Three-dimensional hypersurface purely elliptic singularities of (0,1)-type

渡边公夫

Kimio Watanabe
Institute of Mathematics
University of Tsukuba
Ibaraki, 305, Japan

Introduction.

In the theory of normal two-dimensional singularities, simple elliptic singularities and cusp singularities are regarded as the next most reasonable class of singularities after rational double points. They are characterized as two-dimensional purely elliptic singularities of (0,1)-type and of (0,0)-type, respectively. What are natural generalizations in three-dimensional case of simple elliptic singularities. notion of a simple K3 singularity was defined in (IW1, IW2) as a three-dimesnional isolated Gorenstein purely elliptic singularity of (0,2)-type. A simple K3 singularity is characterized as a normal three-dimensional isolated singularity such that the exceptional set of any Q-factorial terminal modification is a normal K3 surface (see (IW2)). Here we are interested in a three-dimensional hypersurface purely elliptic singularities of (0,1)-type. Let $f \in \mathbb{C}(z_0, z_1, z_2, z_3)$ polynomial which is nondegenerate with respect to its Newton boundary $\Gamma(f)$ in the sense of (V), and whose zero locus X =

(f = 0) in \mathbb{C}^4 has an isolated singularity at the origin $0 \in \mathbb{C}^4$. Then the condition for (X, x) to be a purely elliptic singularity of (0, 1)-type is given by a property of the Newton boundary of $\Gamma(f)$ of f.

In this paper, we classify the principal parts of defining equations, which define three-dimensional hypersurface purely elliptic singularities of (0,1)-type.

1. Preliminaries. In this section, we recall some definitions and results from (I1), (IW2), (W1) and (W2).

First we define the plurigenera δ_m , $m \in \mathbb{N}$, for normal isolated singularities and define purely elliptic singularities. Let (X,x) be a normal isolated singularity in an n-dimensinal analytic space X, and $\pi:(M,E)\longrightarrow(X,x)$ a good resolution. In the following, we assume that X is a sufficiently small Stein neighbourhood of x.

Definition 1.1 ((W1)). Let (X,x) be a normal isolated singularity. For any positive integer m,

$$\delta_{m}(X, x) := \dim_{\mathbb{C}} \Gamma(X-\{x\}, \emptyset(mK)) / L^{2/m}(X-\{x\}),$$

where K is the canonical line bundle on $X - \{x\}$, and $L^{2/m}(X-\{x\})$ is the set of all $L^{2/m}$ -integrable (at x) holomorphic m-ple n-form on $X - \{x\}$.

Then $\delta_{\mbox{\scriptsize m}}$ is finite and does not depend on the choice of a Stein neighbourhood $\,X.\,$

Definition 1.2 ((W1)). A singularity (X,x) is said to be $\text{purely elliptic if} \quad \delta_m = 1 \quad \text{for every} \quad m \in \mathbb{N}.$

When X is a two-dimensional analytic space, purely elliptic singularities are quasi-Gorenstein singularities, i.e., there is a nowhere vanishing holomorphic 2-form on X-(x) (see (88)). But in higher dimension, purely elliptic singularities are not always quasi-Gorenstein (see (IW1)).

In the following, we assume that (X,x) is quasi-Gorenstein. Let $E=\bigcup_i E_i$ be the decomposition of the exceptional set E into its irreducible components, and write

$$K_{\mathbf{M}} = \pi^* K_{\mathbf{X}} + \sum_{\mathbf{i} \in \mathbf{I}} m_{\mathbf{i}} E_{\mathbf{i}} - \sum_{\mathbf{j} \in \mathbf{J}} m_{\mathbf{j}} E_{\mathbf{j}}$$

with $m_i \ge 0$, $m_j > 0$. Ishii (I1) defined the essential part of the exceptional set E as $E_J = \sum_{j \in J} m_j E_j$, and showed that if (X,x) is purely elliptic, then $m_j = 1$ for all $j \in J$.

Definition 1.3 (Ishii(I1)). A quasi-Gorenstein purely elliptic singularity (X,x) is of (0,i)-type if $\text{H}^{n-1}(\text{E}_J, \text{O}_E)$ consists of the (0,i)-Hodge component $\text{H}^{0,i}(\text{E}_J)$, where

$$\mathbb{C} \simeq H^{n-1}(E_J, \mathfrak{O}_E) = Gr_F^0 H^{n-1}(E_J) = \bigoplus_{i=1}^{n-1} H^{0, i}(E_j).$$

n-dimensional quasi-Gorenstein purely elliptic singularities are classified into 2n classes, including the condition that the singularity is Cohen-Macaulay or not.

Next we consider the case where (X,x) is a hypersurface singularity defined by a nondegenerate polynomial $f=\sum a_{\nu}z^{\nu}\in$

 $\mathbb{C}(z_0,z_1,\ldots,z_n)$, and $\mathbf{x}=0\in\mathbb{C}^{n+1}$. Recall that the Newton boundary $\Gamma(f)$ of f is the union of the compact faces of $\Gamma_+(f)$, where $\Gamma_+(f)$ is the convex hull of $\bigcup_{a_{\mathcal{V}}\neq 0}(\nu+\mathbb{R}^{n+1}_0)$ in \mathbb{R}^{n+1} . For any face Δ of $\Gamma_+(f)$, set $f_{\Delta}:=\sum_{\nu\in\Delta}a_{\nu}z^{\nu}$. We say f to be nondegenerate, if

$$\frac{\partial f_{\Delta}}{\partial z_0} = \frac{\partial f_{\Delta}}{\partial z_1} = \cdots = \frac{\partial f_{\Delta}}{\partial z_n} = 0$$

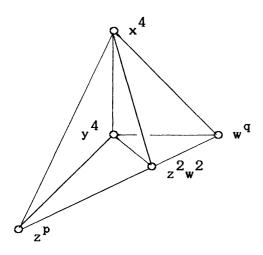
has no solution in $(\mathbb{C}^*)^{n+1}$ for any face Δ . When f is nondegenerate, the condition for (X,x) to be a purely elliptic singularity of (0,i)-type is given as follows:

Theorem 1.4. Let f be a nondegenerate polynomial and suppose $X=\{\ f=0\ \}$ has an isolated singularity at x=0 \in \mathbb{C}^{n+1} .

- (1) (X,x) is purely elliptic if and only if $(1,1,\dots,1) \in \Gamma(f)$.
- (2) Let n=3 and let Δ_0 be the face of $\Gamma(f)$ containing the point (1,1,1,1) in the relative interior of Δ_0 . Then (X,x) is a singularity of (0,1)-type if and only if $\dim_{\mathbb{R}} \Delta_0 = 2$.

Example 1.5. Let f be a polynomial of the form $f = x^4 + y^4 + (zw)^2 + z^p + w^q$ (p, $q \ge 5$). Then { f = 0 } has a purely elliptic singularity of (0,1)-type at the origin in \mathbb{C}^4 . The two-dimensional face, spanned by (4,0,0,0), (0,4,0,0) and (0,0,2,2), contains the point (1,1,1,1) in its interior with respect to the relative topology. The principal parts of the

polynomial is $f_{\Delta_0} = x^4 + y^4 + (zw)^2$. Then the weights of f is $\alpha(f) = (\frac{1}{4}, \frac{1}{4}, \alpha, \frac{1}{2} - \alpha)$, not uniquely determined.



$$f = x^4 + y^4 + (zw)^2 + z^p + w^q$$

 $f_{\Delta_0} = x^4 + y^4 + (zw)^2$

$$\alpha(f) = (\frac{1}{4}, \frac{1}{4}, r, \frac{1}{2} - r)$$

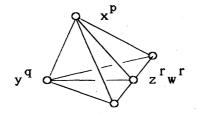
Thus if f is nondegenerate and defines a three-dimendional purely elliptic singularity of (0,1)-type, then f_{Δ_0} is a quasi-homogeneou polynomial of a not uniquely determined set α of weights. Let $\alpha=(\alpha_1,\alpha_2,\alpha_3,\alpha_4)\in\mathbb{Q}^4_+$ be one of such sets of weights. Then $\deg_{\alpha}(\nu):=\sum_{i=1}^4\alpha_i\nu_i=1$ for any $\nu\in\Delta_0$. In particular, $\sum_{i=1}^4\alpha_i=1$, since (1,1,1,1) is always contained in Δ_0 .

 Principal parts of hypersurface purely elliptic singularities of (0,1)-type

In this section, we calculate the principal parts of hypersurface purely elliptic singularities of (0,1)-type defined by nondegenerate polynomials.

In the following can be found the complete list of the principal parts of defining equations:

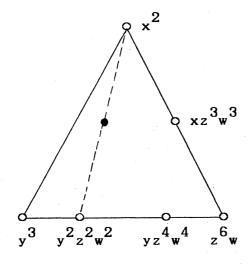
Ι.

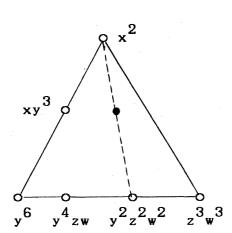


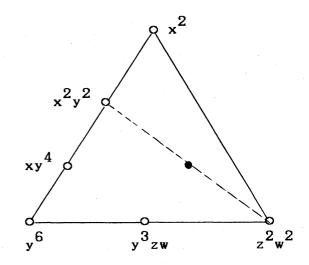
$$\frac{1}{z}r_{\mathbf{W}}r \qquad \frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1 \quad (p \leq q)$$

1.
$$(\frac{1}{2}, \frac{1}{3}, \alpha, \frac{1}{6} - \alpha)$$

1.
$$(\frac{1}{2}, \frac{1}{3}, \alpha, \frac{1}{6} - \alpha)$$
 2. $(\frac{1}{2}, \frac{1}{4}, \alpha, \frac{1}{4} - \alpha)$

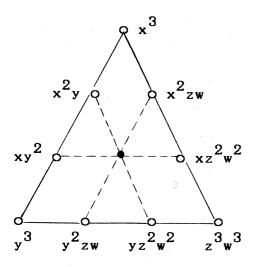


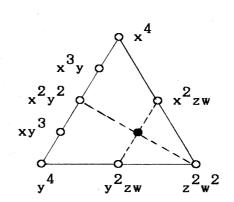


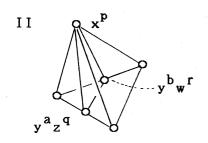


5.
$$(\frac{1}{3}, \frac{1}{3}, \alpha, \frac{1}{3} - \alpha)$$
 6. $(\frac{1}{4}, \frac{1}{4}, \alpha, \frac{1}{2} - \alpha)$

6.
$$(\frac{1}{4}, \frac{1}{4}, \alpha, \frac{1}{2} - \alpha)$$



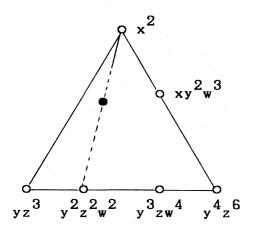


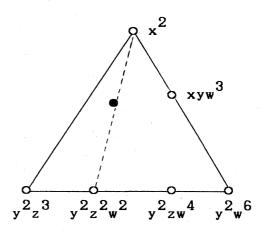


$$y^{b}w^{r}$$
 $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$, $\frac{a}{q} + \frac{b}{r} = 1$ ($a \le b$)

1.
$$(\frac{1}{2}, \alpha, \frac{1-\alpha}{3}, \frac{1-4\alpha}{6})$$

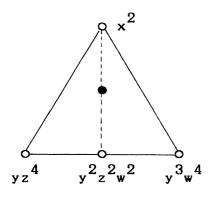
2.
$$(\frac{1}{2}, \alpha, \frac{1-2\alpha}{3}, \frac{1-2\alpha}{6})$$



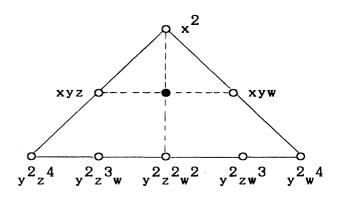


3.
$$(\frac{1}{2}, \alpha, \frac{1-\alpha}{4}, \frac{1-3\alpha}{4})$$

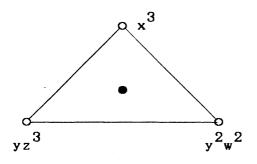
3.
$$(\frac{1}{2}, \alpha, \frac{1-\alpha}{4}, \frac{1-3\alpha}{4})$$
 4. $(\frac{1}{2}, \alpha, \frac{1-2\alpha}{4}, \frac{1-2\alpha}{4})$



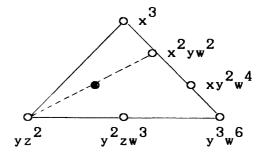
5.
$$(\frac{1}{3}, \alpha, \frac{1-\alpha}{3}, \frac{1-2\alpha}{3})$$

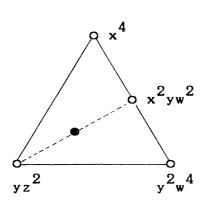


5.
$$(\frac{1}{3}, \alpha, \frac{1-\alpha}{3}, \frac{1-2\alpha}{3})$$
 6. $(\frac{1}{3}, \alpha, \frac{1-\alpha}{2}, \frac{1-2\alpha}{6})$

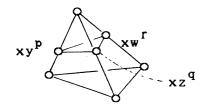


7.
$$(\frac{1}{4}, \alpha, \frac{1-\alpha}{2}, \frac{1-2\alpha}{4})$$





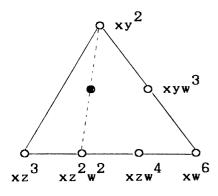
III

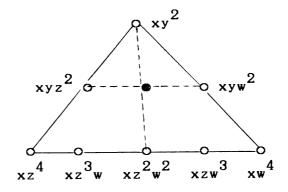


$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$$
 ($p \le q \le r$)

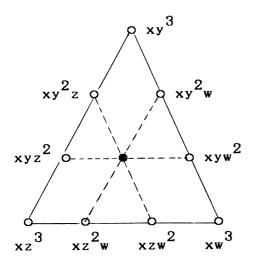
1. (
$$\alpha$$
, $\frac{1-\alpha}{2}$, $\frac{1-\alpha}{3}$, $\frac{1-\alpha}{6}$) 2. (α , $\frac{1-\alpha}{2}$, $\frac{1-\alpha}{4}$)

2. (
$$\alpha$$
, $\frac{1-\alpha}{2}$, $\frac{1-\alpha}{4}$, $\frac{1-\alpha}{4}$)

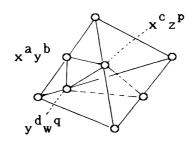




3. (
$$\alpha$$
 , $\frac{1-\alpha}{3}$, $\frac{1-\alpha}{3}$, $\frac{1-\alpha}{3}$)

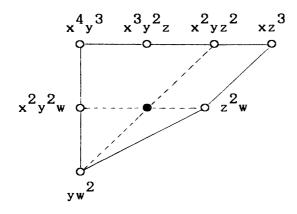


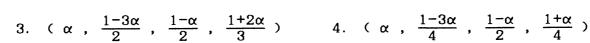
ΙV

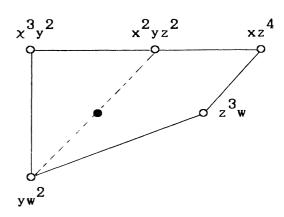


1. (
$$\alpha$$
 , $\frac{1-4\alpha}{3}$, $\frac{1-\alpha}{3}$, $\frac{1+2\alpha}{3}$

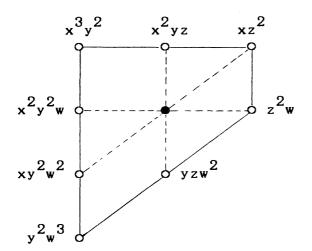
1.
$$(\alpha, \frac{1-4\alpha}{3}, \frac{1-\alpha}{3}, \frac{1+2\alpha}{3})$$
 2. $(\alpha, \frac{1-3\alpha}{2}, \frac{1-\alpha}{4}, \frac{1-3\alpha}{4})$

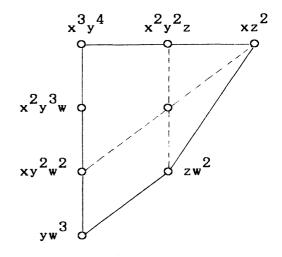






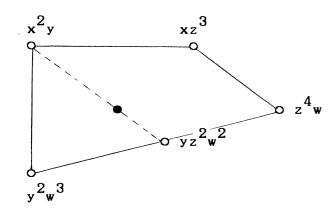
4.
$$(\alpha, \frac{1-3\alpha}{4}, \frac{1-\alpha}{2}, \frac{1+\alpha}{4})$$

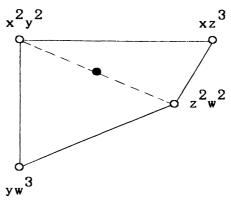




5.
$$(\alpha, 1-2\alpha, \frac{1-\alpha}{3}, \frac{4\alpha-1}{3})$$
 6. $(\alpha, \frac{1-2\alpha}{2}, \frac{1-\alpha}{3}, \frac{1+2\alpha}{6})$

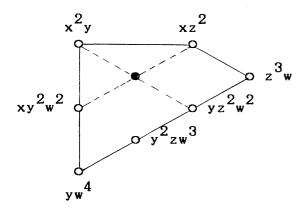
6.
$$(\alpha, \frac{1-2\alpha}{2}, \frac{1-\alpha}{3}, \frac{1+2\alpha}{6})$$

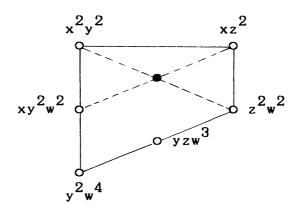




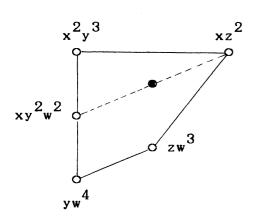
7. (
$$\alpha$$
, 1-2 α , $\frac{1-\alpha}{2}$, $\frac{3\alpha-1}{2}$) 8. (α , $\frac{1-2\alpha}{2}$, $\frac{1-\alpha}{2}$, $\frac{\alpha}{2}$)

8.
$$(\alpha, \frac{1-2\alpha}{2}, \frac{1-\alpha}{2}, \frac{\alpha}{2})$$

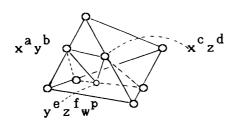




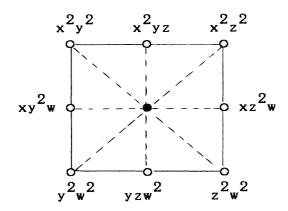
9. (
$$\alpha$$
, $\frac{1-2\alpha}{3}$, $\frac{1-\alpha}{2}$, $\frac{\alpha+1}{2}$)



V



1. (
$$\alpha$$
 , $\frac{1-2\alpha}{2}$, $\frac{1-2\alpha}{2}$, 2)



REFERENCES

- (II) S. Ishii, On isolated Gorenstein singularities, Math.
 Ann. 270(1985), 541-554.
- (I2) S. Ishii, On the classification of two dimensional singualrities by the invariant κ, preprint, 1988.
- (IW) S. Ishii and K. Watanabe, On simple K3 singularities (in Japanese), Notes appearing in the Proceedings of the Conference on Algebraic Geometry at Tokyo Metropolitan Univ. 1988, 20-31.
- (IW2) S. Ishii and K. Watanabe, A geometric characterization of a simple K3 singularity, Tôhoku Math. J. 44(1992), 19-24.
- (V) A. N. Varchenko, Zete-Function of monodromy and Newton's diagram, Invent. Math. 37(1976), 253-262.
- (W1) K. Watanabe. On plurigenera of normal isolated singularities, I, Math. Ann. 250(1980), 65-94.
- (W2) K. Watanabe, On plurigenera of normal isolated singularities, II, in Complex Analytic Singularities (T. Suwa and P. Wagreich, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, 671-685.