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Higher cycles of the moduli space of stable curves
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§1. Introduction and results.

We shall denote the moduli space of stable curves of genus g by M,
and assume ¢ > 3. Hg is a compactification of the classical moduli
space M, of Riemann surfaces of genus g [D-M]. It is known that M,
and M, are complex V-manifolds of dimension 3g -3 ahd the compact-
ification locus D = M, — M, is the sum of 1+ [£] divisors D, ... » Dygy-
Scott Wolpert showed in (W] that 2+ [£] analytic 2-cycles on M can be
constructed and they span Hy(My; Q) from the result of Harer [H]. Sim-
ilarly Wolpert defined some analytic 2k-cycles (for k < g) and showed
that they are independent in Hat(M,; Q) by calculating their intersec-
tion pairing with components of the strata of D. A surface represented
by a point of D necessarily has nodes (double points). D is stratified
by the number of nodes. Hence the Betti number byx(M,) is greater
than or equal to ng, the nﬁmber of the 2k-cycles Wolpert constructed.
Roughly speaking, n; is almost equal to %(g ;1)

The idea for constructing analytic cycles is as follows: Fix a stable
curve S with nodes such that S — {nodes} is not connected and choose
some components Si, -+, Sk of S — {nodes}, then we can get an an-

alytic cycle A by letting the conformal structure of each S; vary over
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all structures represented in its moduli space, while the structure of
S-U ; S; is kept fixed. Wolpert considers, for S;, once punctured tori
and quadruply punctured spheres when k = 1 and considers quadfuply
punctured spheres when 1 < k < g.

Because these constructions are only from the moduli space of once-
punctured tori and the moduli space of quadruply puncture spheres, we
have no information of the Betti numbers of degree more than 2g — 2
and less than 4g — 4. In this paper, we shall define analytic fibre spaces
having tori as generic fibre and improve Wolpert’s estimates. We have
estimates of the Betti numbers of all even degrees. We have the following

results.

Theorem A.
When k > 2, b2k(_/\79) = b69—6—2'k(7qg) > max(ay,k, 0tg,39-3—k)

where a4 1 is a certain kind of permutation numbers.
The number oy can be computed by the following formula
Proposition B.

fo(t) = Z ay,ktk
k

where f,(t) is a polynomials defined in the section 5.
Roughly speaking, this estimates are more than the square of Wolpert’s

estimates. In fact we get easily the following inequality.
1/g—1\ 1 K =1\ (k-2 +1\ [g—1-2
"‘9”‘>§(k)+2;’( ! )( I+1 )'(k_k'

This paper is organized as follows. In §2 we construct analytic fibra-

tions @, — U, which have two analytic cross sections with no intersection



and whose general fibre is an elliptic curve. In §3 we construct cycles
of M, from three fibrations; one of them constructed in §2 and the
other constructed by Wolpert. In §4 we show that they are independent
classes in H.(M,;Q) by calculating the intersection pairings between
the cycles and components of the strata of D and show Theorem A. In
§5 we give algorithm to compute ay k.

The author would like to thank Professor Yukio Matsumoto for his
encouragement and suggestions. He is grateful to Dr. Kazushi Ahara

for some communications.
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§2. Twice punctured elliptic curves..

To construct the cycles, we need a fibre space of elliptic curves with
the base a compact complex surface which has two cross sections. We
require that the sections have no intersections and have no values at
nodes of singular fibres. First of all we shall review the definition of the
fibre spaces Uy, Q¢ from [W]. These are fiber spaces of elliptic curves over
H//T‘[. We assume £ > 3. Let H be the upper half plane, I’y the prin-
cipal congruence subgroup of level £, H//T‘g the compactification of the
quotient of H by I'y, and U, the compactification of the universal elliptic
curve with level £ structure. The base H//T‘( has § filled-in punctures

(we call them cusps), where 1 = [PSL(2;Z) : T'¢]. Singular fibres of U,

and Qy correspond to cusps of Pf/T‘g. The projection Uy|g/r, — H/I'e

a b
is given as follows. Let I'yL = I’y x Z2, where for g = ( d) eIy,
c

g(m,n) = (am + cn,bm + dn). T'yL acts on H x C by

b az+b
(° %) i (B2 4mn), o pemnc

'Then we define the map to be the projection

Ug|H/p‘ =H x C/FgL — H/Pg.

In the neighbourhood D = {r € C;|r]| < 1} of a cusp in H//T‘[ the
fibration m; : Uy — H//T‘g is described as follows. First we consider a
fibre over {7 = 0}. Consider an £-tuple of projective lines P§, --- , P_,
with inhomogeneous coordinate ug, vy = u,?l on P}c (the index k takes
values in Z/£Z). Identify co on P} with 0 on Pi+1 to obtain an /-

gon of projective lines. Next we consider fibres over {r # 0}. Remove



{lve| < |7]} on P} and {|ugt1| < |7]} on Pi,; and attach two annuli
{|7| < |vi] < 1} and {|7| < |uk+1| < 1} according to viugy; = 7.

From these considerations we can see that U is a complex surface and
in particular a neighbourhood of a double point of the fibre {r = 0} is
identified with the complex surface {uv =7} N {|7| < 1, |u| < 1, |v| < 1}
in C® = {(,u,v)} by regarding co on P} and 0 on P}, as the double
point. U, has £2 natural sections o;l, -+« 82, the £-division points. The
sections form a group isomorphic to Z/€Z x Z/£Z, acting on U, by
translation in fibres.

We define Q, by Uy /(Z/8Z x Z[LZ).

Let p: Uy — Up [(Z/EZ x Z[£Z) = Q¢ be the natural projection.

A fibre in Q, over a cusp is a projective line P! whose points 0 and
oo are identified to form a double point. In particular a neighbourhood
of a double point of fibre on {r = 0} is identified with the analytic
space {uv = 7} N {|r| < 1, |u| < 1,|v] < 1} in C® = {(r,u,v)} by
regarding oo on P} and 0 on P, as the double point. There exists
an analytic section s induced from the sections sy, - -+, sp2. The section
s does not take value at the double point. If 7' is a line bundle over
G, — {double points} which consists of the tangent vectors of the fibers
of mg : Q¢ — H//T“g, then ¢;(s*T') = —ﬁ.

Next we shall construct the fibration
T Qe — Ue.

We denote Q by 71 Qe.
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We shall define two analytic sections 3; and 3, on é\g. The section 3§

is the pull-back of s by 7;. The section 3, is defined by
32 : Uy — é\[ tz — (z,p(z)),

where Q; = {(z,¢) € Up X Qu|m1(z) = m3(€)} and #(z,¢) = z. But if
smi(z) = p(z), (that is, z € |UJ; Sj(H//\I‘g) C Up) these two sections have
intersections. Furthermore, 611 a double point of a singular fibre of Uy,
32 takes value at the node point of a singular fibre. We shall modify this
fibration so that the sections do not have any intersection, nor does $§;
take value at any node point.

Consider a fibre space which is given by removing s j(I‘f/\I‘g) from U,,

that is, _
. @lug — ug =Up — USJ'(H/]T‘[)
J
Let (p) := s*T'. A metric | | is fixed for the line bundle (p), and

in local coordinates the absolute value | | is well defined. Let U =
{z € (p);||lz|| < 1} and we may assume that U gives coordinates in
a neighbourhood of s(H//T“g) by the section s. Furthermore p~}(U) =
Ui I --- I Up where Uj is a neighbourhood of sJ-(H//T“g) in Uy for each
J, and U; can be identified with U by the map p|y; : U; — U. Fix j and
identify U; with U. We shall describe an auxiliary fibre space F over U;
by attaching #|y, : Qe|U; — U; and U; x P! — Uj as follows.

In the fibres over Sj(H//T‘e), attach Qg T to a trivial bundle
s; ;

s;(H/Ty) x P! = s;(H/T,) by identifying 3;(s;(H/T)) C @18,_ T

and Sj(H%g) x {u =0} C Sj(H//T‘g) x P! where u is one of the in-

homogeneous coordinates of P!. (The other one is denoted by v and



satisfies uv = 1.) Let (2,&) be local coordinates of U (where z € H//T‘g
and € € C).
We define Dy, D5, h as follows.

Dy = {( 0,00 € Uy xU cttx e 0,16 < T}
< Qely, ., 7
Dy = {5 00) € Uy x Pc £ 0.1l < I}
C (U; — 5;(H/Ty)) x P?
b { (10 € Uy x P 0,6l < ul < 1}
(080 €U xU Cltex e 0.1 <l < =

| ¢
((z,0)u) = ((0),(z)
T'hen we attach QllUj—s,-(I—f/?g) — D; and (U; — s;(H/Ty)) x P! - D,
by the attaching map h, and we have a fibre space 7 — Uj. It is easy
to check that F is an analytic fibre space and the map F — U is

holomorphic.

Identify F| with Q|
uj Jj

—s; (H/TY) o (EJT) O

(U; — s;(H/Te)) x P! = Dy — (U — s;(H/T¢)) x U;
(5 0r) = (20 (5, 5)
((ZaC),”) U ((Z’C)’(Z,Cv)) :

and denote the identification map by ¢;. For all j =1,2,--- , 0%, attach
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F and é\glu[a by ¢j, and denote the analytic fibre space constructed by
. é\[, — U,.

Next let U’ be a neighbourhood of a node on a singular fiber of U,.
We shall construct an auxiliary fibre space F' over U'. We consider

coordinates of U’ as follows.
U = {(u,v) € C%u| < 1,]v]| <1}  m1(u,v) =uv
Let P be a projective line and D;, D, be two disks, that is,

P :=P! : with inhomogeneous coordinates u;, vi(ujv; = 1)
Dy :={vy € C||vz| < 1}
D, :Z{U2 €C | [uz| < 1}

Attach U' x Dy, U’ x Dy and U’ x P as follows.
(i) On (0,0) € U', identify
(0,0) X {'02 = 0} E(0,0) x D; and (0,0) X {u1 = 0} € (0,0) x P,
(0,0) x {uz = 0} €(0,0) x D, and (0,0) x {v; =0} € (0,0) x P.
(i) On (21 # 0,0) € U’, remove {|vz| < |21/} from Dj, remove {|u;| <

|z1|¢} from P and attach {|z1|¢ < |vs| < 1} C Dj to {|z1¢ < |uy| < 1} C

P by identifying vou; = zf. Identify
(0,0) x {uz =0} € (0,0) x D, and (0,0) x {v; =0} € (0,0) x P.

(iii) On (0, 22 # 0) € U', remove {|uz| < |22]*} from D3, remove {|v;| <
| 22|t} from P and attach {|z2]* < |uz| < 1} C D; to {|z|* < |v1| < 1} C
P by identifying vyu; = 2. Identify

(0,0) x {v, =0} €(0,0) x D; and (0,0) x {u; =0} € (0,0) x P.



(iv) On (21 # 0,2, # 0) € U’, remove {|vy] < |2]*} from D;, remove
{lui| € |21]} from P and attach {|z1]¢ < |v2| < 1} C Dy to {|z1| <
|u1] < 1} C P by identifying vou; = 2f. Remove {|uz| < |22/|¢} from
D5, remove {|v;| S |z2]¢} from P and attach {|z3|¢ < |us| <1} C D; to
{]22]¢ < |v1| < 1} C P by identifying usv; = 25.

This fibre space F' is an analytic space and the map F' — U’ is
holomorphic. ' |

Finally we shall construct a fibre space 7 : Qp — U, by attaching F'

1
to Ql hul——{double p_oints}-_
Let B be defined as follows.

B ={((zl,zz),7r(u,v)) eU' xn(U")

2129 = uv}

—{((0,0),7(0,0))} ¢ ¢

Also we define ¢/ : B — F' as follows.

L,((zlv 22): 7"(% v))
(1, 22, —zf}) in the (z,y,u;)-coordinates (if z; # 0, u # 0)
(21, 22, -Et%) in the (z,y,v;)-coordinates (if zo # 0, v # 0)

(21, 22,u’) in the (z,y,vz)-coordinates (if |u| > |21]%)

L (21, 22,v%) in the (z,y, up)-coordinates (if |v| > |22]%)

This map is well defined and biholomorphic. Attach F' to é\[l Uy —{nodes}
by the map ¢ for all nodes on U, and we have a new fibre space 7 : Q¢ —

Up.
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Lemma 2.1.
% : Q¢ — Uy have two analytic cross sections 8, $2 which have no

intersection and have no values at nodes on fibers.

Proof

The sections §; and 3, are defined as follows:

st Qd"t—uj 8;(H/Ty)

(2,6) = (2,€,0) € U; x P! ((2,€,u)-coordinates) in F

3 =

§2 in Qelu
S2=14(2,8) = (2,6,1) € U; x P! ((2,€,u)-coordinates) in F

(z,y) — (2,y,1) €U’ x P! ((21, 22, u;)-coordinates) in F’

It is easy to show that §; and 3§; are well defined and that they have no
intersection. Also they do not take values at nodes on fibres. O
Removing the two sections §y, §2 from é[ we obtain a family éﬁ of

twice punctured tori. Each singular fibres is one of the following four

types.
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Figure 1.

6

Type 1 On s(cusps)

51 8}1

Type 2 On s(H//T‘g — cusps)

‘}]@ﬁ

Type 3 On 7] *(cusps) — s(cusps) — nodes
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Type 4 On nodes

§3. Construction of the cycles. »

The locus D C M, of surfaces having nodes (double points) is a divi-
sor and is stratified by the number of nodes. That is to say, the k-strata is
the locus of surfaces with k£ nodes. Counting the number of components
in the k-strata is a combinatorial problem. (The number of 1-stratum
components is 1+[£].) The closure of a k-stratum component represents
a (6g — 6 — 2k)-dimensional homology class. Wolpert [W] showed that
Poincaré dual [w] of Weil-Petersson Kahler form w on M, and the 1+[£]
cycles above represented by the closure of 1-stratum components span
Hsg_s(ﬂg; Q). ni components of the k-strata of the specific pattern
for the nodes are mutually independent in Hsg._e_zk(—/\—/i—g; Q)fork<g.
Considering another specific pattern for the nodes we construct more
homology classes for all even degrees.

In this section first we shall define ”&-selections” (k < 2¢ — 2). After
that we shall construct cycles and subvarieties of M,. To construct

cycles we use three fibrations

~

T:Qp = U
my : Q8 — H/T,
7 U — H/T,.
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where Qf is @, — Im(s). U, is defined by the compactification of H x
C/T3sL — H/T'; in the same way as U;. Generic fibre of U, is a complex
projective line with four distinguished points s1, s2, s3, s4. Singular
fibres on filled in cusps are two projective lines connected by a double

point.

on) onl onoo

Ug is Uy — Usj(EL/T;). Note that c;(siT") = —1for i = 1,2,3,4.
Fix a surface S and we shall consider the "pattern” for the curves

1, Coy e, ¢g—1, di, da, dy, -+, dg1, dy_y, dy as indicated below.
(Figure 2)




Definition 3.1.. A k — selection o is a choice of k homotopy classes
from the free homotopy classes [ci],- P ,[ég_l], [d1], [d2], [db), - -, [dg—1],
[d}—1], [d,] satisfying the following two conditions
1) [di] is in the k-selection if and only if [d}] is in the k-selection.
2)  If [d;], [d}] are in the k-selection, then neither [¢;_1] nor [c;] is not

in the k-selection (for 2<i < g —1)

The classes [c1], -+, [cg-1], [da], [da], [d3], -+, [dg-a], [dg-1], [dg]
may be permuted by a homeomorphism of S. We denote the number
of distinct k-selections modulo the action of homeomorphisms by o .
(ag,x is the number of conjugate classes of k-selections. (see definition

4.2))

Fix a k-selection o, if d;, dg occur in the k-selection o then collapse
¢j—1, ¢j to nodes and replace the component containing dj, d; by the
fibre of a family éz: remove the component containing d;, d;-, identify
the node to which ¢;—; collapses with the first puncture in the fibre of
é‘;, and identify the node to which ¢; collapses with the second puncture
in the fibre of éﬁ

If ¢; (2 < j < g—2)isin the k-selection o, we collapse dj, d}, dj11, dj;
to nodes and replace the component containing c¢; by the fibre of the fam-
ily U3. If both d; and ¢; are in the k-selection o, we collapse ds, dj, to
nodes and replace the component containing c;, d; by the-ﬁbre of the
family éz The construction is similar for the case when both dg, c¢4—;
are in 0. If ¢; is in the k-selection o but d; is not, we collapse d;, ds, dj,
to nodes and replace the component containing ¢; by the fibre of the
family 3. The construction is similar for the case when ¢,_; is in o
but d, is not. If d; is in the k-selection o but ¢; is not, we collapse c;

to a node and replace the component containing d; by the fibre of the



family Q7. The construction is similar for the case when d, is in o but
Cg—1 1s not.

Thus we have defined an analytic fibre space A,. A, has the Cartesian
product (Up)* x (H//-T‘g)b X (H//T‘z)c as the base and is the connected sum
along punctures of the fibres of (ég)“, (Q2)%, (U$)® and a fixed surface
R for some non-negative integers a, b, c. The analytic fibre space A,
determines a mapping from (,)* X (H//\P[)b X (H//T“g)c to M,. Let [A,]
be the homology class determined by A,. In this way, we can define a

2k-cycle [A,] for each k-selection o.

§4. Counting the intersection numbers.

In the Section 3 we showed that for each k-selection we can define a
2k-cycle on M,. On the other hand, for each k-selection T we can define
a subvariety V, of dimension 6g —6— 2k of M, which consists of surfaces
whose nodes correspond to the curves selected in the k-selectién. Let
VP C D be the locus of surfaces having precisely k nodes. We divide V}
into connected components. The closure of them are distinct subvarieties
of —Mg. They are determined by the choice of k disjoint simple geodesics
( which are to be collapsed to nodes ) on a surface of genus g.

We shall compute an intersection number of the 2k-cycle A, and 6g —
6—2k subvariety V, for k-selections o, 7 by pushing off [A4,] from D.That
is, we open up the attaching nodes of replaced components. We shall
show that the nodes cannot be opened up for all fibres. To open up the

nodes we smoothly perturb sections

SIH//\I‘g—)Qg
Sj:H//T‘2—>U2

31, 8:Up— Qo
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The perturbation of s, s; is given in [W]. Since ¢;(s*T") = — 4, we can
choose s, a smooth perturbation of s in U, such that at only one point
p € Q¢ it intersects s and s'(z) = (z,z—t_‘i) in (z,£) coordinate around

,.

p. Since ¢;(s7T') = —1, we can choose s},

a smooth perturbation of s;,
such that at only one point ¢ € Us it intersects s; and s%(z) = (#,2) in

(2,¢) coordinate around gq.

Before defining the perturbation of the sections 3, 33, we give some

remarks according to [W].

A V-manifold such as M, is a rational homology manifold and if
cycles intersect a;t manifold points then their pairing is determined stan-
dardly in the intuitive way. Next we shall describe coordinates for the
local manifold covers of T/t—g. Let S be a Riemann surface with nodes
P1,-..,Pm such that each component of S — {pi,...,pm} is hyperbolic.
Suppose that at the node p; punctures a; and b; are paired. Choose
disjoint neighborhood D}, D? (i = 1,2,...,m) of the punctures a; and
b; and let z; : D} —» D = {u € C;Ju| < 1} and w; : D? — D be lo-
cal coordinates with z;(a;) = w;(b;) = 0. Fixing an suitable open set
O, disjoint from D} and D?, Beltrami differentials y; are chosen with
support in O spanning the Teichmiiller space of S — {p1,...,pm} ( the
dimension 3g — 3 —m). If t = (¢1,...,t39-3-m) € C39737™ i5 suffi-
ciently close to the origin, the sum u(t) = 3, ¢;u; satisfies ||p(t)]/oo < 1
and thus a p-conformal solution w”(*) of the Beltrami equation exists.
The Riemann surface w*(¥(S) = S, is a quasiconformal deformation
of S. The map w#® is conformal on D! and D? ; therefore z; and
w; serve as coordinates for w*®(D}) and w*®(D?) C S; respectively.
Given 7 = (71,...,™m) € D™, we construct a surface S;; as follows.
Remove the discs {z;;]zi| < ||} and {w;; |w;| < ||} from S,. Attach

{zi;|7:] < |] < 1} to {wi; || < |wi| < 1} by identifying z; and 7;/w;



to obtain S, ;. The couple (,t) gives holomorphic coordinates for the
local manifold cover of M, around the point represented by S. The
automorphism group Aut(S) acts locally on these coordinates. (see also
[B)

Now we construct perturbations of §;, 8. Let 3’1|u; U — éz
be the pull back of s’ by w1, and let sj|y;, : U; — Q; be defined by
s4(2,¢) = (2,¢,s'(z)() in the (z,(,v) coordinates of Q. By‘a partition
of unity subordinate to {U7,Uy,. .., U2}, we can construct 8 : Uy — Q,.
Note that in U’, s} is a map to Qs. The intersection of $1 and §)
represents the homology class — g5 [fiber] — 3 ;18 j(H//\Fg)]. That is, let
p1 be the pull back of the tangent vector field along the fibres on Qy-
{ nodes } by §;, then the Poincaré dual of the Euler class of p7 is
— 5 [fibre] — Ej[s]-(H//T‘g)]. We can define &, in the same way, then
for the pull back p; by 32, the Poincaré dual of the Euler class of p; is
~ g5 {fibre] — 5,ls;(H/Ty)).

Using 3§} and 3§, we open up the punctures. Fixing a k-selection o
such that dj, d_',- are selected but d;_;, dj_, are not, we open up the
first puncture in the fibre of Q9 using ;. Let a metric || - || be fixed for
the line bundle p;. In the local coordinate (21, 22, () of Q, the absolute
value |(| is well defined. Choose a neighborhood U of the 0-section in
p1 mapping injectively to the fibre space Q,. We identify U with its
image in Q,. Now U may be chosen to intersect each fibre in a disk
centered at the origin and the section 3] may be contained in &/ and
3,1l < 1. Choose a local coordinate chart (z1,2s,¢) of ¢ in @,. The
section §} is represented in (z1,22,() as ( = §1(21,22). Let w be the
coordinate disk of neighborhood of fixed side of a node ¢; collapsing.
We assume the w maps the neighborhood to the unit disk. Remove a

disk {|w| < ||31(21, 22)||} from S, remove a disk {|¢| < |3} (21, 22)||} from
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a fibre F(,, ,) over a point (z;,2;) of ée, and form a connected sum of

the resulting surfaces by identifying

{lI51(21, 22)l| < fw| <1} C §

= {181(21, 22)| < [{] < 181 (21, 22)1/ 1181 (21, 22) 1} C Fiz,2)

by setting w¢ = §)(21,22). It is easy to check that this construction
does not depend on the choice of coordinate. In the case when d;, d; are
selected but dj41, d'j +1 are not, we can open up the second puncture by
using 35 in the same way as above.

In the case when both dj, d; and dj41, d},, are selected, choose lo-
cal coordinates (21, 22, (1) around the first puncture of d;4;-component,
(z1,%2,(2) around the second puncture of d;-component. Now as above,
remove the disc neighborhoods |
{IGi] < [81(21, 22)l152(21, 22) ||} and {|G2] < [85(z1, 22)|]|31 (21, 22)[1}
of punctures, and form a connected sum of the resulting surfaces by
identifying
{58zl < Il < [s/isi} with {01510 < 1l < 1521/1800)
b}'r setting (1{2 = §}8,. It is easy to show that this construction is
independent of the choice of coordinates. In the case when d; is se-
lected or ¢; is selected, we can open up the node by using s’ or s},...,s)
respectively.

Let A! be a smooth fibre space of stable curves of genus ¢ constructed
from a k-selection o as above, then A} and A, determine homotopic
cycles on X/t"y.

We will consider intersections of A% and k-selection subvarieties.



Lemma 4.1.

Let o be a k-selection. Assume that if g > 4, not all [d2], [d}],. .. ,[dg—1],
[dy—1] are selected simultaneously. For any k-selection cycle [A,], the
cycle [AL] can be chosen to intersect the k-selection subvariety V, in

manifold points of M.

Proof Consider Aut(S.,),where S, is a fibre of AL over an intersection
with V,. Assume the complement of the k-selection nodes in S, has
m connected components, S1,. .., Sm. From the description of A} each
components may be varied arbitrary in a open set of its Teichmiiller
space. We may divide these components into three types,

i) S; ; once punctured torus or thrice punctured sphere with two of the
punctures identified,
ii) S ; twice pﬁnctured torus, or quadruply punctured sphere with two
of the punctures identified, or quadruply punctured sphere,

iii) S; ; once punctured surface of genus at least 2 or twice punctured
surface of genus at least 2 or thrice punctured surface of genus at
least 1 or quadruply punctured surface of genus at least 1.

In the case i) we'may assume that Aut(S;) is generatedyby an elliptic
involution, in the case i) Aut(.S;) is not trivial but we may assume that
the group Aut(S;) of automorphism fixing the punctures is trivial, and
in the case iii) we may assume that Aut(S;) is trivial.

By topological considerations the only homeomorphism of S, which
might permute the components Sy, ...,Sy, is the left-right switch map.
Certainly we may assume that the | conformal structures for
S1,...,Smare distinct and hence this homeomorphism cannot be rep-
resented in Aut(Se).

When ¢ > 4, since o does not contain at least one of the curves
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[da], [d5), - - -, [dg—1], [dy 1], there exists a component of the case iii) in
Seo. Hence any element of Aut(Ss) fixes all punctures and Aut(S,) =
II;Aut¢(S;). Hence we only consider for the case components S; of
case i). There are three possibilities for Aut(Se), that is, 1) Aut(Ss)
is trivial, or 2) Aut(Sw) = Z/2Z, or 3) Aut(Sw) = (Z/2Z)?.. These
three cases correspond respectively to 1) none of ¢, ¢4—1, 2) exactly one
of ¢1, ¢4—1, 3) both ¢; and ¢,—; occur in the k-selection o. For case
1) Seo certainly represents a manifold point. For case 2) assume ¢; is
selected in o, a non- trivial element k € Aut(Se) is from an elliptic
involution. We introduce local manifold c’over coordinates ("rli, t) where
7y 1s for the ¢; n’ode.. The elliptic involution is generic for an elliptic
curve so that k acts as k(1,t) = (—71,t). Hence (7#,t) give coordinates
of M, around intersection point. For case 3) consider local manifold
cover coordinates (71, T4—1,t), where 7 is for the ¢; node, 74— is for the

cg—1 node. Aut(Ss) has two generators

(Tl’Ty—l7t) - ("ThTy_l,t)

(Tl,Tg_l,t) — (‘Tl,—'l'g_l,t).

Hence (7£,72_,,t) give coordinates of M, around the intersection points.

When g = 3, and [d;] and [d}] are not selected in o we can define
coordinates as above. When g = 3, and [d;] and [d}] are selected, each
component is twice punctured torus, or quadruply punctured sphere
with two of the punctures identified. In this case Aut(Se) = Z/2Z and
if (71, 72,t) is a local manifold cover coordinate such that 7y is for the d;

node, 7, is for the dj, node, a non-trivial element k € Aut(S) acts as

k(Th T2)t) = (7-2, let)'



Hence (11 +72, (11 —72)?%,t) gives a coordinate of Hg around intersection
points. This comple’tes a proof of lemma 4.1. O

When g > 4 and all [dp],[d3], ..., [dg-1],[d,_;] occur in a k-selection
o, the k-selection cycle [A%] cannot be chosen to intersect V, at manifold
points of M. So we need a smooth perturbation V! of V,. We consider
only the case ¢ = {[dg],[d'z],...v, [dg-1],[dy_1]}. The other cases are
similar.

Let S., be a fibre of A! over an intersection with V,,, we may assume
Aut(Se) = Z/2Z. We introduce a local manifold cover Vi 1V =
M, (V) and coordinates (72,73, ..., Tg—1, Tg—1>t1,- -+, tm) of V where
7; is for the d; node, 7} is for the d; node. A non-trivial element k €

b
Aut(S) acts as
! ! ! !
k(T2,7'2,...,Tg_l,'rg_l,tl,...,tm) — (7'2,7'2,---,Tg_l,Tg—l,tI,---,tm)-

In this local manifold cover, V, is given as the locus {r, = 7§ =
-++=Ty—1 = 7,1 = 0} and this locus is mapped injectively to _Mg, We
introduce a local coordinate neighborhood U and a local coordinate chart
(z1,...,Zm) of V, around the point represented by Se. (z1,...,2Zm) is
mapped (0,...,0,21,...,Zm) in the local manifold cover. Let e(z) be a
function on V, such that U contains the support of e(z) and in a small

neighborhood of S., £(z) = ¢ where ¢ is a small constant. We set V! in

P(V') as follows

(z1y---yZm) = ¥(e(2),0,...,0,21,...,2m) € P(V).

V! is homotopic to V, and we may assume that the cycle A} intersects

V! in manifold points.
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For 1-selections, Wolpert [W] showed the intersection pairing between
cycles {A,}, and varieties {V,}, are full rank.

Here we remark the following ; if k-selections o and 7 are in the
same class modulo the action of homeomorphisms then the associated
subvarieties V, and V, are equal. Thus the number of subvarieties {V, },

is ag k. (see §3)

Definition 4.2.
(1) For a k-selection o, we define its conjugate & as a k-selection which
contains [d;](resp. [c;]) iff o contains [dg_.j+1](resp. [eg—i])-
(2) We call a k-selection o is symmetric iff o0 = 5.
(3) Assume k > 2. For two k-selections o, 7, we define ~ -intersection

number [A,]-[V,] as the number of intersections where just selected

curves in o are collapsed to nodes.

Let [ ][ ] be an intersection pairing in My, then it is easy to show

the following lemma.

Lemma 4‘3'

— —

(1) [Ar] - Vo] = [As] - [Vs]

(2) If o is not symmetric then

(3) If o is symmetric then
[Ar]- Vol = [Ae] - Vo] = [AST- V4]

If and only if 7 is equal to either o or &, then o and 7 are the same k-

selection modulo homeomorphism action, and then a, \ is the number of
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conjugate classes of k-selections. However, for the present we distinguish

them and consider a matrix of “-intersection pairing,.

Lemma 4.4.
If the “-intersection pairing matrix is not degenerate then the inter-

section pairing matrix i1s not degenerate.

Proof Let o0y,...,0., be all symmetric k-selections and 74,...,7,,
T1,...,7n be all non-symmetric k-selections. From lemma 4.3 (3), the

. . . . . .
-intersection pairing matrx is

Mol - Wo;]l | (Ao V] | 140l - V5]
[Ar] Vo] | MAR] 5] | AR D3]
[AT;] ' [vf’j ] [Afiﬁvrj ] [A?;ﬁvﬁ' ]

By elementary transformations with respect to the column and lemma

4.3, we can transform it to

Mo Wo;] | e V] | [4a] - V5]
Al Vo] | [Anl ] | [An]- V5]

—

[AT.'] : [vcrj] ['An‘] : [ij] [A‘Fi] : [vv"j]

By elementary transformations with respect to the row, we can trans-

form this to

[Aoi]-Vo;] | [Asi]- V5] *
[Ar] - Ve;] [Ar] - [Vr] *
0 0 *

3
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Note that the intersection pairing matrix is

( [‘Avi]'[vdj] l [‘AU.']'[VT,'] )
Al Vo] | [An]- V]

and the lemma follows. O
From Lemma 4.4, it is sufficient to show that the ~ -intersection
pairing matrix is non-degenerate. We prove this by induction. First,

we compute the intersection pairing matrix for the two 2-selections D =

{ld;], [d;]} and C = {[ej-1], [¢;]}-

Lemma 4.5.

1
—Vp —Vc
m n
s Ap 1 =
Ac 2 1
where
1 =[PSL(2,Z) : Ty}
2 ifg=3
m = ’
1 ifg#3
4 ifg=3
n=4¢ 2 if C contains exactly one of [c1], [cg—1]

1 otherwise



Proof

Intersection points between the perturbation .AﬁD of Ap and Vp cor-
respond to nodes of singular fibres of U;. Let (z1,22) be coordinates
of Uy around a node and let (,7',&-€ C397%) be local manifold cover
coordinates of M, around the intersection point p. Then from § 2 we

can represent [AL] as follows.

[AL] : Uy —» M,

(21,22) = [T = 21, 7' = 23,t = f(21,2)))]

for some smooth function. When g > 4, (7,7',t) are coordinates of
M, and Vp is given locally as the locus {r = 7' = 0}. Since the
intersection number at p is £2 and U, has ¢/¢ singular fibres and one
singular fibre has £ nodes, the intersection number of Ap and Vp is given
by €2 x i/€ x £ = if%. In case g = 3, (01,02,t) := (T + 7', (T — 7")%, 1)
give coordinates of ﬂg around p and only in this case the intersection
number is 2:£2.

Next we shall calculate the intersection of Ap and Vp. The Poincaré

duals of the Euler classes of p1, P2 are both

_E[fibre] - Z[Sj(H/FZ)]

J

and

_ — —& (G=k)
[s;(H/T¢)] - [sx(H/T)] = { _ :
0 (5 #Fk)

Any intersection points of Ag and V¢ cqrrespond to intersections of zero

oints of §} and those of 8}, in U,. Let (71, 72,t) be local coordinates of
p 1 2
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a local manifold cover over an intersection point p in M, and (21, 22)

be local coordinates of corresponding point in U,. Then we have

A“D:Uz—)—/qg

(21,22) = [(11 = 81(21,22), 72 = 83(21, 22),t = f(21, 22))]

for some smooth function f(zy,23).
If C does not contain ¢; nor ¢y_1, the intersection number of Ap and
Ve is equal to that of —&[fibre] — E[sj(H’/\I‘[)] and itself in U, since

(11, 72,t) give coordinates of M,.

J

(_}%[fibre] -~ Z[Sj(H//T‘z)])

é Z[fz'bre] . [s,-(H/]T‘e)] + Z[Sj(H//T‘l)]z

tp_ltp_ e
6 "1t Tt

In the same way, we obtain that in the case when exactly one of ¢; and
¢g—1 is contained in C, [Ap]-[Vc] = %ﬁ, and that in the case when both
c1 and ¢, are contained in C, [Ap]: [Vc] = %2-. We can calculate the

intersection number of A¢ and V¢ using ¢;(sjT") = —1, that is

For the intersection number of A¢ and V¢, note that their intersection



points correspond to (00, 00) in (H//T‘g )2, and we have

1 (if no ¢1,¢y—1 is contained in C)
[Ac]- [Ve] = 2 (if exactly one is contained in C)

4 (if both are contained in C)

This completes the proof of Lemma 4.5. O
The “-intersection number for 1-selections are not well-defined gen-
erally ( for instance, for [V4,] and [Vy,]). We define them by induction

as follows.

Definition 4.6.

— [A5] - [Va,] (0 # dy)
[As] - [Va,] == {
(0 =dy)

— 0 (0 # dy)
[As] - [Va,] = {
[As]- [Va,] (0 =dy)

We define Ay q4; as the “-intersection matrix of all k-selections from
[d1], [e1], [d2], [d2], [e2)s- - -, [d;], [d}] and Ag,c; as that of all k-selections
from [d1], [c1], [d2] [d}]), ..., [¢j]. We shall prove inductively that all

Ag,4; and Ag,; are non-degenerate.

Lemma 4.7.

Aj,4;, A1,; are all non-degenerate.

This is immediately from the consequences of §5 in [W].

75



76

Lemma 4.8.

Asg;, Az,e; are all non-degenerate.

Proof If ¢ = {[d1],[cz]} then the ~-intersection number of A, and

Vo is

ﬂZ}AﬁEM-MmeW Fibres)] = 2if2

and we get

Az o, = (2i%)

and it is non-degenerate.

Considering ¢ = {[d1], [c1]} and 7 = {[d], [d5]} we obtvain

( (22 L
( .) (924)
0 2 »

Moreover considering 71 = {[c1],[c2]}, 72 = {[d1],[c2]} and applying
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Lemma 4.5 we have

12
0 2 £
(924)
0 2 2 -2
_, 0 0 -—i
| e £ o0 o
6
0 22 £ g
(9=3)
0 4 4 -4
(\0 0 -—f 2

It is easy to check that A3 4, and A, ., are all non-degenerate.

"We consider in the case ¢ > 4. Assume that up to Ajz,c; the statement

holds (2 < j < g —2). Az,4;,, is given by

Ay, O
A=\ o0

and this is also non-degenerate.

Next assume that up to A4, the statement holds (3 < j < g —1).
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Using lemma 4.5, we have

Az, O 0 0
0 i02 i 0 o _
2 (J#9-1)
0 2 1 * T
0 0 0 Aug.,
=<
Az, O 0 0
0 02 Ll 0 o
2 (G=g-1)
0 2 2 3 .T
L 0 0 0 2A1,dj_1

where o = {[d;],[d}]}, 7 = {[¢j-1],[c;]}. This implies that A . is
non-degenerate.

Finally we prove that A; 4, is non-degenerate. We have two steps for
that. Let n = {[cj—1],[dy]} and let A2 4 be a “-intersection matrix of
2-selections except . We define an equivalent relation ~ to be generated

by all elementary transformations.

A _ A2;Ca—1 . I *
2,dy — N | A
tA1,dy_,

Aza,_, ,S, 0 * \
'—6—- 0
= 0 2
" o 241, —241,_,
N0 0 | —idie_, | idie,_, /
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/Az,%_, 0 0 0 * % \
0 2| & o |-z x | ---ldgl
= 0 2 v eo—g, cqom
2A1,c,_, [241,,_, [¢9-2, 9]
0 0
\ O 0 _%Alycﬂ—; iAl;cy—2 }
(A2,c,_2 0 * % * * \
0 2] 0 = —if2 %
~ 0 2 s
0 0 §A1,Cg_2 2A1,Cg_2
\ 0 0 0 iAl,cg_z )
Ao, 0 x %
( 2ea=2 * \
0 102 0 =
= 0 2 % *
—2A1)Cy-—2
0 010 §A1,d,_2
\" 0 ol o 0 |idie,_, /
A2,Cg_2 *
* *
0 42
0 %Al,ca_z *
0 0 A1,

This matrix is non-degenerate and hence A g is also non-degenerate.

Aj,a, is given by

and Az g4, is also non-degenerate.
In case g = 3, we can prove that all Ay 4;, Ay ; are non-degenerate

in the same way. This completes the proof of Lemma 4.8. O
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Lemma 4.9.

Ag.c; and Ag,q; are all non-degenerate for all k, j.

Proof

We already prove in the cases k = 1,2. Assume that the statement
holds up to the éase k=p—1.

If {[di1],[e1],[dz],[d3),-..,[cj—1]} does not have any p-selections but
{ld1],[e1], [dal, [da), - - -, [ej-1], [d}], [d}]} has p-selections then

— 5 p2
Apd; =1 Ap—2,4;_,

and hence Apq; is non-degenerate.
If {[d1],[c1], [d2), [d5], - - -, [d}], [d}]} does not have any p-selections but
{ld1], [e1], [da], [d3), - - -, [d;], [d}], [c;]} has p-selections then

Ap,Cj = Ap—lxcj—l

and hence 4, .; is non-degenerate.

'When Ap.c;_, is non-degenerate A, j; is given by

A Ap,Cj_l 0
)d' = .
P 0 iPA, g,

and hence A, 4; is non-degenerate.
When A4, 4; is non-degenerate, 4, .. is given as follows. If there is no

p-selection containing both [¢;j—1],[c;] then

Ay d; 0
Ape; = &
0 Ap—l,Cj



and is non-degenerate. Otherwise

A _ Ap,d,' *
P.C; — * Ap_l,cj_l ]

and using lemma 4.5 this matrix is conjugate to

B 0 0 0
0 iPApge , XA . , 0
0 24,-2,_, Ap—2,c;_, ¢
0 0 D Ap-1,dj_,

where

B 0 )
= .dj
0 A, 5, , P

and, from the assumption, B is nondegenerate. By elementary transfor-

mations we can transform A, ; to

B 0 0 0
0 Apzc_, 0 0
0 0 SAp-2¢., C
0 0 D Ap_1,4;_,

When there does not exist any p-selections containing all of [¢;_s], [¢j—1],

[c;], we have C = 0,D = 0 and hence A4, ; is non-degenerate. Other-
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wise,
( %Ap—2,c,~_2 C )
D Ap_l’dj—bl
%AP_-Q,dj—z %E 0 0
— %F %AP—3,CJ'—3 2Ap—-3,c,-_3 0
0 %;AP'&Cj—s Z.EzAp—3,c,-_3 0
0 0 0 G

for some E, F,G. We transform this matrix by elementary transforma-

tions and have

§4r-24..  ¢F 0 0
SF O A4, 44, O 0

0 0 Ap-se;_y O

0 0 0 G

iPAp 3, O

G, is non-degenerate. Then it
0 G

Since Ap-1,d;_, = (

AP—21dj—2 E

is sufficient to show that ( .
F 3 Ap._.3 »Cj—~3

) is non-degenerate.

When there exists no p-selection containing all of [¢c;_3], [¢j—2], [¢j-1],

¢;], we have E = 0 and F = 0 and hence A, .. is non-degenerate.
21 P,Cj



Otherwise (by a certain numbering)

(AP_2’d.i—2 E ) )
F %Ap—3,c,'_3

H 0 0 0
o A, 5 0
- 0 2Ap—4,05—4 %Ap—4,c,'—4 %I
0 0 iJ LA, 34, ,
H 0 0 0
0 Ap-ay;_, 0 0
1o 0 B Apaei, I
0 0 J Ap_sa;_,

for some H, I, J. When there exists no p-selection containing all of [¢;_4],
[cj—3], [cj—2], [cj-1], [c;], then we have I =0, J = 0 and hence A4, ; is
non-degenerate.

Repeating this step it is sufficient to prove that a sequence {a, }n=1,2,...

such that
1

a; =1, an+1=1"'é—a——
n

does not contain zero. It is easy to check a, # 0 for any n and hence
Ap c; is non-degenerate for j < g — 1.
To show A, 4, is non-degenerate we have two steps. Let Ap,d; be a

~-intersection matrix of p-selections containing not both of [¢;_;] and

[dy]-
(Ap’cg—l * )
Ap,a, = . =
* ZAp_lrdg—l

83



84

[ Apcoos 0
0 iPAp ., ,
0 2Ap_2.¢, s
0 0
0

0 0 0 0 : \
if? : 92 0
TAP_.2,CE_3 0 —1f Ap—2,cg_3 0
2Ap'—1;cg—‘2 _ZAP—1109—2 0
_-.G'L‘A'P_lacg—2 iAP'_lycg—Z 0
0 0 P2CA, sy )
*
%Ap—lycg—2
iAp_l;cg-—2

i2ezAp—3’d9_2 )

and hence Ap,d'g is non-degenerate.

Ay.a, is given by

a

A Ap,d; 0
dy = .
e x  2ilA, 5.,

and hence it is non-degenerate. This completes the proof of Lemma, 4.9.

~ From Lemma 4.4 and Lemma 4.9 we get the following theorem.

Theorem A.

When k' Z 2, bgk(—ﬂg) = beg_e_zk(m-g) Z rnax(ag’k,a;;g_;;_k)

Remark When k = 1, Harer’s result shows the following equality.

b2(ﬂg) = 669—8(7\79) =2+ [%](= ag,1 +1)



§5. Number of distinct k-selections.

In this section we introduce certain algorithm to calculate of ag4k,
the number of the 2k-cycles we construct. g is a number of dis-
tinct k-selections i.e. distinct k homotopy classes of the free homotopy
classes [c1],. .. ,[cg—1],[d1],[d2],[d2],. - . ,[dg_j],[dgr_l],[dg] in Figure 2 satis-
fying 1),2) in Definition 3.1 modulo the action of homeomorphisms. In
other words oy ; is the number of conjugate classes of k-selections. The
final goal in this section is proposition B.

Let matrices A, B, C in M,(Z[t]) as follows

() (i) e=(hl)

Let polynomials ag4(t), by(t), cg(2), dg(t), f4(t) be as follows.

(ag(t) bg(t))
cg(t)  dy(?)

4
L (AABY™24% + £(AB)=3 A + £ A(AB)** A
2 , (g : even)
+t4(AB)S~*A+ B(BC)$ 1A+ t4(BC)% 24}
T -;—{A(AB)-"“zAz +t?(AB)? 3 A% +t?A(AB)' %4
, v (g : odd)
| +#(4B)*4+ B(BC)*T B? +*(BC)"T B?}

fo(t) := ag(t) +c4(2)

where for a matrix X and a negative integer ¢ we denote X! by the

inverse matrix of X in M,(Z(t)) and define X = (X ~1)(~=9. It is easy

ag(t) by(t)

to see that (
cg(t) dy(?)

) belongs to M,(Z[t]).
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Proposition B.

folt) =) agutt
. k

at) ()

Now for a matrix X =
cot) d(t)

) € M,(Z[t]) we denote a(t)+c(t)
by () |

Lemma 5.1.
Forgetting homeomorphism action on S, let aj ; be a number of k-

selections containing not both of [d;] and [c;1] and containing not both

of [d,] and [cg—1]. Then

FAABY? 4% = Y o) 4it*
ok

Proof

For each j, we can prove the next claim (§) by induction.

CramM (f).
(1) Let p; and p}, be defined by

(1, 1)AABY = (O piat®, D> pisth)  (1<i<g-1)
k k

then

pik = H{o : k — selection|{[d1], [e1]} € o € {[d], [en]; - - -, [d5], [d5]}}
pix = H{o : k — selection|{[d1], [a1]} € o € {[di]; [en]s - - -, [¢;-1]}}



(2) Let gj and g; ; be defined by

(1, 1)AMABY A= ginth ) diut*)  (1<ji<g-1)
k k

then

gjk = ${o : k —selection|{[d], [e1]} € o € {[d], [ea]; ..., [e5]}}
9;,k = H{a k- Se]eCt-ionl{[dl]a [CI]} JQ— o C {[dl]a [cl]a R [dj]) [dg]}}

Notice that a'g,k = qg—1,k + ¢g—1,k—1 and

11
(1,1)A(AB)* A% = () " qoo1it®, ) ahy i) ( )
k k

t 0
= (Q_apat" D ae-1uth)
k k

and we have

FIA(AB)T™24%) = o) 2+,
k .

O
Proof of Proposition B
In the similar way to the previous lemma, we have that the number

of all k-selections are representéd by the coefficients of
f(A(AB)*2A? +-t*(AB)Y 3 A? + 2A(AB)9 2 A + t1(AB)9%A)

and we have that the number of all symmetric k-selections are repre-

sented by the coefficients of

{ f(B(BC)#~1A +t4(BC)%"24) (g :even)
f(B(BC)*T" B? + t*(BC)*T°B%) (g :0dd)
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and we complete the proof. O

We can easily get the number of k-selections only from [c1], ..., [¢g-1],
[d2], [d3], - - -, [dg—1], [dj—;]- In fact we can get the following equality by
induction.

ramya= (L) (T () e

Then we get the next inequality.
1/g—-1 1 -1 k—2k +1 g—1-2
=3 () () (AT (00)

Finally some exémples of fy shall be described.
(1) When g =3 |
fa(t) = 1+ 2t + 5¢% + 3¢° + 2¢*

and we have

by = b1o =
by =bs > 5
bs >3

(2) When g =4 |
fa(t) =143t + 7¢2 + 983 + 7¢* + 3t° +¢°

and we have

by = by =4
by =byy > 7
bg = b2 > 9

bg =byo 27



(3) When g =5
fs(t) =14 3¢ + 1182 + 16> + 21¢* + 13¢° 4 8% 4 27 4 48

and we have

by = by =4 by = byo > 11

be = b1z > 16 by = by > 21

bio = b14 > 13 b2 > 8
(4) When g =6

fo(t) = 144t +14¢% +29¢% + 43t* + 43¢5 4+ 31¢° + 16t7 + 748 4 2t 4+ 410

and we have

by =byg =5 by =Dy > 14
be = by4 > 29 bg = byy > 43
bio = byo > 43 bia = b3 > 31
bis = b1 > 16
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