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Some extensions of the Siegel-Weil formula

STEPHEN S. KUDLA

Introduction.

In this article I will survey some relatively recent joint work with S.Rallis, in which

we extend the classical formula of Siegel and Weil. In the classical case, this formula

identifies a special value of a certain Eisenstein series as an integral of a theta function.

Our extension identifies the residues of the (normalized) Eisenstein series on $Sp(n)$ as

(regularized’ integrals of theta functions. Moreover, we obtain an analogous result for the

value of the Eisenstein series at its center of symmetry (when $n$ is odd). Both of these

identities have applications to special values and poles of Langlands L-functions. Most of

our results were announced by Rallis in his lecture [36] at the ICM in Kyoto in August of

1990, and detailed proofs will appear shortly [23]. Thus the present article will be mostly

expository. However, some of the results of section III.4 about (second term identities‘

have not appeared elsewhere. In the last section I have explained how some of our results

may be translated into a more classical language.

This article is an expansion of the two hour lecture I gave at RIMS, Kyoto in January of

1992 as part of the conference Studies on Automorphic Forms and Associated L-Functions,

organized by K. Takase. I would like to thank Takase for his fine job in organizing the

conference and for his essential assistance in arranging my visit to Japan. I would like

to thank T. Oda, T. Yamazaki and N. Kurokawa for their hospitality in Kyoto, Fukuoka

and Tokyo respectively. Finally I would like to express my gratitude to Japan Association
for Mathematical Sciences (JAMS) for the generous Grant which made my very profitable

visit possible.

I.l. Background.

We will work adelically and recall some of the basic machinery of theta functions,

Eisenstein series, etc.

Let $F$ be a totally real number field and fix a non-trivial additive character $\psi$ of
$F_{A}/F$ . Let $V$ , $(, )$ be a non-degenerate inner product space over $F$ with $\dim_{F}V=m$ .
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For convenience, we will assume that $m$ is even. Associated to $V$ is a quadratic character
$\chi_{V}$ of $F^{\cross}fl/F^{\cross}$ ,

(I. 1.1) $\chi_{V}(x)=(x, (-1)^{\frac{m}{2}}\det(V))_{F}$

where $(, )_{F}$ is the Hilbert symbol of $F$ and $\det(V)\in F^{\cross}/F^{\cross,2}$ is the determinant of

the matrix $((x_{i}, x_{j}))$ for any basis $x_{1},$ $\ldots,$
$x_{m}$ of $V$ . Let $H=O(V)$ be the orthogonal

group of $V$ . Also let $W=F^{2n}$ (row vectors), $<,$ $>$ be the standard symplectic vector
space over $F$ and let $G=Sp(W)=Sp(n)$ be the corresponding symplectic group. The

Siegel parabolic $P=MN$ of $G$ is the subgroup which stabilizes the maximal isotropic
subspace $\{(0, y)|y\in F^{n}\}$ . It has a Levi factor

(I.1.2) $M=\{m(a)=(\begin{array}{ll}a 00 {}^{t}a^{-1}\end{array})|a\in GL(n)\}$ ,

and unipotent radical

(I. 1.3) $N=\{n(b)=(\begin{array}{ll}1 b0 1\end{array})|b={}^{t}b\in M(n)\}$ .

For each non-archimedean place $v$ of $F$ , let $K_{v}=Sp(n, O_{v})$ where $O_{v}$ is the ring of
integral elements in the completion $F_{v}$ . If $v$ is an archimedean place of $F$ let

(I.1.4) $K_{v}=\{(\begin{array}{ll}a b-b a\end{array})|a+ib\in U(n)\}$ .

Then let $K= \prod_{v}K_{v}$ be the corresponding maximal compact subgroup of $G(A)$ .

Let $W=V\otimes_{F}W\simeq V^{2n}$ with symplectic form $<<,$ $>>=$ $(, )\otimes<,$ $>$ , so that
$(G, H)$ is a dual reductive pair in $Sp(W)$ .

Let $Mp(W)arrow Sp(W)(A)$ be the metaplectic cover of $Sp(W)(A)$ and let $\omega=\omega_{\psi}$

be the Weil representation [40] of $Mp(W)$ associated to $\psi$ . Since we are assuming that
$m=\dim_{F}(V)$ is even, there is a splitting

$Mp(W)$

(I. 1.5) $\nearrow$ $\downarrow$

$G(fl)\cross H(fl)$ $arrow$ $Sp(W)(fl)$

and $\omega$ yields a representation of $G(fl)\cross H(fl)$ . This can be realized on the space
$S(V(fl)^{n})$ of Schwartz-Bruhat functions on $V(A)^{n}$ with

$(\omega(h)\varphi)(x)=\varphi(h^{-1}x)$ $h\in H(fl)$

$(\omega(m(a))\varphi)(x)=\chi_{V}(x)|\det(\alpha)|^{\frac{m}{n^{2}}}\varphi(xa)$ $a\in GL_{n}$ (fl)

(I.1.6) $(\omega(n(b))\varphi)(x)=\psi(tr(bQ(x)))\varphi(x)$ $b\in Sym_{n}$ (fl).
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Here $Q(x)= \frac{1}{2}(x, x)$ is the value on $x\in V(fl)^{n}$ of the quadratic form $Q$ associated to

$())$ .

I.2. Averages of theta functions.

$i^{From}$ this machinery we can construct the usual theta function. For $g\in G(fl)$ ,

$h\in H(fl)$ and $\varphi\in V(A)^{n}$ , let

(I. 2. 1)
$\theta(g, h;\varphi)=\sum_{x\in V(F)^{n}}(\omega(g)\varphi)(h^{-1}x)$

.

This function is left invariant under $G(F)$ (Poisson summation) and $H(F)$ and is slowly

increasing on $G(F)\backslash G(A)$ and $H(F)\backslash H(A)$ . The average value with respect to $H$ is
given by the integral

(I.2.2) $I(g; \varphi)=\int_{H(F)\backslash H(R)}\theta(g, h;\varphi)dh$

where $dh$ is the invariant measure on $H(F)\backslash H(A)$ normalized to have total volume 1

(we exclude the case of a split binary space $V$ ). Weil’s convergence criterion [41] asserts

that $I(g;\varphi)$ is absolutely convergent for all $\varphi$ provided

(I.2.3) $\{(2)(1)$ $V_{m-r>n+1}isanisotropic$
or

where $r$ is the Witt index of $V$ , i.e., the dimension of a maximal isotropic F-subspace

of $V$ . Note that when $V$ is split, $m=2r$ and condition (I.2.3)(2) becomes $m>2n+2$ .

When (I.2.3)(1) or (I.2.3)(2) is satisfied, then $I(g;\varphi)$ is an automorphic form on $G(A)$ ,

provided we assume that the function $\varphi$ is K-finite.

I.3. Siegel’s Eisenstein series.

The Eisenstein series involved in the Siegel-Weil formula are defined as follows: The

group $G(A)$ has an Iwasawa decomposition

$G(A)=P(fl)K$.

Write any $g\in G(A)$ as $g=nm(a)k$ , and set

(I.3.1) $|a(g)|=|\det(\alpha)|_{R}$ .
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This is a well defined function on $G(A)$ which is left N(A)M(F)-invariant and right

K-invariant. For $s\in \mathbb{C}$ and $\varphi\in S(V(A)^{n})$ , set

(I.3.2) $\Phi(g, s)=\omega(g)\varphi(0)$ . a $(g)|^{s-s_{O}}$

where

(I.3.3) $s_{O}= \frac{m}{2}-\rho_{n}$

with $\rho_{n}=\frac{n+1}{2}$ Note that since

(I.3.4) $\omega(nm(a)g)\varphi(O)=\chi_{V}(\det(a))|\det(a)|^{\frac{m}{2}}\omega(g)\varphi(O)$ ,

we have

(I.3.5) $\Phi(nm(a)g, s)=\chi_{V}(\det(a))|\det(a)|^{s+\rho_{n}}\Phi(g, s)$ .

The space of all smooth K-finite functions $\Phi(s)$ on $G(A)$ with such a transformation on

the left form an induced representation

(I.3.6) $I_{n}(s, \chi_{V})=Ind_{P(R)}^{G(A)}(\chi_{V}\cdot||^{s})$ , (normalized induction)

of $G(A)$ . It is important to note that the map

(I.3.7) $\varphi\mapsto\Phi(s_{0})$

defines a $G(A)$ intertwrning map:

(I.3.8) $S(V(A)^{n})arrow I_{n}(s_{0}, \chi_{V})$ .

This is not true for other values of $s$ and explains why the point $s=s_{0}$ is the critical

one in what follows. Moreover, this map is H(A)-invariant, i.e., $\omega(h)\varphi$ and $\varphi$ have the
same image. These two facts will play a key role.

Now let $\chi$ be any unitary character of $F_{R}^{\cross}/F^{\cross}$ and let $I_{n}(s, \chi)$ be the induced
representation defined with $\chi$ in place of $\chi_{V}$ . Note that $I_{n}(s, \chi)$ is a (restricted) tensor
product $I_{n}(s, \chi)=\otimes_{v}I_{n,v}(s, \chi_{v})$ of the corresponding local induced representations. Note

that any $\Phi(s)\in I_{n}(s, \chi)$ is determined by its restriction to $K$ . A section $\Phi(s)\in I_{n}(s, \chi)$

-see [3] for an explanation of this terminology–will be called standard if its restriction
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to $K$ is independent of $s$ and factorizable if it has the form $\Phi(s)=\otimes_{v}\Phi_{v}(s)$ with

$\Phi_{v}(s)\in I_{n,v}(s, \chi_{v})$ .

For any $\Phi(s)\in I_{n}(s, \chi)$ and $g\in G(fl)$ , the Siegel Eisenstein series is defined by:

(I. 3.9)
$E(g, s, \Phi)=\sum_{\gamma\in P(F)\backslash G(F)}\Phi(\gamma g, s)$

,

which converges absolutely for ${\rm Re} s>p$. , provided $\Phi(s)$ is standard, and defines an au-

tomorphic form on $G(A)$ . The general results of Langlands (cf. [3]) imply that $E(g, s, \Phi)$

has a meromorphic analytic continuation to the whole s-plane and satisfies a functional

equation

(I.3.10) $E(g, s, \Phi)=E(g, -s, M(s)\Phi)$

where

(I.3.11) $M(s)$ : $I_{n}(s, \chi)arrow I_{n}(-s, \chi^{-1})$

is the global intertwining operator defined, for ${\rm Re} s>\rho_{n}$ , by

(I.3.12) $M(s) \Phi(g)=\int_{N(R)}\Phi(ng, s)dn$ .

I.4. Convergent Siegel-Weil formulas.

The classical Siegel-Weil formula gives a relation between the two automorphic forms

$I(g)\varphi)$ and $E(g, s, \Phi)$ ( $\Phi(s)$ coming from $\varphi$ ) associated to $\varphi$ in the convergent range.

Specifically, assume that $s_{0}= \frac{m}{2}-\rho_{n}>\rho_{n}$ so that $E(g, s, \Phi)$ is absolutely convergent

at $s=s_{0}$ . Note that this condition is equivalent to $m>2n+2$ so that (2) above hold

and $I(g;\varphi)$ converges absolutely as well.

THEOREM [38],[41]. Suppose that $\Phi(s)$ is associated to $\varphi\in S(V(fl)^{n})$ an $d$ that $m>$

$2n+2$ . $Tl_{1}en$

$E(g, s_{0}, \Phi)=I(g;\varphi)$ .

Of course, Weil proved such an identity in much greater generality in [41] for dual

reductive pairs defined by algebras with involutions.
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MAIN PROBLEM. Exten $d$ this result beyond the convergen $t$ range.

The first such extension is the following:

THEOREM, [18, 19,35]. Assume that Weil \rangle

$scon$vergence $con$dition (1) or (2) holds so that
$I(g;\varphi)$ is well defin$ed$ for all $\varphi\in S(V(fl)^{n})$ . Suppose that $\Phi(s)$ is associated to $\varphi\in$

$S(V(fl)^{n})$ . Then

(i) $E(g, s, \Phi)$ is holomorphic at $s=s_{0}$ , an $d$

(ii)

$E(g, s_{0}, \Phi)=\kappa\cdot I(g;\varphi)$ $\kappa=\{\begin{array}{l}1ifm>n+12ifm\leq n+1\end{array}$

Of course, a number of special cases were known earlier. For example, Siegel himself

considered the case $n=1,$ $m=4_{)}$ [ $38,$ $I$ , no.22, p.443 and III, no.58] etc.

REMARKS: (1) The Eisenstein series is essentia $Ily$ local in nature, i.e., it is built out of the

local components
$\Phi_{v}(g, s)=\omega_{v}(g)\varphi_{v}(0)|a(g)|_{v}^{s-s_{O}}$

associated to the local components of a factorizable $\varphi=\otimes_{v}\varphi_{v}$ . These components can

be varied independently and carry no global information about $V$ . On the other hand,
$I(g;\varphi)$ is $essent\iota ally$ global in nature, since it involves the theta distribution:

$\varphi\mapsto\sum_{x\in V(F)^{n}}\varphi(x)$

and thus the position of lattice points, etc. The identities above thus contain a link

between local and global information. A number theorist might be reminded of the Hasse-

Weil or motivic L-functions (which are built out of purely local data) and the elaborate

conjectures about their special values (which involve global invariants). It may not be

unreasonable to hope that the Siegel-Weil formula may contain information about such

special values in certain cases.
(2) Obviously, the Siegel-Weil formula can be viewed either as (i) identifying the theta

integral $I(g;\varphi)$ as an Eisenstein series, or (ii) identifying the special value at $s=s_{0}$ of
$E(g, s, \Phi)$ as a theta function, provided the defining data $\Phi(s)$ is associated to $\varphi$ . For

many applications (ii) is a better point of view. It suggests that we should consider the

whole family of Eisenstein series $E(g, s, \Phi)$ for $a?b\iota trary$ data $\Phi(s)\in I_{\gamma t}(s, \chi)$ . This point
of view is particularly important outside of the convergent range and is more convenient
from a representation theoretic standpoint.
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II.1. Some local representation theory.

We now consider some of the representation theory which lies behind the Siegel-Weil
formula.

We first fix a place non-archimedean $v$ of $F$ and temporarily shift notation, writing
$F$ for the completion of the old $F$ at $v$ , and similarly writing $G=Sp.(F),$ $H=O(V)$ ,
etc.

We have a local Weil representation $\omega$ of $G\cross H$ on the space $S(V^{n})$ of Schwartz-
Bruhat functions on $V^{n}$ . The local analogue of the map (I.3.8) is given by

$S(V^{n})arrow I_{n}(s_{0}, \chi_{V})$

(II. 1.1) $\varphi\mapsto\Phi(s_{0}))$

where

$\Phi(g, s)=\omega(g)\varphi(0)\cdot|a(g)|^{s-s_{0}}$ .

The map (II.I.I) is G-intertwining and H-invariant. In fact:

THEOREM. (Rallis [33]) Let

$R_{n}(V)=S(V^{n})_{H}$

be the $m$axim $al$ quotient of $S(V^{n})$ on which $H$ acts trivially. Then the map $(\Pi.1.1)$

induces an injection of $R_{n}(V)$ into $I_{n}(s_{0}, \chi_{V})$ :

$S(V^{n})$

(II.1.2) $\downarrow$
$\backslash \searrow$

$R_{n}(V)$ $:=S(V^{n})_{H}$ ($-\rangle I_{n}(s_{0}, \chi_{V})$ .

Thus $R_{n}(V)$ may be iden tified with a submodule of $I_{n}(s_{0}, \chi_{V})$ .

Recall that the non-degenerate quadratic spaces over $F$ are classified by the invariants:
$\dim_{F}V=m,$ $\det V\in F^{\cross}/F^{\cross,2}$ and $\epsilon(V)$ , the Hasse invariant of $V$ . Note that $\det V$

and the quadratic character $\chi_{V}$ determine each other uniquely. Thus, if we view $s_{0}=$

$\frac{m}{2}-\rho_{n}$ and $\chi=\chi_{V}$ as fixed, and if $m>2$ , there are precisely two corresponding
quadratic spaces $V\pm$ , having opposite Hasse invariants. When $m=2$ there are again
two spaces $V\pm$ if $\chi\neq 1$ , while, if $\chi=1$ there is only the split binary space $V_{\epsilon}$ , where
$\epsilon=(-1, -1)_{F}$ , where $(, )_{F}$ is the quadratic Hilbert symbol for $F$ . The induced
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representation $I_{n}(s_{0}, \chi)$ thus has two (resp. one, if $m=2$ and $\chi=1$ ) G-submodules,
$R_{n}(V_{\pm})$ . It turns out that these submodules account for all of the reducibility of $I_{n}(s_{0}, \chi)$ .

To state the precise result it is convenient to fix a generator cv for the maximal ideal of

the ring of integers $\mathcal{O}$ of $F$ and to call a character $\chi$ of $F^{\cross}$ normalized if $\chi(\varpi)=1$ .

THEOREM. $([11],[21])$ Assume that $\chi$ is a normalised character of $F^{\cross}$ Then

(1) If $\chi^{2}\neq 1$ , $th$ en $I_{n}(s, \chi)$ is irreducible for all $s$ .

(2) If $\chi^{2}=1$ and $\chi\neq 1$ , then $I_{n}(s, \chi)$ is irreduci $ble$ except at the poin $tss$ in the

set
$\frac{m}{2}-\rho_{n}+\frac{i\pi}{\log q}Z$ $2\leq m\leq 2n,$ $m$ even.

(3) If $\chi=1$ , then $I_{n}(s, \chi)$ is irreducible except at the poin $tss$ in the set

$\frac{m}{2}-\rho_{n}+\frac{i\pi}{\log q}Z$ $2\leq m\leq 2n,$ $m$ even

an $d$ at the points $s= \pm\rho_{n}+\frac{2i\pi}{\log q}Z$ corresponding to $m=0$ or $2n+2$ .

Here $q$ is the order of the resid$ue$ class field of $F$ .

Such induced representations were also considered in [14].

Note that, in cases (2) and (3), the vertical translation by $\frac{i\pi}{\log q}$ should be thought o.f
as a shift of $\chi$ to the quadratic character $\chi\cdot||^{\frac{l\pi}{1\circ gq}}$ . Thus, in the rest of our discussion, we

will consider only quadratic characters $\chi$ , without the assumption that $\chi$ is normalized,

and will describe the submodule structure of $I_{n}(s, \chi)$ at a point $s_{0}= \frac{m}{2}-\rho_{n}$ with
$0\leq m\leq 2n+2,$ $m$ even.

The simplest case occurs when $n$ is odd and $m=n+1$ , since the representation
$I_{n}(0, \chi)$ is unitarizable and hence completely reducible. In this case, if $n>1$ , or if $n=1$

and $\chi\neq 1$ ,

$I_{n}(0, \chi)=R_{r\iota}(V_{+})\oplus R_{n}(V_{-})$

and the representations $R_{n}(V_{\pm})$ are irreducible. In the case $n=1$ and $\chi=1$ ,

$I_{1}(0,1)=R_{n}(V_{\epsilon})$

is irreducible.

If $2\leq m<n+1$ , the representations $R_{n}(V)$ are irreducible and distinct. In this
range, excluding the case $m=2,$ $\chi=1$ , the subspace $R_{n}(V_{+})\oplus R_{n}(V_{-})$ is the maximal
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proper submodule of $I_{n}(s_{0)}\chi)$ . If $m=2$ and $\chi=1$ , then $R_{n}(V)$ for the split binary

space $V$ is the unique submodule of $I_{n}(s_{0},1)$ . Similarly, if $m=0$ and $\chi=1$ , so that

$s_{0}=-\rho_{n}$ , the trivial representation $11=R_{n}(0)$ is the unique submodule of $I_{n}(-\rho_{n}, 1)$ .

On the right hand side of the unitary axis, i.e., in the range $n+1<m\leq 2n+2$ , the

situation is reversed. First of all, excluding the cases $\chi=1$ and $m=2n$ or $2n+2$ , each

of the spaces $V\pm$ can be written as an orthogonal direct sum

(II.1.3) $V\pm=V_{0,\pm}+V_{r,r}$

where $V_{0,\pm}$ is a quadratic space with the same Hasse invariant and determinant as $V\pm$

and of dimension $m_{0}=\dim_{F}V_{0,\pm}$ with

(II.1.4) $m+m_{0}=2n+2$ .

Here $V_{r,r}$ is a split space of dimension $2r$ , i.e., an orthogonal direct sum of $r$ hyperbolic

planes.

DEFINITION. The $spac$es $V\pm$ an$dV_{0,\pm}$ related in this way will be called complemen tary

Note that $R_{n}(V_{0,\pm})\subset I_{r\iota}(-s_{0}, \chi)$ . Then $R_{n}(V\pm)$ has a unique irreducible quotient
$R_{n}(V_{0\pm,\}})$ , and the kernel of the map

(II.1.5) $R_{n}(V_{\pm})arrow R_{n}(V_{0,\pm})$

is irreducible [21]. The two submodules $R_{n}(V_{+})$ and $R_{n}(V_{-})$ span $I_{n}(s_{0}, \chi)$ and intersect

in this irreducible submodule.

In the excluded cases $\chi=1$ and $m=2n$ or $2n+2$ , the split space has Hasse invariant
$\epsilon$

$:=(-1, -1) \frac{n(n+1)}{F2}$ if $m=2n$ or $(-1, -1) \frac{(n+1)(n+2)}{F2}$ if $m=2n+2$ . Again we have

(II.1.6) $V_{\epsilon}=V_{0,\epsilon}+V_{r,r}$

and $R_{n}(V_{\epsilon})$ has a unique irreducible quotient $R_{n}(V_{0,\epsilon})$ . Now, however, $R_{n}(V_{-\epsilon})$ is the

irreducible submodule of $R_{n}(V_{\epsilon})$ which is the kernel of the map

(II.1.7) $R_{n}(V_{\epsilon})arrow R_{n}(V_{0,\epsilon})$ .
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It is important to note that the representations $I_{n}(s_{0}, \chi)$ and $I_{n}(-s_{0}, \chi)$ are contra-

gradient [33] and are, moreover, related by the normalized local intertwining operator

$M^{*}(s_{0})$ : $I_{n}(s_{0}, \chi)arrow I_{n}(-s_{0}, \chi)$ .

This operator is a (normalized’ version of the global intertwining operator defined by

(I.3.12),

(II.1.8) $M^{*}(s)= \frac{1}{a_{n}(s,\chi)}M(s)$ ,

where
$[ \frac{n}{2}]$

(II.1.9) $a_{n}(s, \chi)=L(s+\rho_{n}-n, \chi)\cdot\prod_{k=1}L(2s-n+2k, \chi^{2})$
.

Here $L(s, \chi)=(1-\chi(\varpi)q^{-s})^{-1}$ is the local Euler factor when $\chi$ is unramified and is

1 if $\chi$ is ramified. In particular, the maps (II.1.5) and (II.1.7) can be realized as the

restrictions of $M^{*}(s_{0})$ to the subspace $R_{n}(V\pm)$ [21].

Two additional facts will be relevant [21].

(1) If $V$ is a split space, then the representation $R_{n}(V)\subset I_{n}(s_{0}, \chi v)$ contains the

normalized (spherical’ vector $\Phi^{0}(s_{0})$ defined by requiring that

(II. 1.10) $\Phi^{0}(k, s_{0})=1$ .

(2) If $m>2n+2$ , then $R_{n}(V_{\pm})=I_{n}(s_{0}, \chi_{V})$ .

Next we turn to the case of a real archimedean place $v$ , which we again omit from the

notation. We let $\mathfrak{g}$ (resp. $\mathfrak{h}$ ) denote the Lie algebra of $G=Sp(n, \mathbb{R})$ (resp. $H=O(V)$ ).

Suppose that sig $V=(p, q)$ with $p+q=m$ , and fix an orthogonal decomposition

(II. 1.11) $V=U++U_{-}$

where $\dim U+=p$ , $\dim U_{-}=q$ and $(, )|_{U_{+}}$ (resp. (, ) $|_{U_{-}}$ ) is positive (resp.

negative) definite. Then $H\simeq O(p, q)$ , and we let $K_{H}\simeq O(p)\cross O(q)$ be the maximal
compact subgroup of $H$ which preserves the decomposition (II.1.10). Let $S(V^{n})$ be the

Schwartz space of $V^{n}$ and define the Gaussian $\varphi^{0}\in S(V^{n})$ by $\varphi^{0}(x)=\exp(-7\ulcorner(x, x)_{+}))$

where $(, )_{+}|_{U_{+}}=$ $(, )$ and $(, )_{+}|_{U-}=-(, )$ . Then let $S(V^{n})\subset S(V^{n})$ be the

space of all functions of the form $\varphi(x)=p(x)\varphi^{0}(x)$ where $p$ is a polynomial on $V^{n}$

The Weil representation of $G\cross H$ can be realized on $S(V^{n})$ and $S(V^{n})$ then becomes a
$(\mathfrak{g}, K)\cross(\mathfrak{h}, K_{H})$ module (Harish-Chandra module). Note that $S(V^{n})$ consists of $K\cross K_{H^{-}}$

finite functions. Similarly, we let $I_{n}(s, \chi)$ denote the space of smooth K-finite functions

on $G$ which satisfy (I.3.5).
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THEOREM. ([20]) Let $R_{n}(p)q)$ be the $m$aximal quotien $t$ of $S(V^{n})$ on which $(\mathfrak{h}, K_{H})$

acts $trivi$ally. Then the map $(\Pi.1.1)$ induces an injection of $R_{n}(p, q)$ in to $I_{n}(s_{0}, \chi_{V})$ .

$S(V^{n})$

(II.1.12) 1 $\lambda$

$R_{n}(p, q)$ $:=S(V^{n})_{H}$ $arrow\succ$ $I_{n}(s_{0}, \chi_{V})$ .

Thus $R_{n}(p, q)$ may be $id$entified with a $su$ bmodule of $I_{n}(s_{0}, \chi_{V})$ .

Note that then
$\chi_{V}(x)=(x, (-1)^{\frac{m}{2}+q})_{R}$ .

Thus, if a quadratic character $\chi$ ( $\chi(x)=$ (sgn $x)^{a}$ with $a=0$ or 1) and a point
$s_{0}= \frac{m}{2}-\rho_{n}$ are fixed, then each pair $(p, q)$ with $p+q=m$ and with $\chi(-1)=(-1)^{\frac{\rho-q}{2}}$

determines a submodule $R_{n}(p, q)$ of $I_{n}(s_{0}, \chi)$ .

The reducibility and submodule structure of $I_{n}(s, \chi)$ is now considerably more com-
plicated than in the p-adic case. The reducibility, for example, is competely determined
in [20]. Here we simply record certain useful facts.

(1) The $(g, K)$ -module $R_{n}(p, q)$ is generated by the vector $\Phi^{t}(s_{0})$ whose value on
$K\simeq U(n)$ is given by

(II.1.13) $\Phi^{t}(k, s)=(\det k)^{t}$ .

(2) $R_{n}(p, q)$ is irreducible if $p+q=m\leq n+1$ .
(3) On the unitary axis we have

(II.1.14) $I_{n}(0, \chi)=$
$\bigoplus_{p+q=m}$

$R_{n}(p, q)$ .

$\chi(-1)=(-1)^{L_{2}^{-}\Delta}$

(4) $R_{n}(m, 0)$ (resp. $R_{n}(0,$ $m)$ ) is an irreducible lowest (resp. highest) weight
representation of $(g, K)$ .

We omit the case of a complex archimedean place. At the moment, we do not know
the structure of $I_{n}(s, \chi)$ , although it is undoubtedly known to the experts.

REMARK: The representation $R_{n}(V)$ always has a unique irreducible quotient, as it must
by the local Howe duality principle [13], [28], [39]. This quotient is the representation $\theta(11)$

associated to the trivial representation of $H=O(V)$ via the local theta correspondence.
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II.2. Some automorphic representations.

We return to the global situation and assemble the local pieces. We assume that $\chi$

is a quadratic character of $F^{\cross}fl/F^{\cross}$ Note that the global induced representation has a

factorization:

(II.2.1) $I_{n}(s, \chi)=\otimes_{v}I_{n,v}(s, \chi_{v})$

as a representation of $(\mathfrak{g}, K_{\infty})\cross G(A_{f})$ . Here we have taken $I_{n}(s, \chi)$ to consist of smooth,

K-finite functions on $G(A)$ , and the tensor product on the right side is the restricted
tensor product with respect to the vectors $\Phi_{v}^{0}(s)$ defined by (II.1.10). For certain values
of $s$ and $\chi$ the representation $I_{n}(s, \chi)$ has infinitely many constituents. For example,

if $V$ is a quadratic space over $F$ , as in section I above, we let $R_{n,v}(V)=R_{n}(V_{v})$ be
the representation of $G_{v}$ if $v$ is non-archimedean (resp. $(\mathfrak{g}_{v},$ $K_{v})$ , if $v$ is archimedean)

defined in section II.1. Since $V_{v}$ is split at almost all places, we may define the restricted
tensor product

(II.2.2) $\Pi_{n}(V)=\otimes_{v}R_{n,v}(V)$ ,

and this representation is a submodule of $I_{n}(s_{0}, \chi_{V})$ .

EXAMPLES:

(1) If $m\leq n+1$ , then $\Pi_{n}(V)$ is an irreducible submodule of $I_{n}(s_{0}, \chi_{V})$ . Note
that $s_{0}\leq 0$ .

(2) If $m>2n+2$ , then

$I_{n,f}(s, \chi)=\otimes_{vfinite}I_{n,v}(s, \chi_{v})$

is irreducible for all $s$ , while $I_{n,\infty}(s, \chi)$ is irreducible unless $s=s_{0}= \frac{m}{2}-\rho_{n}$

for some $m\in 2Z$ . At such points $s_{0},$ $I_{n,\infty}(s_{0}, \chi)$ and hence $I_{n}(s_{0}, \chi)$ has
finite length.

(3) In the range $n+1<m\leq 2n+2,$ $I_{n}(s_{0},\chi)$ has infinite length and has no
irreducible admissible submodules.

In fact, not every submodule of $I_{n}(s_{0}, \chi)$ is associated to a quadratic space. The key
examples are defined as follows.
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DEFINITION. Fix a quadratic character $\chi$ an $d$ an even integer $m\geq 0$ . A collection
$C=\{U_{v}\}$ of quadratic $sp$aces $U_{v}$ over $F_{v}$ , one for each place $v_{\rangle}$ will be called an

incoherent family if

(i) $\dim_{F_{v}}U_{v}=m$ and $\chi_{U_{v}}=\chi$ .

(ii) For almost all $vU_{v}$ is the split $sp$ace of dimension $m$ .

(iii)

$\prod_{v}\epsilon_{v}(U_{v})=-1$

where $\epsilon_{v}(U_{v})$ is the Hasse in variant of $U_{v}$ .

In $p$articular, th $ere$ cannot be a global quadratic space $V$ over $Fwl_{l}ose$ Iocalizations are

isomorphic to the $U_{v}s$ since condition (iii) violates the product formula for the Hasse

in variants of such localizations.

Note that, if we exclude the case $m=2$ , then an incoherent family $C=\{U_{v}\}$ when

modified at any one place $v$ (by switching $U_{v}$ to the space $U_{v}’$ with the opposite Hasse
invariant) becomes the set of localizations $\{V_{v}\}$ of a global quadratic space $V$ of dimension
$m$ and character $\chi_{V}=\chi$ . No particular place $v$ is (prefered’. In the case $m=2$ with
$\chi\neq 1$ we can only modify at the places $v$ at which $\chi_{v}\neq 1$ . When $m=2$ and $\chi=1$

there are no incoherent families.

If $C$ is an incoherent family, we can form, thanks to (ii), the representation

(II.2.3) $\Pi_{n}(C)=\otimes_{v}R_{n}(U_{v})$ ,

and, when $m\leq n+1$ , this representation is an irreducible submodule of $I_{n}(s_{0}, \chi)$ . In

fact, in the range $-\rho_{n}\leq s_{0}\leq n+1$ , every irreducible submodule is either a $\Pi_{n}(V)$ or a
$\Pi_{n}(C)$ . Note that we could formally include the case $m=0$ and obtain $\Pi_{n}(0)=11$ , the

trivial representation.

Now since $\chi$ is automorphic, i.e., is a character of $F^{\cross}fl/F^{\cross}$ and not just of $F^{\cross}fl$ ,

it follows from a very general result of Langlands [25] that every irreducible constituent

of $I_{n}(s, \chi)$ occurs as a subquotient of the space of automorphic forms on $G(A)$ . This

result is proved using the general theory of Eisenstein series and their derivatives. For the

representations $\Pi_{n}(V)$ and $\Pi_{n}(C)$ we can give much more explicit information.

For example, fix a global quadratic space $V$ and assume that Weil’s convergence con-

dition (I.2.3) holds. Then the theta integral (I.2.2) defines an intertwining map for the
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$(\mathfrak{g})K)\cross G(fl_{f})$ action,

$S(V(A)^{n})$

(II.2.4)
$\downarrow$

$\searrow^{I}$

$\overline{I}$ : $\Pi_{n}(V)$ $arrow$ $A(G)$ ,

where $A(G)$ is the space of automorphic forms on $G(A)$ .

On the other hand, for $s_{0}>\rho_{n}$ , i.e., for $m>2n+2$ , the Siegel Eisenstein series is
termwise absolutely convergent for all $\Phi(s)\in I_{n}(s, \chi)$ , and hence defines an intertwining
map

$E(so)$
(II.2.5) $\Pi_{n}(V)\subset I_{n}(s_{0}, \chi)$ $\mathfrak{c}_{-\succ}$ $A(G)$ .

REMARK: The injectivity of $E(s_{0})$ can be proved by considering the constant term of
$E(g, s_{0}, \Phi)$ as in [18]. The ‘exponents’ of the $n+1$ terms in this constant term are

distinct in the range ${\rm Re}(s)>\rho_{n}$ so that there can be no cancellations among them. On
the other hand, the first term is just $\Phi(g, s)$ itself.

The classical Siegel-Weil formula says that the two maps $\overline{I}$ and $E(s_{0})$ agree on $\Pi_{n}(V)$ !
Thus, from a representation theoretic viewpoint, the classical Siegel-Weil formula expresses

an Eisenstein intertwining map in terms of a theta intertwining map. This interpretation

has a nice extension to the divergent range.

REMARK: Note that it follows that $\overline{I}$ is injective on $\Pi_{n}(V)$ .

We next suppose that $m\leq n$ , so that $\Pi_{n}(V)$ and $\Pi_{n}(C)$ are irreducible.

THEOREM, [23].

(i) In the range $0\leq m\leq n$ ,

$\dim Hom_{G(R)}(\Pi_{n}(V), A(G))=1$ .

Moreover, $excl$uding the case $m=2$ an$d\chi=1$ , the representations $\Pi_{n}(V)$

are square integrable, $i.e_{\rangle}$ occur as invariant subspaces in $A_{(2)}(G)$ , the space

of $squ$ are integra $ble$ automorphic forms.
(ii) If $2\leq m\leq n+1$ , an$dC$ is an incoherent family, then

$Hom_{G(R)}(Ii_{n}(C), A(G))=0$ ,
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$i.e.$ , the irreducible representation $\Pi_{n}(C)$ does not occur as an in varian $tsu$ b-

space of $A(G)$ . It only occurs as a subquotient.

This uniqueness result is the key to Siegel-Weil formula in the divergent range.

III.1. Poles of the Siegel Eisenstein series.

The Siegel Eisenstein series defined using a section $\Phi(s)$ associated to a function $\varphi\in$

$S(V(fl)^{n})$ where $V$ satisfies Weil’s convergence condition (I.2.3) is always holomorphic

at the point $s_{0}= \frac{m}{2}-p_{n}$ . On the other hand, if $\Phi(s)$ is an arbitrary section and if

$0\leq m\leq 2n+2,$ $E(g, s, \Phi)$ can indeed have a pole. We can give a rather complete

description of these poles.

The first step is to normalize the Eisenstein series. Let $\Phi(s)=\otimes_{v}\Phi_{v}(s)\in I_{n}(s, \chi)$ be

a factorizable standard section (cf. I.3), and let $S$ be a finite set of places, including all

of the archimedean places, such that, for any $v\not\in S,$ $\Phi_{v}(s)$ is the normalized spherical

vector of (II. 1.10). For any place $v$ of $F$ , let

$[ \frac{n}{2}]$

(III.1.1) $b_{n,v}(s, \chi)=L_{v}(s+\rho_{n}, \chi_{v})\cdot\prod_{k=1}L_{v}(2s+n+1-2k, \chi^{2})$
,

where $L_{v}(s, \chi)$ is the local L-factor of $\chi$ , and let

(III. 1.2)
$b_{n}^{S}(s, \chi)=\prod_{v\not\in S}b_{n,v}(s, \chi)$

.

The normalized Eisenstein series is then

(III.1.3) $E^{*}(g, s, \Phi)=b_{n}^{S}(s, \chi)E(g, s, \Phi)$ .

THEOREM $[22,23]$ . Let $\Phi(s)$ be a $st$ andard section of $I_{n}(s, \chi)$ , an $d$ let $S$ be as above.

(i) If $\chi^{2}\neq 1$ , then $E^{*}(g, s, \Phi)$ is entire.
(ii) If $\chi^{2}=1$ , then $E^{*}(g, s, \Phi)$ has at most simple poles, an $d$ these $c$an only occur

at the poin $tss_{0}\in X_{n}^{+}=X_{n}\cap \mathbb{R}_{>0}\rangle$ where

$X_{n}=\{-\rho_{n}, 1-\rho_{n}, \ldots\rho_{n}-1, \rho_{n} \}$ .

Moreover, if $\chi\neq 1$ , then no pole occu$rs$ at $\rho_{n}$ .
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Note that the normalizing factor $b^{S}(s, \chi)$ has no poles or zeroes in the right half plane,

so that the behavior of $E(g, s, \Phi)$ in this half plane is the same as that of $E^{*}(g, s, \Phi)$

To determine the residues, we fix a quadratic character $\chi$ and a point $s_{0}= \frac{m}{2}-\rho_{n}\in$

$X_{n}^{+}$ . The map

$A_{-1}$ : $I_{n}(s_{0}, \chi)arrow A(G)$

(III.1.4) $\Phi(s_{0})\mapsto{\rm Res}_{s=s_{0}}E(g)s,$
$\Phi$ ),

where $\Phi(s)\in I_{n}(s, \chi)$ is the standard extension of $\Phi(s_{0})\in I_{n}(s_{0}, \chi)$ , defines a $(\mathfrak{g}, K_{\infty})\cross$

$G(fl_{j})$ intertwining operator. Since for each place $v$ the local induced representation

$I_{n,v}(s_{0}, \chi)$ is spanned by the $R_{n}(U_{v})s$ for $\dim_{F_{v}}U_{v}=m$ and $\chi_{U_{v}}=\chi_{v}$ , we may as

well assume that our section $\Phi(s)=\otimes_{v}\Phi_{v}(s)$ with $\Phi_{v}(s_{0})\in R_{n}(U_{v})$ for each $v$ . Such

a section $\Phi(s_{0})\in\Pi_{n}(\{U_{v}\})$ is called homogeneous; the collection of $U_{v}s$ need not be

unique. There are then two cases.

(1) The section $\Phi(s_{0})$ is (coherent’, i.e., $\Phi(s_{0})\in\Pi_{n}(V)$ for some global quadratic

space $V$ over $F$ .

(2) The section $\Phi(s_{0})$ is incoherent, i.e., the only possible collections $C=\{U_{v}\}$

such that $\Phi(s_{0})\in\Pi_{n}(C)$ are incoherent families.

The resulting Eisenstein series will be called ‘coherent’ and ‘incoherent’ at the point $s_{0}$

respectively.

First consider the case of coherent sections associated to a quadratic space $V$ . If

Weil’s condition (I.2.3) is satisfied, then $E(g, s, \Phi)$ is holomorphic at $s_{0}$ so the subspace
$\Pi_{n}(V)$ lies in the kernel of the map $A_{-1}$ . If, on the other hand, $V$ is isotropic with

$m-r\leq n+1$ where $r$ is the Witt index of $V$ , then (and only then!) there is an

orthogonal decomposition

(III.1.5) $V=V_{0}+V_{t,t}$

where

(III.1.6) $\dim_{F}V+\dim_{F}V_{0}=2n+2$

and $V_{t,t}$ is a split space of dimension $2t$ . Note that the localizations $V_{v}$ and $V_{0,v}$ will

then be complementary in the sense defined in section II. In particular, there is a quotient

map

(III.1.7) $\Pi_{n}(V)arrow\Pi_{n}(V_{0})$
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given by the tensor product of the local quotient maps (II.1.5), (II.1.7), and their archimedean
analogue.

REMARK: Since the existence of a complementary $V_{0}$ to $V$ is equivalent to the failure

of Weil’s convergence criterion (I.2.3) for $V$ , we obtain a structural explanation of that

criterion.

THEOREM, [23]. Asume that $m=\dim V>n+1$ .

(i) If $V$ satisfies the $con$dition (L2.3), then the restriction of $A_{-1}$ to $\Pi_{n}(V)$ is

iden tically $zero[18,19]$ .

(ii) If $V$ is isotropic with $m-r\leq n+1$ , then the restri$c$ tion of $A_{-1}$ to $\Pi_{n}(V)$

factors through the quotien $t$ map (III. 1.7) an $d$ induces an injection

(III.1.8) $\overline{A}_{-1}$ : $\Pi_{n}(V_{0})\mathfrak{c}_{-}\succ A(G)$ .

(iii) The restriction of $A_{-1}$ to $\Pi_{n}(C)$ for an incoherent family $C$ is identically $zel$ o.

Finally, we consider the center of the critical strip when $n$ is odd. Now $E^{*}(g, s, \Phi)$ is

holomorphic at $s=s_{0}=0$ , for any standard section $\Phi(s)$ . If we exclude the case $n=1$

and $\chi=1$ , then the normalizing factor $b_{n}^{S}(s, \chi)$ is holomorphic and non-zero at $s=0$ ,

so that we could just as well consider $E(g, s, \Phi)$ itself. Note that

(III. 1.9) $I_{n}(0, \chi)=(\bigoplus_{V}\Pi_{n}(V))\oplus(\bigoplus_{c}\Pi_{n}(C))$

where $V$ runs over all (isomorphism classes of) quadratic spaces over $F$ of dimension

$m=n+1$ and character $\chi_{V}=\chi$ , and $C$ runs over all incoherent families of the same

type.

THEOREM [23]. The ma.p $A_{0}$ : $I_{n}(0, \chi)arrow A(G)$ given by

$A_{0}(g)\Phi)=E(g, 0, \Phi)$

in $d$ uces an injec $t$ ion

(III. 1.10) $\overline{A}_{0}$ $:\oplus\Pi_{n}(V)\epsilon_{-\succ}A(G)$ .
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Here $\dim V=m=n+1$ . Moreover the restriction of $A_{0}$ to $\oplus\Pi_{n}(C)$ is zero.

Thus the residues (resp. values) of the Siegel Eisenstein series provide non-zero em-

beddings of the irreducible $\Pi_{n}(V)s,$ $\dim V\leq n$ (resp. $\dim V=n+1$ when $n$ is odd)

into $A(G)$ . This fact is not yet a Siegel-Weil formula, however. To obtain one we must

next realize the $\Pi_{n}(V)s$ as spaces of theta functions.

III.2. Regularized theta integrals.

Let $V$ be an isotropic quadratic space over $F$ , with Witt index $r$ , such that $m-r\leq$

$n+1$ , so that the theta integral (I.2.2) may be divergent. We want to define a regularized
version of this integral by using an old trick of Maass [27]: we apply a central differential
operator to eliminate the ‘bad terms’ of the integrand. Similar operators were also found

independently by Deitmar and Kreig [6].

Write

(III.2.1) $V=V_{an}+V_{r,r}$

where $V_{an}$ is anisotropic, and assume that $\dim_{F}V=m\leq 2n$ . Recall that $W$ was the
standard symplectic space over $F$ which defined $G=Sp(W)=Sp(n)$ . Then there is
another model of the Weil representation of $G(fl)\cross H(fl)$ on the space $S(V_{an}$ (fl) $)\otimes$

$S(W(A)^{r})$ , and the two models are related by a partial Fourier transform:

(III.2.2) $S(V(A)^{n})arrow^{\sim}S(V_{an}(A)^{n})\otimes S(W(A)^{r})$ $\varphi\mapsto\hat{\varphi}$ .

Poisson summation implies that

(III.2.3)
$\sum_{x\in V(F)^{n}}\varphi(x)=\sum_{y\in V_{an}(F)^{n}}\hat{\varphi}(y, w)$

.

$w\in W(F)^{r}$

Thus

(III.2.4)
$\theta(g, h;\varphi)=y\in V_{on}(F)^{n}\sum_{w\in W(F)^{r}}\hat{\omega}(g, h)\hat{\varphi}(y)w)$

.

It turns out that the terms in this second expression for $\theta(g, h;\varphi)$ which do not decay well
on $H(F)\backslash H(fl)$ are precisely those involving pairs $(y, w)$ with $w\in W(F)^{r}\simeq M_{r,2n}(F)$

having rank less than $r$ . On the other hand, the sum of the terms involving $ws$ of rank
$r$ is rapidly decreasing on $H(F)\backslash H(A)$ .
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THEOREM[23]. Fix an archimedean place $v$ of F. Then there exist elements $z\in\delta(\mathfrak{g}_{v})$

and $z’\in 3(\mathfrak{h}_{v})$ , where $z(\mathfrak{g}_{v})$ (resp. $3(\mathfrak{h}_{v})$ ) is the $center$ of th$ee11$ veloping algebra of
$\mathfrak{g}_{v}=LieG_{v}$ (resp. $\mathfrak{h}_{v}=LieH_{v}$ ), such that

(i) $\omega(z)=\omega(z’)\neq 0$ .

(ii) For all $\varphi_{v}\in S(V_{an,v})\otimes S(W_{v^{r}})$ , $(\omega(z)\varphi)(y, w)=0$ whenever the rank of
$w\in W_{v^{r}}\simeq M_{r,2n}(F_{v})$ is less than $r$ .

COROLLARY. $\theta(g, h;\omega(z)\varphi)$ is rapidly decreasin$g$ on $H(F)\backslash H(A)$ .

Then we can consider the integral

(III.2.5) $\int_{H(F)\backslash H(fl)}\theta(g, h;\omega(z)\varphi)E(h, s’)dh$ ,

where $E(h, s’)$ is the Eisenstein series on $H(A)$ associated to the parabolic subgroup
which stabilizes a maximal isotropic subspace, and normalized so that $E(h, s’)$ has con-

stant residue 1 at the point $s’=s_{0}’=\rho’$ , analogous to $\rho_{n}$ . This integral is absolutely

convergent whenever $E(h, s’)$ is holomorphic. For large ${\rm Re}(s’)$ it can be unfolded in the

usual way and turns out to be equal to

(III.2.6) $P(s’\rangle z)\cdot \mathcal{E}(g, s’, \varphi)$

where $P(s’, z)$ is an explicit polynomial in $s’$ and $\mathcal{E}(g, s’, \varphi)$ is an Eisenstein series on
$G(A)$ associated to a maximal parabolic subgroup $P_{r}$ of $G$ which stabilizes an isotropic

r-plane in $W$ . Then

$\mathcal{E}(g, s’, \varphi)=\frac{1}{P(s’;z)}\int_{H(F)\backslash H(\mathbb{R})}\theta(g, h;\omega(z)\varphi)E(h, s’)dh$ .

If $\varphi$ is such that $\theta(g, h;\varphi)$ is already rapidly decreasing on $H(F)\backslash H(A)$ , then

$\int_{H(F)\backslash H(fl)}\theta(g, h,\cdot\omega(z)\varphi)E(h, s’)dh$

$= \int_{H(F)\backslash H(fl)}\omega(z’)\cdot\theta(g, h;\varphi)E(h, s’)dh$

$= \int_{H(F)\backslash H(R)}\theta(g, h;\varphi)\omega(z’)^{*}\cdot E(h, s’)dh$

(III.2.7) $=P$ ( $s’$ ; z) $\cdot\int_{H(F)\backslash H(R)}\theta(g, h\cdot, \varphi)E(h, s’)dh$

so that

(III.2.8) $\mathcal{E}(g, s’, \varphi)=\int_{H(F)\backslash H(R)}\theta(g, h;\varphi)E(h, s’)dh$

in this case.
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III.3. Extended Siegel-Weil formulas.

We are interested in the Laurent expansion of $\mathcal{E}(g, s’, \varphi)$ at the point s\’o. The poly-

nomial $P$( $s’$ ; z) has the property that

(III.3.1) $o_{s}r_{0}dP(s’; z)=\{\begin{array}{l}0if2\leq m\leq n+1+1ifn+1<m\leq 2n\end{array}$

Thus

(III.3.2) $o_{s}r_{o}d\mathcal{E}(g, s’, \varphi)=\{I_{2}^{1}$ $if2\leq m\leq n+1ifn+1<m\leq 2n$

,

and so we have

(III.3.3) $\mathcal{E}(g, s’, \varphi)=\frac{B_{-2}(g,\varphi)}{(s’-s_{0})^{2}}+\frac{B_{-1}(g,\varphi)}{(s-s_{0})}+O(1)$ .

We view the various terms in this expansion as the regularization of the theta integral

(I.2.2).

THEOREM[23]. Let $V$ be an isotropic quadratic space over $F$ wi th $m-r\leq?x+1$ .

(i) If $2\leq m\leq n+1$ , then the map $B_{-1}$ induces a $di$agram:

$S(V(A)^{n})$

(III.3.4)
$\downarrow$

$B\backslash ^{-1}$

$\overline{I}=\overline{B}_{-1}$ : $\Pi_{n}(V)$ $(-\succ$ $A(G)$ .

(ii) If $n+1<m\leq 2n$ , let $V_{0}$ be the complement$ary$ space to V. Then the $map$

$B2fa$ctors th rougli $\Pi_{n}(V)$ an $d$ further factors through the quotient $\Pi_{n}(V_{0})$ ,
$i.e.$ ,

$S(V(A)^{n})$

(III.3.5)
$\downarrow$

$B\overline{\backslash }^{2}$

$I=\overline{B}_{-2}=$ : $\Pi_{n}(V_{0})$ $arrow$ $A(G)$ .

As a consequence of the uniqueness result of section II, we finally obtain a Siegel-Weil
formula:
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COROLLARY [23]. (Siegel- Weil formula for resid $u$es an $d$ centr$al$ values)

(i) Assume that $n+1<m\leq 2n$ an $d$ let $V$ be an $m$ dimensional isotropic
$qu$ adrat$icsp$ace over $F$ with $m-r\leq n+1$ . Then there exis $ts$ a non-zero
constant $c_{1}$ such that

$\overline{A}_{-1}=c_{1}\cdot\overline{B}_{-1}=c_{1}\cdot\overline{I}$ ,

where $\overline{A}_{-1}$ is the map on $\Pi_{n}(V_{0})$ induced by the restriction of $A_{-1}$ to $II_{n}(V)$ .

(ii) Assume that $n$ is odd an$d$ that $n+1=m$ an$d$ let $V$ be an $m$ dimension $al$

$qu$ adra$tic$ space over F. Then $tl_{1}ere$ exists a non-zero constant $c_{0}suchthat$

$-$

$A_{0}|_{\Pi_{n}(V)}=\{\begin{array}{l}c_{0}\cdot B_{-1}=c_{0}\cdot IifVisisotropic2IifVisanisotropic\end{array}$

Here the $c$as$en=1$ an$d\chi=1$ is excluded.

III.4. Second term identities.

In fact, one would like to obtain further relations among the terms of the Laurent

expansions of the Siegel Eisenstein series $E(g, s, \Phi)$ , for $\Phi(s)$ associated to $\varphi$ , and those

of the regularized theta integral $\mathcal{E}(g, s’, \varphi)$ . Specifically, we would like to consider

(III.4.1) $E(g, s, \Phi)=\frac{A_{-1}(g)\Phi)}{s-s_{0}}+A_{0}(g, \Phi)+O(s-s_{0})$ ,

and to express $A_{0}$ and a combination of $B_{-1}$ and $B_{-2}$ . So far this has only been done

in some special cases.

Consider the case $n=2$ and $m=4$ , so that $s_{0}= \frac{1}{2}$

THEOREM, [24]. There exists a constant $c’sucl\iota$ that

$A_{0}(g, \Phi)=c’B_{-1}(g, \varphi)+B_{-2}(g)\varphi’)$

where $\Phi(s)$ is the standard section associated to $\varphi$ and for some function $\varphi’\in S(V(fl)^{2})$ .

REMARK: Such a relation must be rather subtle since the map $\varphi\mapsto A_{0}(g, \Phi)$ is $H(A)$

invariant but it not (!!) $G(A)$ intertwining (since the second term in the Laurent expansion
is not $G(A)$ intertwining (cf. [19,\S 2]) while the map $\varphirightarrow B_{-1}(g, \varphi)$ is $G(fl)$ intertwining
but not (!!) $H(A)$ invariant. This explains the presence of the term $B_{-2}(g, \varphi’)$ and the
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occurrence of the additional function $\varphi’$ For example, if $\varphi$ is replaced by $\omega(h)\varphi$ , the

term $A_{0}(g, \Phi)$ is unchanged, but the term $B_{-1}(g, \varphi)$ only remains invariant modulo the

subspace ${\rm Im}(B_{-2})\subset A(G)$ . The convoluted arguments needed in section 6 of [24] reflect

these difficulties.

REMARK: If $\Phi(s)$ is a standard section which is ‘incoherent’ at the point $s= \frac{1}{2}$ $i.e$ , such

that $\Phi(\frac{1}{2})\in\Pi_{2}(C)$ for some incoherent family $C$ but does not lie in any $\Pi_{n}(V)$ , then

the nature of $A_{0}(g, \Phi)$ remains to be determined.

A second term identity has also been proved is the case when $V=V_{r,r}$ is a split space

and $\varphi\in S(V(fl)^{n})$ is invariant under $K$ , the maximal compact subgroup of $G(A)$ . In

this case, the section $\Phi(s)$ associated to $\varphi$ is (up to a constant which we may assume to

be 1) just

(III.4.2) $\Phi(s)=\Phi^{0}(s)=\otimes_{v}\Phi_{v}^{0}(s)$ ,

where $\Phi_{v}^{0}(s)$ is the normalized $K_{v}$ -invariant standard section of (II. 1.10) or (II.1.13) with

$l=0$ . On the other hand, the Eisenstein series $\mathcal{E}(g, s’, \varphi)$ is also associated to a K-

invariant (but not standard) section of an induced representation for the maximal parabolic
$P_{r}$ of $G$ .

More precisely, for any $r$ with $1\leq r\leq n$ let $P_{r}$ be the maximal parabolic subgroup
of $G=Sp(n)$ which stabilizes the isotropic r-plane spanned by the vectors $e_{1}’,$

$\ldots,$
$e_{r}’$ .

Here we have fixed a standard symplectic basis $e_{1},$
$\ldots,$

$e_{n)}e_{1}’,$
$\ldots,$

$e_{n}’$ for $W\simeq F^{2n}$ (row

vectors), so that $(\begin{array}{ll}0 1_{n}-1_{n} 0\end{array})$ is the matrix for $<,$ $>$ . Then $P_{r}=N_{r}M_{r}$ where the Levi

factor $M_{r}\simeq GL(r)\cross Sp(n-r)$ . For the global Iwasawa decomposition $G(fl)=P_{r}(R)K$

we write $g=n_{r}m_{r}(a, g_{0})k$ with $a\in GL(r, fl)$ and $g_{0}\in Sp(n-r, fl)$ and we set

(III.4.3) $|a_{r}(g)|=|\det(a)|_{R}$ .

Let

(III.4.4)
$\mathcal{E}(g, s;r, n)=\sum_{\gamma\in P_{r}(F)\backslash G(F)}|a_{r}(\gamma g)|^{s+\rho_{r,n}}$

,

where $\rho_{r,n}=n-\frac{r-1}{2}$ . We normalize this series by setting

(III.4.5) $\mathcal{E}^{*}(g, s;r, n)$ $:=c_{r,n}(s)b_{r}(s)\mathcal{E}(g, s, ?\cdot, n)$ ,
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where $b_{r}(s)=b_{r}(s, \chi)$ for $\chi=1$ is defined by (III.1.1) with $S=\phi$ and

(III.4.6) $c_{r,n}(s)= \prod_{i=0}^{r-1}L(s+p_{r,n}-i)$ .

Here we take the full Euler product, $L(s)=L(s, 1)= \prod_{v}L_{v}(s, 1)$ , including the archimedean
factors. Similarly, we let

(III.4.7) $E^{*}(g, s, \Phi^{0})=b_{n}(s, 1)E(g, s, \Phi^{0})$

be the spherical Siegel Eisenstein series, normalised with the full Euler product $b_{n}(s, \chi)$

with $\chi=1$ .

$/_{\lrcorner}$ From now on we assume that $F=Q$ so that $L(s)=L(1-s)$ and

(III.4.8) $L(s)= \frac{1}{s-1}+\kappa+O(s-1)$ .

Note that the functional equation of $E^{*}(s, s, \Phi^{0})$ is then simply

(III.4.9) $E^{*}(g, s, \Phi^{0})=E^{*}(g, -s, \Phi^{0})$ ,

because

(III.4.10) $M(s) \Phi^{0}=\frac{a_{n}(s)}{b_{n}(s)}\Phi^{0}(-s)$

and $a_{n}(s)=b_{n}(-s)$ . By a very elaborate inductive argument one can prove the following:

THEOREM, [17]. (first term identities $again$) Let $s_{0}=r- \rho_{n}=r-\frac{n+1}{2}$

(i) If $s_{0}<0$ , then

${\rm Res}_{s=s_{0}}E^{*}(g, s, \Phi^{0})=c(r, n)R_{\frac{\Gamma e\underline{s}_{1}}{2}}\mathcal{E}^{*}(g, s;r, n)s=$

(ii) If $s_{0}=0$ , so that $n$ is odd, then

$E^{*}(g, 0, \Phi^{0})=c(r\cdot, n)R\mathcal{E}^{*}(g, s,\cdot r, n)s=\frac{r1e\underline{s}}{2}$

(iii) If $0<s_{0}<\rho_{n}$
) then

${\rm Res}_{s=s_{0}}E^{*}(g, s, \Phi^{0})=c(r, n)Rs=\frac{\Gamma e\underline{s}_{1}}{2}((s-\frac{r-1}{\underline{9}})\mathcal{E}^{*}(g, s;r, n))$ .
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Here the constant $c(r, n)$ is defined by $c(1,1)=1$ and

$c(r, 2r-1)^{-1}= \frac{1}{2}\kappa L(3)L(5)\ldots L(2[\frac{r}{2}]-1)$,

for $r>1$ . If $1\leq k\leq r-1_{f}$ then

$c(r, 2r-1-k)^{-1}=c(r, 2r-1)^{-1}2L(2)L(4) \ldots L(2[\frac{k}{2}])$ .

Finally, for $\ell\geq 1$ ,

$c(r, 2r-1+l)=-c(r, 2r-1) \frac{1}{2}\kappa L(3)L(5)\ldots L(2[\frac{l-1}{2}]+1)$ .

THEOREM, [17]. (spherical second term identity) Let $s_{0}=r- \rho_{n}=r-\frac{n+1}{2}=\frac{k}{2}$ for $k\in$

$Z>0$ , Note that then $\mathcal{E}^{*}(g, s;r, n)$ is associated to $O(r, r)=O(V_{r,r})$ while $\mathcal{E}^{*}(g)s;r-$

$k,$ $n$ ) is $ass$ociated to the complement$arysp$ace $O(r-k, r-k)=O(V_{r-k,r-k})$ . Let

$D(g, s;r, n)= \mathcal{E}^{*}(g, s;r, n)+\beta(s;r, n)\gamma(s\cdot, r, n)\mathcal{E}^{*}(s-\frac{k}{2}\cdot r-k, n)$ ,

$wl_{1}ere$

$\beta(s;r, n)=\{\begin{array}{l}L(2s)L(2s-2)\ldots L(2s-2[\frac{k-1}{2}])L(2s-1)L(2s-3)\ldots L(2s-2[\frac{k}{2}]+1)\end{array}$ $lifrfrisodd\dot{l}seVen$

an$d$ with $\gamma(s;r, n)$ defin$ed$ inductively by $\gamma(s;r, 2r-1)=1$ and

$\gamma(s)r,$ $n$ ) $= \gamma(s-\frac{1}{2};r-1, n-1)\{\begin{array}{l}L(s-\frac{r-1}{2}-k+1)L(s-\frac{r-1}{2}+k)\end{array}$ $ifnisoddifniseven$

Then $D(g, s;r, n)$ has at most a simple pole at $s= \frac{r-1}{2}$ an $d$ , writin$g$

$E^{*}(g, s, \Phi^{0})=\frac{A_{-1}(g,\Phi^{0})}{s-s_{0}}+A_{0}(g, \Phi^{0})+O(s-s_{0})$ ,

we have

$A_{0}(g, \Phi^{0})=c(r, n)RD(g)s=\frac{rarrow 1es}{2}s;r,$
$rz$ ),

where $c(r, n)$ is as in the previous Theorem.

REMARK: The main idea here is that $\mathcal{E}^{*}(g, s, ?)n)$ has a Laurent expansion (III.3.3), with
a second order term which generates a copy of $\Pi_{\gamma\iota}(V_{r-k,r-k})$ in $A(G)$ , while $\mathcal{E}^{*}(g,$ $s;r-$
$k,$ $n$ ) has only a simple pole at $s= \frac{r-k-1}{2}$ whose residue also generates a copy of
$\Pi_{n}(V_{r-k,r-k})$ . The factor $\beta(s;r, n)\gamma(s;r, n)$ also has a simple pole at $s= \frac{r-1}{2}$ and
has been taken so that the second order terms cancel in the sum $D(g, s,\cdot r, n)$ . Miracu-
lously, the given choice exactly expresses the second term in the Laurent expansion of the

Siegel Eisenstein series. Details of the proof will appear elsewhere.

Much work remains to be done to establish a second term identity in the general case.
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IV.1. Applications to poles of Langlands L-functions.

The rather complete information given in the previous sections about the poles of the

Siegel Eisenstein series yields corresponding information about the poles of the standard

Langlands L-functions for automorphic representations of the symplectic group.

First recall that the L-group of $G=Sp(n)$ is $LG=SO(2n+1, \mathbb{C})\cross W_{F}$ where
$W_{F}$ is the global Weil group of $F$ . Let $r:^{L}G-GL(2n+1, \mathbb{C})$ be the representation

which is the standard representation on $C^{2n+1}$ on the first factor and is trivial on $W_{F^{\urcorner}}$ .

If $\pi\simeq\otimes_{v}\pi_{v}$ is an irreducible cuspidal automorphic representation of $G(A)$ , then for all

places $v$ outside of a finite set $S=S(7\ulcorner)$ , which contains all of the archimedean places,

the local component $\pi_{v}$ of $\pi$ is the spherical constituent of an unramified principal series
representation. Such an unramified principal series representation is determined by its

Satake parameter $t_{v}\in LG$ .

More precisely, let

(IV.I.I) $B=$ { $nm(a)\in P|$ such that $a$ is upper triangular },

and write $B=TU$ where $U$ is the unipotent radical and

(IV.1.2) $T=$ { $m(\alpha)|a=$ diagonal }.

For any any non-archimedean place $v$ of $F$ and for any

(IV.1.3) $t_{v}^{0}=diag(q_{v}^{-\lambda_{1}}, \ldots, q_{v}^{-\lambda_{n}}, 1, q_{v}^{\lambda_{1}}, \ldots, q_{v}^{\lambda_{n}})\in SO(2n+1, \mathbb{C})$

where $\lambda_{j}\in \mathbb{C}$ , the induced representation $Ind_{B_{v}}^{G_{v}}(\lambda)$ is given by the right multiplication

action of $G_{v}$ on the space of smooth functions $f$ on $G_{v}$ such that

(IV.1.4) $f(um(a)g)=|a_{1}|_{v}^{\lambda_{1}+n}|a_{2}|_{v}^{\lambda_{2}+n-1}\ldots|a_{n}|_{v}^{\lambda_{n}+1}f(g)$ ,

where $\alpha=diag(\alpha_{1}, \ldots, a_{n})\in GL(n, F_{v})$ . Since $G_{v}=B_{v}K_{v}$ this representation has a

unique $K_{v}$ invariant vector $f_{v}^{0}$ determined by the condition $f_{v}^{0}(k)=1$ for all $k\in K_{v}$ .

The the spherical constituent of $Ind_{B_{v}}^{G_{v}}(\lambda)$ is the unique irreducible constituent containing
$f_{v}^{0}$ . Let

(IV.1.5) $t_{v}=t_{v}^{0}\cross Fr_{v}\in LG_{v}=SO(2n+1, \mathbb{C})\cross W_{F_{v}}$ ,
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where $Fr_{v}$ is a Frobenius element of $W_{F_{v}}$ .

The local Euler factor attached to $\pi_{v}$ is then

(IV.1.6) $L_{v}(s, \pi_{v}, r)=\det(1-q_{v}^{-s}r(t_{v}))^{-1}$

Note that it has degree $2n+1$ . The standard Langlands L-function of $\pi$ is the

(IV.1.7)
$L^{S}(s, \pi, r)=\prod_{v\not\in S}L_{v}(s, \pi_{v}, r)$

.

A little more generally, if $\chi$ is a character of $F^{\cross}fl/F^{\cross}$ , let $S=S(\pi, \chi)$ be the union of
$S(\pi)$ with the set of non-archimedean places $v$ at which $\chi$ is ramified. Then, for $v\not\in S$ ,

define the twisted Euler factor

(IV.1.8) $L_{v}(s, \pi_{v}, \chi_{v}, r)=\det(1-q_{v}^{-s}\chi_{v}(\varpi_{v})r(t_{v}))^{-1}$ ,

with $\varpi_{v}$ a generator of the maximal ideal in the ring of integers $\mathcal{O}_{v}$ of $F_{v}$ , and define
the L-function

(IV.1.9)
$L^{S}(s, \pi, \chi, r)=\prod_{v\not\in S}L_{v}(s, \pi_{v}, \chi_{v}, r)$

.

The meromorphic analytic continuation and functional equation of $L^{S}(s,’\tau)\chi,$ $r$ ) can
be obtained by the ‘doubling method’ integral representation of Piatetski-Shapiro and
Rallis, $[30,31]$ and also $[4,8]$ , which we now briefly recall. Let $\tilde{G}=Sp(2n)$ and let $\iota_{0}$ be
the embedding $\iota_{0}$ : $G\cross Garrow\tilde{G}$ given by

(IV.1.10) $\iota_{0}(g_{1}, g_{2})=(\begin{array}{llll}a_{1} b_{1} a_{2} b_{2}c_{1} c_{2} d_{1} d_{2}\end{array})$ ,

where $g_{i}=(\begin{array}{ll}a_{i} b_{i}c_{i} d_{i}\end{array})\in G$ . For $g\in G$ , let

(IV.I.II) $g^{\vee}=(1_{n} -1_{n})g(1_{n} -1_{n})$
)

and let

(IV.1.12) $\iota(g_{1}, g_{2})=\iota_{0}(g_{1}, g_{2}^{\vee})$ .
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Also let

(IV. 1.13) $\delta=(\begin{array}{llll}0 0 -\frac{1}{2} \frac{1}{2}\frac{1}{2} \frac{1}{2} 0 01 -1 0 00 0 1 1\end{array})\in\tilde{G}$ .

Choose $f_{1}$ and $f_{2}\in\pi$ such that $f_{i}$ is invariant under $K_{v}$ for all $v\not\in S$ . Also choose
$\Phi(s)=\otimes_{v}\Phi_{v}(s)\in I_{2n}(s, \chi)$ such that $\Phi_{v}(s)=\Phi_{v}^{0}(s)$ , the normalized $\tilde{K}_{v}=Sp(2n, \mathcal{O}_{v})$

invariant vector in $I_{2n,v}(s, \chi_{v})$ for all $v\not\in S$ . Let $E^{*}(g, s, \Phi)$ be the normalized Siegel
Eisenstein series on $\tilde{G}$ (fl) and consider the integral
(IV. 1.14)

$Z^{*}(s, f_{1}, f_{2}, \Phi)$
$;= \int_{(G(F)\backslash G(R))\cross(G(F)\backslash G(R))}f_{1}(g_{1})\overline{f_{2}(g_{2})}E^{*}(\iota(g_{1)}g_{2}), s\Phi)dg_{1}dg_{2}$ .

The main identity of the doubling method [30] then asserts that

(IV.1.15) $Z^{*}(s, f_{1}, f_{2}, \Phi)=L^{S}(s+\frac{1}{2}, \pi, \chi, r)<\pi_{S}(\Phi(s))f_{1},$ $f_{2}>$ ,

where $\Phi_{S}(s)=\otimes_{v\in S}\Phi_{v}(s)$ is a function on $G_{S}=prod_{v\in S}G_{v}$ , and

(IV.1.16) $<\pi_{S}(\Phi(s))f_{1},$ $f_{2}>= \int_{G_{S}}<\pi(g)f_{1},$ $f_{2}>\Phi_{S}(\delta\cdot\iota(g, 1),$ $s$ ) $dg$ .

Note that the shift to $s+ \frac{1}{2}$ in the L-function corresponds to the fact tha our Eisenstein
series have $s=0$ as their center of symmetry while the Langlands L-functions have
functional equations relating $s$ and 1 $-s$ . 6From (IV.1.14) it is clear that the poles
of $Z^{*}(s, f_{1}, f_{2}, \Phi)$ areis from the poles of $E^{*}(g, s, \Phi)$ . We can thus apply our previous
results, noting that the Eisenstein series in question is on $\tilde{G}$ (Ak) rather than on $G(A)$ .

We normalize $\chi$ by fixing an isomorphism $F_{R}^{\cross}/F^{\cross}\simeq F_{A}^{1}/F^{\cross}\cross \mathbb{R}_{+}^{\cross}$ and assuming that
$\chi$ is trivial on the $\mathbb{R}_{+}^{\cross}$ factor. Then we have a precise description of the location of the
poles of $L^{S}(s, \pi, \chi, r)$ .

THEOREM, [23].

(i) If $\chi^{2}\neq 1_{2}$ then $L^{S}(s, \pi, \chi, r)$ is entire.
(ii) If $\chi^{2}=1$ , then $L^{S}(s, \pi, \chi, r)$ has at most simple poles, an $d$ these can oIlly

occur at the points $s \in\{1,2, \ldots, [\frac{n}{2}]+1\}$ .
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Next we interpret the poles which occur. Let $V$ be a quadratic spce over $F$ of

dimension $m$ and character $\chi_{V}$ . Let $H=O(V)$ as before and, for an irreducible
automorphic cuspidal representation $\pi$ of $G(A)$ , as above, let $\Theta(\pi)$ denote the space of

automorphic forms on $H(A)$ given by the theta integrals

(IV.1.17) $\theta(h;f, \varphi)=\int_{G(F)\backslash G(\hslash)}f(g)\theta(g)h;\varphi)dg$

where $f\in\pi\subset A(G)$ and $\varphi\in S(V(fl)^{n})$ is K-finite and $K_{H}$ -finite. Here $K_{H}$ is some
fixed maximal compact subgroup of $H(A)$ .

THEOREM, [23]. Let $\pi$ an$d\chi$ be as before, with $\chi^{2}=1$ . Suppose that $L^{S}(s, \pi, \chi, r)$

has a pole at the poin $ts=s_{0}\in\{1,2, \ldots , [\frac{n}{2}]+1\}$ . Let $m=2n+2-2s_{0}$ . $Tl1$ en the$re$

exists aquadratic $sp$ace $V$ over $F$ with $\dim_{F}V=m$ and $\chi_{V}=\chi$ such that $\Theta_{V}(\pi)\neq 0$ .

Thus the existence of a pole of $L^{S}(s, \pi, \chi, r)$ at $s_{0}$ indicates the non-triviality of a

theta lift of $\pi$ . The further to the right the pole occurs, the smaller the space $V$ . For

example, if $n$ is even, the rightmost possible pole occurs at $s_{0}= \frac{n}{2}+1$ , and, if such a

pole does occur, then $\pi$ has a non-trivial theta lift $\Theta_{V}(\pi)$ for some space $V$ of dimension
$n$ . This result was proved earlier by Piatetski-Shapiro and Rallis [32], using Andrianov’s
method $[1,2]$ . By a result of Li [26], $\Theta_{V’}(\pi)$ must be zero for all quadratic spaces $V’$ of

dimension less than $n$ .

The proof of this last result is based on the following:

PROPOSITION, [23]. Let $V$ be a $qu$adratic $sp$ace over $F$ of dimeIlsioIl $m$ with $m\leq 2n$ .

(i) Suppose $tl_{1}atV$ is aniso tropic and let $\overline{I}:\Pi_{2n}(V)-A(\tilde{G})$ be the in tert $tVlJ1$ in$g$

map given by $(\Pi.2.4)$ . Then, for $\varphi=\varphi_{1}\otimes\overline{\varphi}_{2}\in S(V(fl)^{2n})$ ,

(IV.1.18) $\int_{[G\cross G]}f_{1}(g_{1})\overline{f_{2}(g_{2})}\overline{I}(\iota(g_{1}, g_{2}),$ $\varphi$ ) $dg_{1}dg_{2}$

$= \int_{H(F)\backslash H(l1)}\theta(h;f_{1)}\varphi_{1})\theta(h;f_{2}\varphi_{2})dh$ .

Here $[G\cross G]=(G(F)\backslash G(A))\cross G(F)\backslash G(A))$ .

(ii) Suppose that $V$ is isotropic an $d$ le $t\overline{B}_{-1}$ : $\Pi_{2n}(V)arrow A(\tilde{G})$ be the intertwin$ing$
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map given by (III.3.4). Then, for $\varphi=\varphi_{1}\otimes\overline{\varphi}_{2}\in S(V(A)^{2n})$ ,

$(IV.1.19)$ $\int_{[G\cross G]}f_{1}(g_{1})\overline{f_{2}(g_{2})}\overline{B}_{-1}(\iota(g_{1)}g_{2}), \varphi)dg_{1}dg_{2}$

$=c \int_{H(F)\backslash H(R)}(\theta(h;f_{1}, \varphi_{1})\overline{\theta(h;f_{2}\varphi_{2})})*z’dh$ ,

where $z’\in\delta(\mathfrak{h}_{v})$ is the elem$ent\rangle$ defined in the Theorem of section $\Pi.2$ , used to
$r$egularize the theta in $t$egral.

This result relates that residues of $Z^{*}(s, f_{1)}f_{2)}\Phi)$ to the (regularized) Petersson inner
products of theta lifts $\theta(h;f, \varphi)$ . This relation–Rallis’ inner product formula, [34] –was
the starting point of the work of Piatetski-Shapiro and Rallis on the $\zeta doubling$ method’.

IV.2 Translation to classical language.

It might be useful to explain the relation between the adelic Eisenstein series $E(g, s, \Phi)$

on $G(A)$ and the classical Eisenstein series of Siegel, [38,37,15,7,5]. For this it is simplest
to work over $F=Q$ .

Note that, by the strong approximation theorem,

(IV.2.1) $G(fl)=G(Q)G(\mathbb{R})K’$

where $K’$ is any compact open subgroup of $G(fl_{f})$ . We will usually take $K’$ to be a
subgroup of finite index in $K= \prod_{p}K_{p}$ where $K_{p}=Sp(n, Z_{p})$ . Note that we are slightly
changing the notation of the previous sections. Let

(IV.2.2) $\Gamma=G(Q)\cap(G(\mathbb{R})K)=Sp(n, Z)$

and let

(IV.2.3) $\Gamma=G(Q)\cap(G(\mathbb{R})K’)$ .

Let

(IV.2.4) $\Phi(s)=\Phi_{\infty}(s)\otimes\Phi_{j}(s)$

with

(IV.2.5) $\Phi_{f}(s)=\otimes_{p}\Phi_{p}(s)$
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be a standard (restriction to $K$ is independent of s) factorizable section. We assume
that $\Phi_{f}(s)$ , the finite part of $\Phi(s)$ is invariant under $K’$ (as it must be for a sufficiently

small $K’$ ); and thus the Eisenstein series $E(g, s, \Phi)$ , which is left G(Q)-invariant and

right $K’$ -invariant, is determined by its restriction to $G(\mathbb{R})$ , which we view as embedded

in $G(A)$ via $g_{\infty}\mapsto(g_{\infty}, 1, \ldots)$ .

Note that

(IV.2.6) $P(Q)\backslash G(Q)\simeq(P(Q)\cap\Gamma)\backslash \Gamma$ .

Thus, we have

(IV.2.7)
$E(g_{\infty}, s, \Phi)=\sum_{\gamma\in P(\mathbb{Q})\cap\Gamma}\Phi_{\infty}(\gamma g_{\infty})\Phi_{f}(\gamma)$

,

so that we must determine the two factors $\Phi_{f}(\gamma)$ and the function $\Phi_{\infty}(\gamma g_{\infty})$ . Note that

the function $\Phi_{f}(\gamma, s)$ depends only on the restriction of $\Phi_{f}(s)$ to $K$ , and that the data
$\Phi_{f}(s)$ and $\Phi_{\infty}(s)$ can be varied independently.

Assume that $N\in Z_{>0}$ is such that $K’= \prod_{p|N}K_{p}’\cross\prod_{p\{N}K_{p}$ and that $\Phi_{p}(s)=$

$\Phi_{p}^{0}(s)$ , the normalized spherical section of (II.1.10), for all $p$ prime to $N$ . Then

(IV.2.8)
$\Phi_{f}(\gamma)=\prod_{p|N}\Phi_{p}(\gamma)$

.

Here the functions $\phi_{p}=\Phi_{p}$ : $K’\backslash Karrow \mathbb{C}$ can be chosen arbitrarily. Non-trivial examples

in the case $n=3$ can be found in section 3 of [9].

Recall that $G_{\infty}=Sp(n, \mathbb{R})=P(\mathbb{R})K_{\infty}$ where $K_{\infty}\simeq U(n)$ as in section I.1. In

particular, $\Phi_{\infty}(s)$ is determined by its restriction to $K_{\infty}$ . The simplest possible choice

of $\Phi_{\infty}(s)$ will be the function determined by

(IV.2.9) $\Phi_{\infty}^{t}(k, s)=(\det k)^{t}$

where $k\in U(n)$ corresponds to $k\in Sp(n, \mathbb{R})$ . For this choice of $\Phi_{\infty}(s)$ , the function
$g_{\infty}\mapsto E(g_{\infty}, s, \Phi)$ is an eigenfunction for the right action of $K_{\infty}$ , so it suffices to describe
its values on $P(\mathbb{R})$ . Write $g=n(x)m(v)\in P(\mathbb{R})$ , and set

(IV.2.10) $z=x+iy=x+i^{t}vv=g(i\cdot 1_{n})\in \mathfrak{H}_{n}$ ,
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the Siegel space of genus $n$ . Let $\gamma=(\begin{array}{ll}a bc d\end{array})$ , and let $\gamma g=nm(\alpha)k$ for the Iwasawa

decomposition, with $\alpha\in GL^{+}(n, \mathbb{R})$ , i.e., with $\det\alpha>0$ . Then we have

(IV.2.11) $(0,1_{n})\cdot\gamma g(\begin{array}{l}1_{n}i\cdot 1_{n}\end{array})=i\cdot\alpha k$ .

On the other hand,

(IV.2.12) $(0,1_{n})\cdot\gamma g(\begin{array}{l}1_{n}i\cdot 1_{n}\end{array})=i\cdot(c\overline{z}+d)^{t}v^{-1}$ ,

so that

(IV.2.13) $\det(\alpha)=\det(v)\cdot|\det(cz+d)|^{-1}$

and

(IV.2.14) det(k) $= \frac{\det(c\overline{z}+d)}{|\det(cz+d)|}$

This yields:

$\Phi_{\infty}^{\ell}(\gamma g, s)=\det(v)^{s+\rho_{n}}|\det(cz+d)|^{-s-\rho_{n}-t}\det(c\overline{z}+d)^{t}$

$=\det(y)^{\frac{1}{2}(s+\rho_{n})}\det(cz+d)^{-\frac{1}{2}(s+\rho_{n}+t)}\det(c\overline{z}+d)^{-\frac{1}{2}(s+\rho_{n}-t)}$

(IV.2.15) $=\det(y)^{\iota_{(s+\rho_{n})}}2\det(cz+d)^{-t}|\det(cz+d)|^{-s-\rho_{n}+l}$ .

More generally, since $\Phi_{\infty}(s)$ is standard and $K_{\infty}$ -finite, we may write

(IV.2.16) $\Phi_{\infty}(k, s)=\phi(k)$

for smooth function $\phi$ on $U(n)$ which is left invariant under $SO(n)\subset U(\uparrow x)$ . Then,

taking $g$ and $z$ as in (IV.2.9),

(IV.2.17) $\Phi_{\infty}(\gamma g, s)=\det(v)^{s+\rho_{n}}\cdot|\det(cz+d)|^{-s-\rho_{n}}\cdot\phi(k)$ ,

where $k=k(\gamma, z)$ is as in (IV.2.11). To find $k(\gamma, z)$ more explicitly, observe that if we

set

(IV.2.18) $X=i^{t}\alpha^{-1}k=i\cdot(c\overline{z}+d)^{t}v^{-1}$ ,
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as in (IV.2.12), then

(IV.2.19) $\overline{X}^{-1}=i^{t}k^{t}\alpha$ .

Thus

$\overline{X}^{-1}X=-{}^{t}k\cdot k$

(IV.2.20) $=-{}^{t}v(cz+d)^{-1}(c\overline{z}+d)^{t}v^{-1}$ ,

and so

(IV.2.21) $t$ kk $=^{t}v(cz+d)^{-1}(c\overline{z}+d)^{t}v^{-1}$

Note that, by left $SO(n)$ invariance, the function $\phi$ depends only on $t$ kk and on det(k).

Thus, in general,

(IV.2.22)
$E(g, s, \Phi)=\det(y)^{\frac{1}{2}(s+\rho_{n})}\sum_{\gamma\in\Gamma_{\infty}\backslash \Gamma}|\det(cz+d)|^{-s-\rho_{n}}\phi_{\infty}(k(\gamma, z))\prod_{p|N}\phi_{p}(\gamma)$

.

We will not continue the discussion of the general case.

Suppose, now, that $N=1$ . Note that the character $\chi$ must be everywhere unramified
and hence trivial, since $F=Q$ . Then, for $g$ and $z$ related by (IV.2.10) and for $\Phi_{\infty}(s)=$

$\Phi_{\infty}^{t}(s)$ , we have

$E(g, s, \Phi)=\det(y)^{t}\sum_{\Gamma_{\infty}\backslash \Gamma}\det(cz+d)^{-t}|\det(cz+d)|^{-s-\rho_{n}+t}\det(y)^{\frac{1}{2}(s+\rho_{n}-t)}$

(IV.2.23)
$=\det(y)^{t}E_{Classica1}(z, s+\rho_{n}-l)$ .

Here

(IV.2.24)
$E_{Classica1}(z, s)= \sum_{(c,d)}\det(cz+d)^{-t}|\det(cz+d)|^{-s}$

,

is the most classical Siegel Eisenstein series of weight $\ell$ .

It is amusing to determine when this level 1 (i.e., $N=1$ ) Eisenstein series is mco-
herent, say at the point $s=0$ . We assume that $n>1$ is odd and set $m=n+1=2r$ .
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Recall that $\chi=1$ . Also recall that, in the non-archimedean case, the local (unitarizable)

induced representations decompose as:

(IV.2.25) $I_{n,p}(0)=R_{n,p}(V_{r,r})\oplus R_{n,p}(V_{B})$ ,

where $V_{rr,\}}$ is the split space and $V_{B}$ is the ‘quaternionic, space (i.e., the direct sum of

the norm form from the quaternion algebra $B=B_{p}$ over $Q_{p}$ and $V_{r-2,r-2}$ . In the

archimedean case:

$(IV.2.26)$ . $I_{n,\infty}(0)=R_{n}(m, 0)\oplus R_{n}(m-2,2)\oplus\cdots\oplus R_{n}(r, r)\oplus\cdots\oplus R_{n}(0, m)$ ,

if $m\equiv 0mod 4$ , and

(IV.2.27) $I_{n,\infty}(0)=R_{n}(m-1,1)\oplus R_{n}(m-3,3)\oplus\cdots\oplus R_{n}(r, r)\oplus\cdots\oplus R_{n}(1, m-1)$,

if $m\equiv 2mod 4$ .

Note that $R_{n,p}(V_{r,r})$ contains the spherical vector $\Phi_{p}^{0}(0)$ , so that our local components

lie in this subspace for every finite place. Since the Hasse invariant of $V_{r,r}$ is

(IV.2.28) $\epsilon_{p}(V_{r,r})=(-1, -1)\frac{r(r-1)}{p2}$ ,

we see that our global section will be incoheren$\prime t$ precisely when $\Phi_{\infty}^{t}(0)$ lies in some $R_{n}(p, q)$

for which

(IV.2.29) $\epsilon_{\infty}(V_{p,q})=(-1)^{1}\zeta_{L_{2}}-\lrcorner 1=-\epsilon_{\infty}(V_{r,r})=-(-1)\frac{r(r-1)}{2}$

Note that the condition $\chi_{\infty}=1$ implies that $\ell$ is even. In the range

(IV.2.30) $-r\leq\ell\leq r$ $p$ even,

the vector

(IV.2.31) $\Phi_{\infty}^{t}(0)\in R_{n}(r+\ell, r-\ell)$ .

Thus, in this range, (IV.2.22) becomes

(IV.2.32) $(-1) \frac{(r-\ell)(r-l-1)}{2}=-(-1)\frac{r(r-1)}{2}$ ,
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i.e., simply $P\equiv 2mod 4$ , since $\ell$ is even. On the other hand, if $\ell\geq m$ (resp. $l\leq-m$ ),

then

(IV.2.33) $\Phi_{\infty}^{t}(0)\in\{\begin{array}{l}R_{n}(m,0)(resp.R_{n}(0)m))R_{n}(m-1,1)(resp.R_{n}(1,m-1))\end{array}$ $ifm\equiv 2ifm\equiv 0mod 4mod 4$

.

PROPOSITION. Consider the le$vel1$ Eisenstein series $E(g, s, \Phi^{t})$ of (even) weight $\ell$ at

$s=0$ .

(i) If $-r\leq l\leq r_{2}$ then $E(g\rangle s, \Phi^{t})$ is coherent if $\ell\equiv 0mod 4$ and incoherent if
$l\equiv 2mod 4$ .

(ii) If $p\geq r$ , then $E(g, s, \Phi^{\ell})$ is $coh$ eren $t$ if $r\equiv 0,1mod 4$ an $d$ in coheren $t$ if

$r\equiv 2,3mod 4$ .

(iii) If $\ell\leq-r$ , then $E(g, s, \Phi^{t})$ is $coh$erent if $r\equiv 0,3mod 4$ an $d$ incoherent if

$r\equiv 1,2mod 4$ .

In particular, assume that $m=n+1\equiv 0mod 4$ , and take $p=r= \frac{n+1}{2}$ so that
$\Phi_{\infty}^{t}(0)\in R_{n}(m, 0)$ . If $n\equiv 7mod 8$ , then $\ell\equiv 0mod 4$ and $E(g, s, \Phi^{t})$ is coherent at

$s=0$ . Its value $E(g, 0, \Phi^{t})$ is a non-zero holomorphic Siegel Eisenstein series which is
expressible as the usual average over classes in a genus of positive definite quadratic forms

of dimension $m=n+1$ and character $\chi_{V}=1$ . On the other hand, if $n\equiv 3mod 8$ ,

then $l\equiv 2mod 4$ and $E(g, s, \Phi^{t})$ is incoherent at $s=0$ . The explicit calculation of
$E’(g, 0, \Phi^{t})$ is then of interest! The case $n=3$ , and its generalizations to arbitrary $N$

play a key role in $[9,12]$ and the generalization of [10] mentioned in \S 12 of [9].

As another example of an incoherent Eisenstein series, suppose that $n=2,$ $N=1$

(so $\chi=1$ )) and $P=2$ , so that we are considering the level 1 Eisenstein series of weight
2 and genus 2. In this case, we consider the point $s_{0}=2- \frac{3}{2}=\frac{1}{2}$ . Then,

(IV.2.34) $I_{2,p}( \frac{1}{2})=R_{2,p}(V_{2,2})+R_{2,p}(V_{B})$ ,

where the sum is no longer direct. However $\Phi_{p}^{0}(\frac{1}{2})$ lies in $R_{2,p}(V_{2,2})$ and not in $R_{2,p}(V_{B})$ .

The product of the non-archimedean Hasse invariants of the spaces $V_{2,2}$ must equal the

archimedean Hasse invariant $\epsilon_{\infty}(V_{2,2})|=(-1, -1)_{R}=-1$
. On the other hand,

(IV.2.35) $I_{2,\infty}( \frac{1}{2})=R_{2,\infty}(2,2)\supsetneqq R_{2,\infty}(4,0)+R_{2,\infty}(0,4)$ ,

and the vector $\Phi_{\infty}^{2}(\frac{1}{2})$ lies in the submodule $R_{2,\infty}(4,0)$ . The global section is not literally

incoherent in the sense of section II.1, since it lies in the space $\Pi_{2}(V_{2,2})$ . However, the
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complementary space $V_{0}$ to $V_{2,2}$ isjust the split binary space $V_{1,1}$ , and our section $\Phi^{2}(\frac{1}{2})$

lies in the kernel of the map $\Pi_{2}(V_{2,2})arrow\Pi_{2}(V_{1,1})$ of (III.1.7). Thus, by (ii) of the second
Theorem of section III.1, $E(g, s, \Phi^{2})$ is holomorphic at $s=$ ) $.$ The same remarks apply

if we take any $\Phi_{\infty}(\frac{1}{2})\in R_{2,\infty}(4,0))$ so that there is a map

$\Pi_{2}(C)=R_{2,\infty}(4,0)\otimes(\otimes_{p}R_{2,p}(V_{2,2}))arrow A(G)$

(IV.2.36) $\Phi\mapsto E(g, \frac{1}{2}, \Phi)$ .

This map is only intertwining modulo the image of $\overline{A}_{-1}$ : $\Pi_{2}(V_{1,1})arrow A(G)$ , and thus

we obtain an extension

(IV.2.37) $0arrow\Pi_{2}(V_{1,1})arrow Yarrow\Pi_{2}(C)arrow 0$ ,

where $Y$ is the inverse image in $A(G)$ of the image of $\Pi_{2}(C)$ in $A(G)/Im(\overline{A}_{-1})$ . Note

that the vector $\Phi_{\infty}^{2}(\frac{1}{2})\in R_{2,\infty}(4,0)$ is $\zeta$ holomorphic’, i.e., is killed by the $\overline{\partial}$ operator:

(IV.2.38)
$\overline{\partial}f=\sum_{i}X_{i}f\cdot\omega_{i}$

where the sum is over a basis $X_{i}$ for $P-\subset \mathfrak{g}$ , the antiholomorphic tangent space to $\mathfrak{H}_{2}$

at $i\cdot 1_{2}$ , and $\omega_{i}$ runs over the dual basis for $\mathfrak{p}_{-}^{*}$ . Since $E(g, \frac{1}{2}, \Phi^{2})\in Y$ , we conclude

that

(IV.2.39) $\overline{\partial}E(g, \frac{1}{2})\Phi^{2})\in\Pi_{2}(V_{1_{\gamma}1})\otimes P_{-}^{*}$ .

In fact, the function $E(g, \frac{1}{2}, \Phi^{2})$ has recently been written out explicitly as a Fourier

series by Kohnen [16] and also by Nagaoka [29]. It would be of interest to give an explicit

expression for the binary \langle theta integral’ (cf. section 3.1 of [24]) $\overline{\partial}E(g, \frac{1}{2}, \Phi^{2})$ .

This last example suggests that the definition of incoherent sections in section II.1

ought to be slightly extended in the range $n+1<m\leq 2n$ .

Similar non-trivial extensions

(IV.2.40) $0arrow{\rm Im}(A_{0})arrow Yarrow\Pi_{n}(C)arrow 0$

can be constructed by considering the map
$E’(0)$ : $\Pi_{n}(C)$ $arrow$ $A(G)$

(IV.2.41) 1 1
$\overline{E’(0)}$ : $\Pi_{n}(C)$ $(-t$ $A(G)/Im(A_{0})$

where $A_{0}$ is as in (III.1.10), and $Y$ is the inverse image in $A(G)$ of the image of $\overline{E’(0)}$ .

The non-triviality follows from the non-vanishing of $\overline{E’(0)}$ together with (ii) of the last

Theorem in section II.2. Perhaps such extensions have some motivic meaning?
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