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On the L2 cohomology of complex spaces II ('to appear in ngoya—

Moith . I, )
By
Takeo OHSAWA

Introduction. This is a continuation of the author's previous work
[0-6], in which we have settled a conjecture of Cheeger-Goresky;
MacPherson [C-G-M] by proving that the L2 cohomology group of a compact
(reduced) complex space is canonically isomorphic to its (middle)
intersection cohomology group. Our aim here is, in addition to that
result, to extend further the classical L2 harmonic theory to complex

spaces with arbitrary singularities by establishing the following.

Theorem 1. Let X be a compact Kahler space and Hfz)(x) its

r-th L2 cohomology group. Then every element in Hfz)(x) is uniquely

P9 are L2 harmonic forms

representable as a sum :Z: !

p+g=r
of type (p,q). In particular

, where u

r _ P4
Hipy(X¥) = D HY ).
p+g=r

Here H?é? d(X) denotes the subspace of H?z)(X) consisting of the
[
elements which are representable by (p,q)-forms. Moreover the complex
conjugate of H?é? d(X) is equal to H?é? d(X).
14 14

Combined with our previous result, Theorem 1 implies that the
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intersection cohomology group of a compact Kdhler space admits a
canonical Hodge structure. Thus we are left with a question whether or
not our (Lz—) Hodge structure coincides with another one introduced
by M.Saito [S]. It follows from the works of Zucker [Z] and the author
[0-5] that they coincide if X admits only isolated singularities.

' As for the proof of Theorem 1, a crucial step is in establishing
the existence of a family of complete Kidhler metrics on X' :=X -
Sing X converging to the prescribed one on X' such that the L2
cohomology groups with respect to them are canonically isomorphic to
the intersection cohomology group of X. Since one has an axiomatic
sheaf theoretic definition of the intersection cohomology, our task

is to show the nullity of certain L2 cohomology, while our complete
metrics will be constructed by utilizing a '"good" desingularization

of X whose existence is assured in general by the celebrated theory
of Hironaka. The analytic part of the proof of this sort of vanishing
theorem is already contained in our earlier work [0-5], where we proved
Theorem 1 under the restriction that X admits only isolated singular-
ities. In order to treat the general case by an obvious induction
procedure, we have first to establish an analogue of Leray's theory

on the spectral sequences in the L2 context. We need this work because
the theory of equisingular stratification has not developed well enough
to fit our sepcific purpose here. Thus our effort will be concentrated
to clarify this point ( see the splitting lemma in §3 ). The rest of
the proof will be only sketchy because they are essentially the same

argument which we have been repeated in [0-1] through [0-6].
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§l. Generalized Saper metircs. By generalizing Saper's
construction in [S-1,2] we shall introduce a class of
Hermitian metrics on the nonsingular parts of complex
spaces with arbitrary singularities.

Let X be a (reduced and paracompact) complex space
of dimension n and-let X'< X be the set of regular
points. A Hermitian metric of X is by definition a

[eed

C Hermitian metric on AX‘ which is the pull-back of
some C~  Hermitian metric around each point of X ,via
a local holomorphic embedding into GN (N >> 1). We shall
denote a Hermitian metric of X by dsi. By a desingular-
ization of X we shall mean a complex manifold X together
with a proper holomorphic map & : X —> X such that
&Im‘l(x') is one-to-one and Em 1= m—l(Sing X) is a
divisor of simple normal crossings. Let q¢€ Em be a point
of multiplicity k. Then we shall denote by ZyseesZy
a part of a holomorphic local coordinate around q such
that Z ey = 0 1is (set theoretically) a local defining
equation of the exceptional set E&. Let ds2 be a Herm-
itian metric on X'. We say that ds2 satisfies Saper's
condition with respect to a desingularization X —> X
if E)*ds2 is quasi-isometrically equivalent to

m*dsi + 'dgz -+ ; 5 ézidZi

_10g|21.....zk| i=1 |z,1| (log|z =z, |)

2
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around each point qezEQ, where dgz is a Hermitian
metric on X and k is the multiplicity of Em at q.

We shall say that a desingularization X —> X 1is
good if & 1is locally (with respect to X) a projective
morphism and there exists a complex analytic stratification

X =Xo> Xn—l = Sing X D+ DX, D X;l = ¢ such that,

n 0

for each Xu and x e Xa\ X there exist neighbourhoods

a-1
Usx and Vsx in X and Xa\ Xa-l’ respectively, with
a holomorphic retraction f : U ——> V such that
fomlm_l(U) is a holomorphic submersion onto V,

Definition. A Hermitian metric on X' is called

a generalized Saper metric if it satisfies Saper's condition

.. with respect to some good desingularization.

Proposition 1.1. Let X' X be as above. Then X'

admits a generalized Saper metric.

Proof. Given a complex space X, by Hironaka's theory
one can always find a good desingularization. Hence by a
patching argument using a nonnegative c” partition of

unity we obtain a generalized Saper metric on X'.

From the above construction it is not clear whether
a manifold equipped with a generalized Saper metric should
enjoy good properties at all. Thus we must begin with

describing a property of generalized Saper metrics.
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Let j3(resp. 3) denote the complex exterior deri-
vative of type (1,0) (resp. (0,1)). Given a C® functicn
p on a complex manifold, we shall often identify 30y

with the complex Hessian of ¢ by an abuse of notation.

Proposition 1.2, Let X be as above. Then there
exist a Hermitian metric dsg of X and a real-valued
C® function y on X' such that dsg + 29y is a

generalized Séper metric for which the length of 3y ‘1is
a bounded function on KCX' for every compact subset
K < X.

Proof. Let ¥ ——la-X, be any good desingularization,.
Since § 1is locally projective, for each point x € X
there exist a neighbourhood U 3 x, positive line bundles
Ll""’Lm over U = m_l(U) together with holomorphic

sections s P vanishing on U(\E~ such that,
o

120"
for any qe U'nE_, of multiplicity k,
: w

m
aa( -log(-log|s; )
i=1
ds? k dz.dz.
U i 71
" + z 2 2
—10g|21~n~zk] i=1 |zi| (log|zl~-~zk|)

around q {(and outside E_ ), where A ~ B means that
w

c-lA < B < cB for some positive number <c¢. By patching

the functions -3 log(loglsil) by a partition of unity

one obtains a function y on X' such that pds2 + aEw

X b)
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oo}
for some positive C function p on X,

is a Hermitian metric on X' for which |3y]| satisfies
the requirement. For detailed estimation of 393y the

reader is referred to a computation in [0-2,81],.

Let us summarize the above mentioned local construction

of a generalized Saper metric in a more convenient form.

. 2 .
Proposition 1.3. Let ds be a generalized Saper
metric on X' associated to a good desingularization
®

¥ —%5 X. Then for each point xe€ X one can find a

neighbourhood U3 x and a finite number of nonnegative

C” functions a. (i=1,...,m) on 5 1(U) such that
1) Bglog a, extends to a C_ form on m'l(U).
2) log a; is plurisubharmonic for every 1.
2 2 B -1
3) g*¥ds® m*dsX + Z 93(-log(~-log ai)) on ® “(UnX'").
i=1
Remark. A crucial point in the asymptotics of a generalized

Saper metric d52 is that it behaves locally like Poincare metrics on
the product of the discs and the punctured discs up to the logarithmic
factor. By this property the L2 cohomology classes with proper support
conditions on &P1(U/1X') are '"nearly" zero (cf. [0-5]). Additional
properties of d52 which lead to the precise L2 cohomology vanishing
are summarized as follows. The first one is that it admits a potential
of bounded gradient on 871(U11X'). The second one is more geometric.
Namely, in terms of the above mentioned submersion fo{j: (m~1(U),m71(V))
—>V attached to x€X \X ,, we shall use later that m"dsz1

is quasi-isometrically equivalent to a bundle-like metric on i (UnX')
with respect to a local C” trivialization induced from that of the
fibration fo@f. Since this last property is clear from the asymptotics

of ds? we shall not give any proof here.
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§2. 1.2 cohomology with boundary conditions. let (N,dsl%]) . be a
Hermitian manifold of pure dimension n and let :‘QCN be a domain
with C® smooth boundary. We denote by CO(Q) (resp. CO(Q)) the set
of compactly supported complex valued c® differential forms on ¢
(resp. on Q) and by CB(Q) (resp. Cg(ﬁ)) the subset of CO(Q) (resp.
Co(ﬁ)) consisting of the r-forms. Given a real-valued c” function ©

on £ we put

"unz = [Qe_q)|u|2dv for ueCy(9),

where ]u| denotes the pointwise norm of u and dv the volume
form of N with respect to dsl%]. The inner product associated to
|| “cp will be denoted by ( , )g. The weight function ¢ will not
be referred to if ¢ = 0. Let Lr(Q) denote the Hilbert space defined
as the completion of CE(Q) with respect to | Iy - we are going to
define the L2 cohomology groups of € with certain restrictions on
their boundary values.

Let d be the exterior derivative operating on the space of
currents on ), and let 6(1) be the formal adjoint of d with respect

to (, ).. By using the Hodge's star operator % one has Gq) =

&
-eq)*d*e~¢. We put d, = d|C,(R) and § = §;|c.(9). These operators
0 0 9,0 $'0 on
will be regarded as linear operators on L <I>( Q) := @ Lr( ) which
r=0

. _ *
have a dense domain CO(Q). Then we put dmax = (6(I>,O) o and

S = (do)’g. Here ( )’:D denotes the Hilbert space adjoint with

¢, max

respect to ( ,).. Similarly we put dmin = (68 ¥ and

®° d,max’ ¢
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§ = (a__J%. Then the r-th L2 cohomology group of @ with respect

®,min

to dsé and ¢ is defined as

Hfz),q)(m := Ker dmaXnLg(m/ Im dmaxl\Lg(Q).

* . .
Elements of Ker dmaX/)Ker(dmaX)¢ will be called harmonic forms.

Similarly we put

Y r
Hfz)’q),o(m t= Ker d . NLg(R) / Imd . nLg(Q).

-1
Furthermore we put d ;.:=d  |d - "(Domd . ) and

r o r r
H(Z),®,m(Q)" Ker dminr‘LQ(Q) / Im dmidf\L®(Q)°

. r . . .

Since dmdnfdmid = 0, H(2),®,m(9) is nothing but the image of

r . r , . .

H(2),¢,O(Q) in H(z),Q(Q) by the natural inclusion homomorphism.
Proposition 2.1. In the above notation we have

X 5 3y - - -
Dom(d, ; 4)p 0 Co (D) C {uecy(Q); dax(e u) |90 = 0}.
Here the restriction |30 is as a differential form on 3.

Proof is omitted because it is a direct computation.
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The following is also straightforward.

Proposition 2.2.  Dom(d ;)5 NCy(®) is dense in Dom(d , d)g

with respect to the graph norm of (d.mi )2. The same is true for

dmin-

From Hahn-Banach's theorem we have

'Proposition 2.3. The following statéments are equivalent

for any integer r and any positive number C.

2 2 2
M Clayul? + oyl Z ul?

X _.r
for all ugbom dmincwDom(dmid)¢ nLQ(Q).

r-1

(2) For any ueLgm) there exist veDom d ..nLy (%)

and weDom(dmin)“;nLg”m) such that

2 2 2
u=d. v+ (@, Fw and  Jullf < cilvig + [wip-
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§3. A splitting lemma. Given a Riemannian submersion of (N,dsﬁl)
onto some differentiable manifold, say M, one can naturally expect
to compute the L2 cohomology group of N from that of the fibers and
certain local systems on M Jjust as one deals with lLeray's spectral
sequences in topology or complex analytic geometry. We shall present
here a basic lemma which justifies such a procedure in our problem.
From now on we assume that (N,dsli) is a complete Hermitian

manifold, £ : (N,dsﬁ) —> M a holomorphic Riemannian submersion

and QCN is an open subset with c’ smooth boundary such that

£f|3Q is also a submersion onto M. We shall assume moreover that

for any point x€M there exists a neighbourhood Bs3x and a Coo
diffeomorphism £ : B x (f_1(x)n 0) —>f_1(B)nS_? such that £f.&

is the projection to the first factor. ILet us fix such x, B and E&.
For simplicity we put F = f—1 (x)nQ and E = B X F. By an abuse

of notation we put E := B x F, which is naturally identified with
f—1(B)n'ﬁ. Let p,(resp. p,) be the projection from E onto B
(resp. onto F). We shall identify CO(B) (rgsp. CO(F)) with p;“ CO(B)
(resp. with p>2k CO(F)). We assume that the metric F_,',’defI is of the
form p1* dsé + Zg» where I, is a positive semidefinite Hermitian
form on E which is smoothly extendable to E and annihilates

Ker P, - The Hodge's star operator *F with respect to X’F' which is
well-defined on p-1 (y) for each yeB, shall be naturally extended

by linearity as an operator on CO(E), We shall denote by

*E (resp. by *B) the Hodge's star operator with respect to ¥ dsl%I
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(resp. dslzg) . Then we note that

(4) ¥p(unv) = (-1)degudegv Xl A XY

for all uéCO(B) and veCO(F), since f is a Riemannian submersion.

The Laplacian d§ + 6d on N will be denoted simply by A, which

will also stand for the lLaplacian on E.

Let us put
inf{r; we Cy(E) ACH(F)}  if weCy(E) {0}
2n if w=0.

Then we have the following.
Lemma 3.1. For any weCO(—E_:), degFAw > degF .

Proof. Clearly it suffices to show the inequality for those
w of the form uav with ueCE(B) and vecg(_}?—‘). For such a form

the result follows from the fact that
degF(cS(uAdv)) >s
T+l
degF(G(du/\v) + (-1) duAu\de:KFv) >s

and

degp(A8(uav) + (—1)rdu/\>|<Fd>I%,v) > s.



219

Let ¢ be any c’ real-valued function on B and let ¢ = pf(b.

Then the weighted Laplacian A® t= d6® + 6®d has the same property as

above. Namely we have

(5) degFAq)w 2 degw for any we&C,(E).

r
For any WEECg(E), one has a canonical decomposition w = ) W
s=0

such that dengs = s and degF*Fwo > degF*Fw1 > > degF*?wr.

Proposition 3.2. Under the notation as above, if
— * =
wesCE(E)r1Dom dminerom(dmid)¢ then dF*%wslaE = 0 for all s.

Here dF denotes the exterior derivative along the fiber direction.

Proof is a straightforward computation and may well be omitted.

Using the above mentioned computations we shall prove the

following basic lemma.

Splitting Lemma Under the above notation

lawl2 « Js w2 > 3 (lawd? + 150l
o * ogly > L Udpsle * 19p¥slg

for any wng(E)nDom a e Here Op := —idpk,.
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Proof. Since weCO(E) N Dom dml

in’

2 2 -0 —_
(5) (Bgwyw) g = |awlly + l]dq)wllq) +J3Ee SyWAKW.

We note that

, -
- -® _
(6)Je®6w/\%w=ZJ e 6, W Ak W
e O E gZolag 's"e"s

since we Dom dmin‘

By Lemma 3.1 we have

X
(7) (Ad)wlw)q) = SEO(AQWSIWS)(I)

since (Aq)w,w) ® lim (Aq)w, pvw) ® for cut off functions

V>0
converging to one.

Thus we obtain from (5), (6) and (7)

2 2 L 2 2
"dW“q, + HG@W“@ = SZO("dWS uq) + " 6@""5 “@)

from which the desired inequality follows immediately.
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Let us choose B in advance so that one has a

local C®frame of T'M, say Oyr--18,, oOver B. For each
wng(E) with the canonical splitting w = st as above

we put

T
Wg = 2 Bpavg
I

where I runs through the increasing multi-indices of length
r-s, BI = ei{« °-~A6ir . for I = (i1,...,1r_s) and
I__0,= = - = o
wSGCO(E)QCO(F). If one has wecg(E)nDom(dmid%, it is clear
that wi[p;(y)e Dorrt(dF|p2—1(y))"< for all y€B. Therefore the

splitting lemma shows in particular the following.

Proposition 3.3. Under the above situation, suppose
moreover that there exists a positive number C such that for

every y€B and re€ Z, the estimate

la, ullz + fd Fulle zchul

r, -1
holds for all u€Dom d . nDom (dmid)’jl‘> nLE (£ (y)nQ ), where

-1
the operators dmin and dmi represent those on f (y)

d
relative t%]g( y). Then one has for every re¢ 2,
ds?|

2 2 2
”dmj_nw"q) + “(dmidigw“@ 2 C“W“q)

for all webom d . nDom (d_. ¥ nL™(£7' (B)nR), provided that

iy

id®
. 2

the metric dSN h:"1 (B) is replaced by a complete metric of the

form dsf] + f"‘cls2 for some complete metric d32 on B.
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Given a Riemannian manifold (T,ds,?,) equpped with a real
valued C~ function ¢ , we say for convenience that the triple

(T,ds2,6) is L%-acyclic with magnitude C if
T
2 2 2
uunq, < C(”dmj_nu “q) + “(dmid) q)u “q))

X :
for all ug€bom 4 .nnDom (dmid)cp . We say simply that
2 . 2 . r
(T,dsT, ¢) 1is L -acyclic if H(Z),Q,m(T) =0 for all r. Let us

restate Proposition 3.3 by using this terminology.

Proposition 3.3'. Let (B,dsg) be a complete Riemannian
manifold, let QO be a smoothly bounded domain in a paracompact
¢” menifold F, let N=BxF, let ds, = p¥ds> + 7, be a bundle-
like and complete metric on N with respect to the projection
p: N—>B, and let Qy = {y}x Q- Suppose that (Qy,zF|Qy)
is Lz—acyclic with magnitude C for all ye B. Then for any
C” real valued function ¢y on B, (N,ds§ ,p*q)) is also L2—acyclic

with magnitude C.



§4. The main results. Let X be a compact complex space of

2 and % -—giﬁsx be as in Pro-

pure dimension n and let X', ds
position 1.3. Let {Xa} be a stratification associated to @, let

XeX \X

o X be any point for some a, and let U and V be

neighbourhoods of x in X and xu\‘xa_1, respectively, such that

there exists a holomorphic retraction £ : U —>V such that

p: = fcmlm“1(ﬁ) is a holomorphic submersion. For any open set -

QCX we put Q' =Qnﬁ§—1(X').

Proposition 4.1. There exist a neighbourhood system {Qk};=1
of A in m_1(U) such that for any complete metric dsé on V

and any ¢ function Yy ¢ V—>R, (Qi, dszlgi, gfy) is L2 acyclic.

Proof. Let us proceed by induction on n. If n=0, there
is nothing to prove. Suppose that the assertion is true if
n < k. Then, from the remark at the end of §1 and Proposition
3.3', the result is true for n=k if ¢ > 0. If =0, the result

is contained in the author's previous work (cf.[0-6] Theorem. 3.5).

In virtue of the sheaf theoretic characterization of the inter-
section cohomology group of X (cf.[C-G-M]), Proposition 4.1 implies

the following.

Theorem 4.2. With respect to any generalized Saper metric

d52 on X', we have

Hfz)(x') Y 1HY (X) for all r.

Here IHr(X) denotes the r-th intersection cohomology group of X.

223
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Iet us denote by il (X) the r-th L2 cohomology group of

(2)

X' with respect to a Hermitian metric dsi of X. Then we have

Hfz)(x) = IHr(X) for all r by [0-6]. Hence, applying
2

Proposition 4.1 to dse t= dsi + eds2 for € € (0,1], noting that
the magnitude of Lz-acyclicity remains bounded as € —>0, we

obtain the following.

Proposition 4.3. Let {pk}£:1 be a ¢~ family of compactly

supported cut-off functions uniformly converging to 1 on each

Jarmonic form
compact subset of X'. Then, for any];h on X' with respect to

dsi the harmonic parts of pkh with respect to dsi converge

to h as €e—=> 0 and k —= =,

In case dsi is Kahlerian, one can choose d52 also to be

a Kihler metric. Therefore, from Theorem 4.2 we obtain

Theorem 4.4. If dsi is Kahlerian,

" o_ Pr,d '
Hip % = @ H) g
p+g=xr

and
P, vy _ 9P '
Hi2),a®) = H(3),aX)

with respect to any generalized Saper metric on X'.

Combining Theorem 4.4 with Proposition 4.3 we obtain Theorem 1,
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