5,C3)

' a, Ca, C.a
P”=T (l_i 143 2 3‘)

b, b; ' b,
0 1 O
S,=0 0 1
|33 A
[ ¢, 1 0
SB - C2 O 1 =SA+p”T0L”
[ C3+a; a, a

2= 2+ + g 8, = —Chdy + Ak + Ak 8= Aok
b, =20, +7; b, ==(0} + @} +27,0,) by = (0] + o]y,
¢, =by—a; ¢;=b, —a, +¢;a; c3=b; —a3+ca, +0yay

Fig.4 shows the geometric structure of (2.2). The vector field defined
by (2.2) is transformed via

X”:HAX (2.3)
where

1 1 1
HA= )vl )«2 )\.3

2o R

to the vector field

X=Ax+-§-p{|< a,x> -1+ (<a,x>-1)}

. Ax (xeR_)
= 2.4
B(X—p) (XER+_)
where
A={0 A, O

0 0 A



a="(1,1,1) p=H.p”
B=A+pla

R, = {xeR3:i(<a,x>-1)>O}
V={xeR%<a,x>=1}

\'A ={er:Toch<0}

v, ={x e V:ToAx >0}
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P=B"p

This is called the normal form of 2-region continuous piecewise-linear vector

field.

Fig5. shows the geometric structure of (2.4).

- 3.Bifurcation equations.

3.1 Return time coordinate.

Consider a point X lying on the boundary V. Let ¥ and Z be the points

at which the trajectory starting from X hits V again at positive time s and
negative time -t ,respectivry. Since the system is linear in each region, one

has
§=eP(x-P)+P
7 =e A%

Since the vector field is continuous ,
Ax=B(Xx-P) XeV
Ay=B(y-P) yeVv

Using (3.1.4) and (3.1.1), one has
Ay =BeP* (% - P)

Since A is non-singular,
§=A"e®B(x -P)

Moreover, by (3.1.3), one has
§=ATeMAx=e"%

where
C=A"BA

Since i,f’ and Z are on the boundary V
Tae ™ % =1 Tax =1

so that

[e, 0™ +e, 00+, % =h

where

(3.1.1)
(3.1.2)

(3.1.3)
(3.1.4)

(3.1.5)

o eCs

P
It
fa—y

(3.1.6)

e, ="(1,0,0) €,="(0,1,0) e;="(0,0,1) h="(1,1,1)

If
K(s,t)=[e,"oe™ +e, ot +e;T0e

T .Cs ]“l

(3.1.7)
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is non singular, then

Xx=K(s,t)h (3.1.8)

The pair (s,t ) is called the return time coordinate of XonV.
(See Fig6. and Fig7).

3.2 Homoclinic bifurcation equations.

If a trajectory starting from (0,1,1) hits E€(0) on the boundary V, then it
is a 1-homoclinic orbit through the origin (Fig4.) which is chracterised by

Taecse3 -1= O

(3.2.1)
Te,ee; =0

Fig8. shows a 1l-homoclinic orbit. Similarly, an N-homoclinic orbit
thrclg_gh the origin is characterized by '

Toe e, -1=0

N(e®e; — e ™K (s,,t,)h)=0

N(e®K(s;, t;)h — e K (5,1, )h) =0 (3.2.2)
(2€i<m-1) | |
Te3ecs"'K(sm,tm)h =0

where

1 00
N=
010

Fig9 shows a typical 3-homoclinic orbit.

3.3 Tangent map

Assume that there exists an s; such that
zo =€ (y, —P)+P (YoeV,,z0€ V),
Ta{e®(y,-P)+P}-1%£0  Yse(0,s)
Let '
H(y,s)="a{(e®(y - P))+P} -1
Since
H(y,,S)="0z, ~-1=0
and since

%I-;I— (¥oS0)="0Be® (y, — P)="aB(z, - P)=TaAz, #0

there exist a neighborhood V,(yy) of y, on V_ and function (called a
return time function) |

s:V,(y,)—R
such that



H(y,s(y))=0 s(yo) =5,
Then, .
oH " oH
Ds(yo)=—[—5t—(y0,so)] .—a—y-(yo,sw
=-[TaAz, ]_lToceBs°
Let
g(y)=e®*V(y-p)+p.

Then one can show that the tangent map is given by,

Dg(y,) = Be™ (y, -~ P)Ds(y,) + €

=B(z, - P)Ds(y,) + "

.—{ 0 }CBSO
= —
0 (3.3.1)

3.4 Conditions for homoclinic doubling bifurcation.

Define(See Figl0)

hy (A, A0, 25,01, 0,7, )="ee"es
(3.4.1)

Az, | s
hZ(;"l’)\'Zs}G’cl9m1,Yl)=Te3{I —TG-Z_ZO—}eB ’ (el - e3)

Then, a homoclinic doubling bifurcation is characterized by

(1) homoclinic orbit with resonant eigenvalues;

and (3.4.2)
|7“1| = |7‘3|

(2) critically twisted homoclinic orbit;
hy (A Ag,A4,0,,0,7,) =0
and (3.4.3)
Ml <2

(3) non-principal homoclinic orbit;
hy (A, 2,,24,0;,0,,7,)=0
and (3.4.4)
Mf <[]

hy (A1, A5, 5,6;,0,7;) X hy (A, Ag,A5,00,0,7,) <0

4.Bifurcation sets of N-homoclinic orbits.

4.1 Two parameter diagram.
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Figll shows N-homoclinic bifurcation sets,for N=1~7, in the (7»1,01)—-
space obtained by solving (3.2.1) and (3.2.2). The vertical axis is o,
while the horizontal axis is 7».1. The other eigenvalues are fixed as

w, =10,y =-0.01,%,=-0.32,%,=0.3 (4.1.1)
Figl2 shows details of Figll where bifurcation sets for N=8 and 9 are
discernible. Figl3 shows the same bifurcation sets in the range -0.8<A <-

0.4, whereas Figl4 shows details of Figl3.-NH in these figures indicates
N-homoclinic bifurcation sets. For N=3 and 5~9,homoclinic bifurcation
sets form a loop while 4-homoclinic bifurcation sets consist of two loops.
Moreover, it appears that all the N(3~9)-homoclinic bifurcation sets
bifurcate from a point on the 1-homoclinic bifurcation set. Figl5 shows
the orbits corresponding to the bifurcation sets. For 1H in Figl5, the
numbers 1,2 and 3 correspond to those in Fig3. -

4.2 Non-principal homoclinic orbit.

Solving the set of Eqgs.(3.2.1) and (3.4.4) by Newton method,we
obtained the following set of values:

o, = 0.0137, A, = -0.01

These are the values on which non-principal homoclinic orbit exists. Now
let us look at this point in Figl2. It appears that all the N(>2)-homoclinic
bifurcation sets accumulate towards this point. This phenomenon suggests
that there is a close relationship between N(>2)-homoclinic orbits and
non-principal homoclinic orbit.

4.3 Three dimensional bifurcation diagram.

Figl6 shows a three dimensional bifurcation diagram of 3-homoclinic -
bifurcation set. Here Y, is fixed as y,=-0.04 while others are the same as '

in (4.1.1). This figure shows that 3-homoclinic bifurcation sets vanish if
7&.2 is sufficiently larger than -0.3. Kisaka [3] proved under several

conditions of eigenvalues including the case |7»2| > Ilsl that N(>2)-

homoclinic orbit dose not bifurcate from 1-homoclinic orbit for the
critically twisted case. This, however, dose not contradict our numerical
results because for the latter, Kisaka's conditions are not satisfied.



83

boundary

qﬂle

wu | 1,

Y

Fig 4 Geometric structure of (2.2).
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Fig 8 1-homoclinic orbit.
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Fig 9 3-homoclinic orbit.
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N(1~7)-homoclinic bifurcation set.
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Fig 16 Three dimensional bifurcation diagram.
3-homoclinic orbit.
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