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abstract
Functions of enterprises are usually considered to consist of three levels: administration,

management, and operation levels. In this paper a causal model for systems of operation level is
proposed. Intuitively speaking an operation system is a discrete event system. That is, for
example, orders or enquiries from customers come in, purchase orders go out, goods are
produced or bought into warehouse, and they are sent with invoices. Each of those activities
can happen randomly and in parallel with respect to time and place, and changes in discrete
way. The model is a state space representation whose state space consists of files and internally
set events of some activities.

There are identifiable amount of information systems methodologies. Every
methodology does not seem to have concrete general models of operation system to which
information systems are supposed to be a pan of andlor support. That situation is strange

because no one can design highly suitable systems if he does not have a model of his target

system. The model in this paper will play such role and add some meaning of documents and
activities in those methodologies.

1. Introduction

Operation system in an enterprise can be taken as a discrete event system. For example,
it processes orders, proxluction, purchase, bookkeeping, e.t. $c$ . in parallel way and at random.
The questions to be answered in this paper are:

i) What decides the dynamics of operation system?
ii) What kind of roles does a file system play in a business system?
iii) What kind of systems do many infonnation systems methodologies produce?
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The model will provide conceptual basis to business analysis and requirements identification in
information systems methodologies, although we do not develop those kind of implication to

methodologies in this paper.
Model building is two fold. The model of dynamics is a state space representation of

operation system as a discrete event system whose state space consists of files and intemally set

events of some activities. The activities change the value of files. In modelling a real world situation
ffom static information aspect, data is used and modelled by files with attributes and two types of
integrity conditions. This modelling is called data modelling.

2. Basic Concepts

In this section systems, basic concepts and some notation are defined according to

Mesarovic and Takahara[2].

Definition 1. system

A system is a relation of an input set and output set. If those two sets are sets of time
functions defined on the same time set, then the system is called a time system.

The value set of inputs of a time system is called input alphabet and that of output called
output alphabet. Usually one of the set of non-negative real numbers $R^{+}$ or that of non-
negative integers $Z^{+}$ is taken as a time set. Let $x$ be a function ffom a time set $T$ to a input
alphabet. For any $t,$ $t^{1}\epsilon T,$ $t\leq t’$ , the restriction of domain of $x$ to $[t, t’$ ) is written as $x_{tt’}$ . That
is, $x_{tt’}(\tau)=x(\tau)$ for any $T,$ $t\leq\tau<t^{1}$ . Similarly $x_{t}$ is defined as $x_{t}(\tau)=x(\tau)$ for any $T,$ $t\leq\tau$ .
Let $x$ and $x^{1}$ be arbitrary functions from $T$ to the same alphabet A. For any $t\epsilon T$, we can define
another element $x^{\prime t}:Tarrow A$ by

$x”(t^{\prime 1})=\{\begin{array}{l}x(t’’),ift’’<tx’(t’’),ift’\geq t\end{array}$

$x”$ is called the concatenation of $x_{0t}$ and $x_{t}’$ and denoted by $x”=x_{0t}\cdot x_{t}$ . We define input space
X of $S$ by $X=\{x|(\exists y)((x, y)\epsilon S)\}$ . The output space $Y$ of $S$ is defined similarly. The power
set of a set A is denoted by $P(A)$ , that is, $P(A)=\{A’|A\supseteq A’\}$ .

State space is a key concept by which we can grasp the behavior of the dynamic system.

Definition 2. state space representation
Let $S\subset XxY$ be a time system with output alphabet B. A pair $<\Phi,$ $\mu>where$

$\Phi=$ { $\phi_{tt’}|\phi_{tt’}$ : $C\cross X_{tt’}arrow C$ and $t,$ $t’\epsilon T,$ $t\leq t’$ }
and $\mu:Carrow B$

is a state space representation of $S$ if and only if the following conditions are satisfied:
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(i) the functions $\Phi$ satisfies the following
$(\alpha)\phi_{tt’’}(c, x_{tt’’})=\phi_{t’t’’}(\phi_{tt’}(c, x_{tt’}),$ $x_{t’t’’}$), where $t\leq t^{\prime t}\leq t’$ and $x_{tt’’}=x_{tt’}\cdot x_{t’t’’}$

$(\beta)\phi_{tt}(c, x_{tt})=c$

(ii) (x,y) $\epsilon S$ if and only if there exists some $c\epsilon C$ such that for any $t\epsilon T$

$y(t)=\mu(\phi_{0t}(c, x_{0t}))$ .
$C$ is called the state space of $<\Phi,$ $\mu>$ .

Especially $\Phi$ is called a transition family if it satisfies $(\alpha)$ and $(\beta)$ of the above definition.

State space representation is the wide-spread ffamework to recognize dynamics of a time
system in causal way. Mesarovic and Takahara[2] shows that a time system is causal if and
only if it has a state space representation.

A dscrete event system is a special time system defmed as follows:

Definition 3. discrete event system [4]

If a time system $S\subset X\cross Y$ satisfies the following four conditions then is called a
discrete event system:

1) $T=[0, T_{end}$ ), $T_{end}\epsilon R^{+}$;

2) There is a set $A’$ and the input alphabet A of input space X is the power set of $A^{1}$ . That
is, $A=P(A’)$ ;

3) For any $(x, y)\epsilon S$ the following two conditions holds:
3-1) event(x) $=$ { $t1x(t)\neq 0,0$ is the empty set} is finite;

3-2) $F(y)=$ { $[t,$ $t’)|y(t)=y(t^{\prime t})$ for any $t’,$ $t\leq t’’<t^{1}$ , and $y(t)\neq y(t’)$ } is finite and $uF(y)$

$=T$.

We will see a transaction system as a discrete event system.

3. Objects for data modelling
3.1 Sets for data modelling

We will use DAE ($Domain- At\dot{m}bute$ -Entity) datamodel for description of data structure.

DAE is a simplification of TH datamodel[l]. The most famous datamodel seems to be entity-
relation(ER) model. The reason why we adopt a DAE datamodel instead of ER is that the natural
conespondence between states and files, which is defined below, and the concept of relation needs
not to be indispensable. Intuitively state at time is the historical and internal information of the time
system that decides future response of the system. The file system records accumulation of past

transactions and seems to be a part of the state.
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Definition 4. definition ofsets
ES :the set of entities called entity set.

ETS :set of entity types called entity type set. ETS is fmite.
DS :set of domains caUed domain set. DS is finite and a subset of ETS.
KS :set of key entity types called key entity type set. KS is finite and a subset of DS. A key entity

type is also called control object.
FTS :set of file types called file type set. FTS is finite and a subset of ETS.
AS : set of attributes called attribute set.

LES : set of list entities called list entity set.

ETS $=DSuFTS$($direct$ sum)

$S:DSarrow P(ES)$ ; set valued function
ES $=ETSuLESuASuS(DS)$

LES $=u$ { $P(S(dom(a_{i_{1}}))\cross\ldots\cross S(dom(a_{i_{n}})))$ I $A\Psi\Gamma(x))=\{a_{i_{1}},$ $\ldots,$
$a_{i_{n}}\}$ for some $x\in$ KS}

3.2 Functions for data modelling

Definition 5. definitions offunctions
FT: $KSarrow FTS$ ; file type function

FT(x) is called the file type of $x$ , which is of key type.
$A:FTSarrow P(AS)$; attribute function. When $A(FT(x))=\{a_{1}, a_{2}, \ldots, a_{n}\}$ then each $a_{i}$ in $A(F\Gamma(x))$

is called the attribute of FT(x).

dom: $ASarrow DS$ ; domain function. dom(a) is called the domam of $a$ .
key: $F\Gamma Sarrow AS$ , such that

(1) If $y=FT(x)$ then $dom(key(y))=x$, and
(2) $dom(key(FT(x)))=x$ is always holds.

File $=$ { $f:FTSarrow LES$ I $f$ is a file-content function}, where $f$ is said to be a file-content function if it
satisfies for any $x$ in KS that $f(FT(x))$ is a subset of $S(dom(a_{i_{1}}))\cross\ldots\cross S(dom(a_{i_{n}}))$ and $A(FT(x))=$

$\{a_{i_{1}}, \ldots, a_{i_{n}}\}$ . $f(FT(x))$ virtually represents the set of tuples in FT(x) at a time.

For an arbitrary file-content function $f$ define $V_{f}:f(FTS)\cross ASarrow S(DS)$ as follows;

Let $A(FT(x))=\{a_{1}, a_{2}, \ldots, a_{n}\}$ .
For any $y\in S(F\Gamma(x))$ and $a_{i}\in$ AS, $V_{f}(y, a_{i})\in S(dom(a_{i}))$ holds.

The function $V_{f}$ is often written as V when the file-content function $f$ is obvious in the context.

Fig. 1 shows some relation between the above defined sets and functions.
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Fig. 1 Domain-Attribute-Entity detamodel

3.3 Two types of integrity conditions

Definition 6. Referential key (referential integrity)

Let $x_{1}$ and $x_{2}$ be arbitrary elements of KS. An attribute $a_{i}\in A(FT(x_{2}))$ is called a referential key of
$FT(x_{2})$ to $FT(x_{1})$ of $FT(x_{2})$ refers $FT(x_{1})$ iff

1) $dom(key(FT(x_{1})))=dom(a_{i})=x_{2}$ hold, and
2) For any $f\in$ File

$f(FT(x_{2})).key(FT(x_{1}))\supseteq f(FT(x_{2})).ai$ holds.

In the above case we will write as $FT(x_{2})arrow F\Gamma(x_{1})$ .
Integrity shown by referential keys is called referential integrity.

REFER relation
A binary relation REFER on AS is defined as;
$(a, b)\in$ REFER iff there exist $x_{1}$ and $x_{2}$ in KS such that
1) $a\in A(FT(x_{2}))$ and $b=key(F\Gamma(x_{1}))$ , and
2) a is a referential key of $FT(x_{2})$ to $FT(x_{1})$ .

Definition 7. Subtype and Supertype
Let $x_{1}$ and $x_{2}$ be arbitrary elements of KS. $FT(x_{1})$ is said to be a subtype of $FT(x_{2})$ or $FT(x_{2})$ is

supertype of $FT(x_{1})$ iff the following three conditions hold;

1) For any $f\in$ File, $V(f(FT(x_{2})), key\Psi\Gamma(x_{2})))\supseteq V(f(FT(x_{1})), key(FT(x_{1})))$; That is, for any tuple
$y$ in file $f(FT(x_{1}))$ there exists a tuple $z\in f(FT(x_{2}))$ .
2) $A(FT(x_{1}))- key(FT(x_{1}))\supseteq A(FT(x_{2}))- key(FT(x_{2}))$ ; That is, $FT(x_{1})$ has more attributes than

$FT(x_{2})$ . In other words $F\Gamma(x_{1})$ inherits the attributes of $FT(x_{2})$ .
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3) For arbitrary $f\in$ File, $y_{1}\in f(FT(x_{1}))$ and $y_{2}\in f(FT(x_{2}))$ if $V(y_{1}, key(FT(x_{1})))=V(y_{2}$ ,

key$(FT(x_{2})))$ then $V(y_{1}, a)=V(y_{2}, a)$ for any $a\in A(FT(x_{2}))- key\sigma T(x_{2}))$ ; That is, the

corresponding values of inherited attributes are the same if that of key attributes so.

If $FT(x_{1})$ is a subtype of $FT(x_{2})$ then we denote as
$F\Gamma(x_{1})arrow FT(x_{2})$

or $FT(x_{l})$ inherits $FT(x_{2})$ .

INHERITS relation
A binary relation INHERITS on FTS is defined as

$(a, b)\in$ INHERITS iff a inherits $b$ .

REFER’s and INHERITSt are used to build in a logical conditions that should hold in
files in any implementation.

Let $t$FTS, $qAS,$ $qDS,$ $q$INHERITS and $t$REFER be special elements of FTS such that
for any file-contents function $ff(\not\subset FTS)=FTS,$ $f(qAS)=AS,$ $f(qDS)=DS,$ $f(\not\subset INHERITS)=$

IHHERITS and $f$( $q$REFER) $=REFER$ hold. Then the integrity conditions that DAE datamodel
must satisfy are shown as Fig. 2.

Fig. 2 integrity conditions in DAE

4. Business Transaction System

In the following a model of transaction system as a discrete event system with file
system is formulated. And it will be proved to be a state space representation (discrete event

dynamical system) of the discrete event system. The dynamic mechanism of the state space
representation is based on the three phase approach[3] to discrete event simulation that was
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formulated in [4]. Detailed intention of notions will not be explanation in the following
definition. Explanation of them can be seen in [4].

In the $following/*\ldots*/is$ a comment.

Definition 8. business transaction system $<4\Pi_{F}>$

8-1) definirion ofauxiliary sets

Clock $=[0, T_{end}]$ , where $T_{end}\epsilon R^{+}/^{*}$ time set of three phase simulation system $/$

$\Delta\epsilon$ Clock $/*The$ smallest time-slice to proceed simulation $/$

Entity $=\{1,2, \ldots, n\}$ $/*Every$ entity has a unique name as a number. An entity acts on $files^{*}/$

Entity $=B_{P}EntityuB_{B}EntityuB_{C}Entity$

, where $B_{P}Entity,$ $B_{B}Entity$ and $B_{C}Entity$ are mutually disjoint.
AnEntityState $=TimeCell\cross NextActivity\cross Avail$

,where TimeCell $=C1\propto k$

NextActivity $=B_{P}ActivityuB_{B}Ac\dot{\mathfrak{a}}vityuB_{C}Ac\dot{\mathfrak{a}}vity$

Avail $=$ { $available$, void} $/*shows$ whether the time cell of the entity state is
currently available or $not^{*}/$

and $B_{P}Activity,$ $B_{B}Activity$ and $B_{C}Activity$ are finite and mutually disjoint.

$/*Each$ entity is associated to an activity. If the activity is an element of Activity and the value of
Avail is “available“ then the activity will occur at the time represented in TimeCell. If the activity
is of CActivity possibility of occurrence of it is examined at each time any activity occurred and
executed in C Phase below. $*/$

Activity $=NextActivityu$ CActivity
, where CActivity $=\{c_{1}, c_{2}, \ldots, c_{w}\}$ is finite and disjoint from NextActivity.
EntityStates: $En\dot{\mathfrak{a}}\ddagger yarrow AnEntityState$ $/*each$ entity has its state $/$

$B_{B}EntityStates$ is the restriction of EntityStates to $B_{B}Entity$ .
$B_{C}EntityStates$ is the restriction of EntityStates to $B_{C}Entity$ .
CEntityStates $=B_{B}EntityStatesuB_{C}EntityStates$

FileId $=KS=\{1,2, \ldots, u\}$ $/*each$ file in the system has its name as a number $/$

$f_{AfectFile}:Activityarrow P(FileId)/*Each$ activity affects files specified by $f_{AfectFile}$ . $*/$

$X=$ { $x|x:Clockarrow P(B_{P}Activity),$ $\{t1x(t)\neq 0,0$ is the empty set} is finite} $/*input^{*}/$

BTL $=$ {fl $f:B_{P}Activi\ddagger yarrow[0,$ $T_{end}]$ } $/^{*}Note$ that $L(x)(t)$ is an element of BTL for any
$t\epsilon[0, T_{end}]^{*}/$

$f_{NextB_{B}Act}:B_{P}Activityarrow B_{B}Activity$, one-to-one mapping.
$/^{*}$ Each $B_{B}$ activity is bootstrapped by its corresponding $B_{P}$ activity, specified by $f_{NextB_{B}A_{Ct}^{*/}}$.

$f_{BEA}:B_{B}Entityarrow B_{B}Activity$ ; one-to-one mapping.
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$f_{PEA}:B_{P}Entityarrow B_{P}Activity$ ; one-to-one mapping.
$/*occ\iota mence$ time of $B_{P}$ and $B_{B}$ activities are set in its corresponding a $B_{P}$ and $B_{B}$ entities,

respectively. Functions $f_{PEA}$ and $f_{BEA}$ specifies the correspondence. $*/$

$f_{EE}:B_{P}Entityarrow B_{B}Entity,$ $f_{EE}=f_{BEA^{- 1}}\cdot f_{NextB_{B}Act}\cdot f_{PEA}$.
$f_{B_{B}EA}$ : $B_{B}Entityarrow B_{P}Ac\dot{\mathfrak{a}}vity,$ $f_{B_{B}EA}=f_{NextB_{B}Act^{- 1}}\cdot f_{BEA}$.
$f_{NextB_{C}Act}:CActivityarrow B_{C}Activity$ : one-to-one mapping.

$/^{*}$ Each $B_{C}$ activity is bootstrapped by its corresponding $C$ activity, specified by $f_{NextB_{C}Act}$ . $*/$

$/*Ifz$ is an element of a Cartesian product and has A-coordinate then the A-coordinate of $z$ is
written as $z.A”$ . For example, if $z=(a, b, c)\epsilon$ AxBxC then z.A $=a$ and z.B $=b$ . Changes

with time in EntityStates and File can be divided into three phase, each of which is named
A-Phase, $B_{-}Phase$, and C-Phase. $*/$

8-2) Transition in A Phase

$f_{Scan}:EntityStatesarrow Clock$

$f_{Scan}(e)=\min\{k1k=e(i).TimeCell$ and
e(i).Avail $=available$ for some entity $i\epsilon$ Entity}

$f_{Dues}:EntityStatesarrow P(Entity)$ , where P(Entity) is the set of subsets of Entity.
$f_{Dues}(e)=$

{ $i|f_{Scan}(e)=e(i).TimeCel1$, and $e(i)$ .Avail $=available$ }

8-3) Transition in B Phase

We define $f_{B_{-}Ent}$ as follows.
Let $e\epsilon$ EntityStates be arbitrary and $d=f_{Dues}(e)$ .
$f_{B_{-}Ent}$ : EntityS$tatesarrow EntityS$tates

$f_{B_{-}Ent}(e)=e’$ such that for each $i\epsilon$ Entity
case 1: if $i\epsilon d\cap(B_{B}En\dot{0}tyuB_{C}Entity)$ then

e’(i).NextActivity $=e(i).NextActivity/*unchanged^{*}/$

e’(i).TimeCell $=e(i).TimeCell$ $/*unchanged^{*}/$

$e^{1}(i).Avai1=void$ .
case 2: if $i\epsilon d\cap B_{P}En\dot{n}\ddagger y$ then

$e^{\dagger}(f_{EE}(i))$.NextActivity $=f_{Nex\ddagger B_{B}Act}$($e(i)$ .NextActivity)

$e’(f_{EE}(i)).TimeCel1=f_{NextTime}(c)$ ($f_{NextB_{B}Act}(e(i)$ .NextActivity))

$e’(f_{EE}(i)).Avai1=available$ .
case 3: when $i$ is not in $d$ :
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$e^{1}(i)=e(i)$ $/*unchanged^{*}/$

, where $f_{NextTime}$ : $Clock\cross(B_{B}ActivityuB_{C}Activity)arrow C1\propto k$ and
$f_{NextTime}(c)(f_{NextB_{B}Act}(e(i).NextActivity))\geq\Delta+c$ holds.

$f_{B_{-}F4e}:EntityStates\cross Filearrow File$ $/^{*}f_{B_{-}File}$ calculates File when any of Activity occurs. $*/$

$f_{B_{-}File}(e, f)=f_{nu}$, such that $f_{10}=f_{0u}=f$ and

$f_{ij}(k)=\{\begin{array}{l}f_{FileVal}(a,f_{i- l,u},k),ifi\epsilon d,k\epsilon f_{AfectQ}(a)andk=j=1\cdotf_{Fi1eVal}(a,f_{i,j- 1},k),ifi\epsilon d,k\epsilon f_{AfectQ}(a),k=jand1<j\leq u\cdotf_{i- l,u}(k),ifi\not\in dandj=1\cdotf_{i,j- 1}\cdot(k),otherwise\cdot\end{array}$

for each $i$ and $j,$ $1\leq i\leq n,$ $1\leq j\leq u$ , where $a=e(i).NextActivity$ and $f_{FileVa1}:Activity\cross File\cross KS$

$arrow LES$ such that $f_{FileVa1}(a’, f, k’)\in P(S(dom(a_{i_{1}}))\cross\ldots\cross S(dom(a_{i_{n}})))$ with $A(FT(k))=\{a_{i_{1}}$ ,

..., $a_{i_{n}}$ } for any $a’\in A,$ $f\in$ File and $k’\in$ KS.

8-4) transition in C Phase

$f_{C_{-}condition}:Filearrow P(CActivity)$

$f_{CB}:CActivityarrow B_{C}Entity$ : one-to-one mapping.

Let $i\epsilon$ Entity, $f\epsilon$ File and $e\epsilon$ EntityStates be arbitrary and $c=f_{Scan}(e)$ .

$f_{C_{-}Ent}:File\cross EntityStatesarrow EntityS$tates

$f_{C_{-}Ent}(f, e)=e’$ such that for any $i\epsilon$ Entity
case 1: if $i\not\in f_{CB}(f_{C_{-}condition}(f))$ or $f_{C_{-}condition}(f)$ is empty then

$e’(i)=e(i)/*unchanged^{*}/$

case 2: if $i\epsilon f_{CB}(f_{C_{-}condition}(f))$ then
$e’(i)$ .NextActivity $=f_{NextB_{C}Act}(f_{CB^{- 1}}(i))$

e‘(i).TimeCell $=f_{NextTime}(c)(f_{NextB_{C}Act}(f_{CB^{- 1}}(i)))$ ,

,where $f_{NextTime}(c)(f_{NextB_{C}Act}(f_{CB^{- 1}}(i))\rangle$ $\geq\Delta+c$ holds,

$e’(i)$.Avail $=available$

$/*B_{C}Activity$ is another type of bootstrapped activity. In an inventory section for goods,

purchased goods arrive randomly and they will stay in the warehouse until being shipped.
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That kind of activity, for example stay11, is a $C$ activity. When we think the length of holding
goods varies to each customer’s order, the time of shipping is determined when the stay activity
starts. Thus the activity ofthe end of staying” occurs at the set time. A type of activities such
as “the end of staying“ that is bootstrapped by a $C$ activity is called $B_{C}Activity$ . The occurrence
time stored in a $B_{C}En\dot{n}ty$ . $*/$

$f_{C_{-}File}:Filearrow File$ $/^{*}f_{C_{-}File}$ calculates File when any of CActivity occurs. $*/$

$f_{C_{-}File}(f)=f_{wu}$ such that $f_{0u}=f_{10}=f$ and

for any $i,$ $j,$ $1\leq i\leq w,$ $1\leq j\leq u$.

8-5) construcnon $of<\Phi\Pi_{F}>$

$f_{B}:File\cross EntityStatesarrow File\cross EntityStates$ .
Let $f\epsilon$ File and $e\epsilon$ EntityStates be arbitrary.
$f_{B}(f, e)=(f_{B_{-}File}(e, f),$ $f_{B_{-}Ent}(e))$ . $/^{*}f_{Scan}$ and $f_{Dues}$ are used in calculation of $f_{B}$ . $*/$

$/*f_{C}$ is a total function which satisfies the following $/$

$f_{C}$ : $File\cross EntityStatesarrow File\cross EntityStates$

$f_{C}(f, e)=$ $\{\begin{array}{l}f_{C}(f_{C_{-}File}(f),f_{C_{-}Ent}(f,e)),iff_{C_{-}condition}(f)\neq 0(f,e),iff_{C}condition(f)=0\end{array}-$

$\delta;Fde\cross EntityStatesarrow File\cross En\dot{\mathfrak{a}}$tyStates
$6=f_{C}\cdot f_{B}$

Let $e^{B}\epsilon B_{P}EntityStates$ and $e^{C}\epsilon$ CEntityStates be arbitrary. We will identify a pair $(e^{B}, e^{C})$ as
an element of EntityStates in natural way.
$6_{c};File\cross EntityStatesarrow File\cross CEntityStates$ is defined by $\delta_{c}(f, e)=(f, e^{1C})$ such that $6(f, e)=$

$(f, e^{\prime B}, e^{\prime c})$ for some $e^{\prime B}\epsilon B_{P}EntityStates$.
$f_{XEnt}:BTLarrow B_{P}EntityStates$

$f_{XEnt}(\beta)=e’$ such that
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$e’(i)$ .NextActivity $=f_{PEA}(i)$ ,

e‘(i).TimeCell $=\beta(f_{PEA}(i))$ ,

$e^{1}(i)$.Avail $=available$

for any $i\epsilon B_{P}Entity$ .
$\phi_{tt’}:File\cross CEntityStates\cross L(X)_{tt’}arrow File\cross CEntityStates$ is defined by as follows:

for any $t$ and $t’,$ $t<t’$ ,

$\phi_{tt’}(f, e^{C},L(x)_{tt’})=$ $\{\begin{array}{l}(f_{m},e^{C_{m}}),ift_{m}\leq tandt_{m+l}>t’(f,e^{C}),otherwise\end{array}$

where $t_{0}=t,$ $(f_{0}, e^{C_{0}})=(f, e^{C}),$ $t_{k}=f_{Scan}(f_{XEnt}(L(x)_{tt’}(t_{k- 1})), e^{C_{k- 1}})$ and
$(f_{k}, e^{c_{k}})=6_{C}(f_{k- 1}, f_{XEnt}(L(x)_{tt’}(t_{k- 1})),$ $e^{C_{k- 1}}$ ) for some positive integer $n$ and each $k,$ $1\leq k\leq$

$m+1$ . Also define $\phi_{tt}(f, e^{C}, L(x)_{tt})=(f, e^{C})$ for any $t$ .
The family of functions defined above $<\Phi,$ $\Pi_{F}>$ , where $\Phi=\{\phi_{tt’}|t, t’\epsilon T, t\leq t’\}$ and $\Pi_{F}$ is the
projection on FilexCEntityStates along File, is called a business transaction system.

Well-definedness of $\phi_{tt’}$ must be shown. Since event(x) is finite we can assume that
event(x) $=\{t_{1}, t_{2}, \ldots, t_{p}\},$ $t_{1}<t_{2}<\ldots<\ddagger_{p}$ for some integer $p$ . At each $t_{i},$ $1\leq i\leq p$ , for some of
CEntity, say $j\epsilon$ CEntity, CEntityStates$(|).TimeCell$ is set by $f_{B_{-}Ent}$ and $f_{C_{-}Ent}$, and for some of
$B_{P}EntitykB_{P}EntityStates(k).TimeCel1$ by $f_{XEnt}$. Therefore if the number of Entity is $r$ then at

most $r$ entities are set in EntityStates such that the state value of $File\cross EntityStates$ changes at

each of the set times. Thus the number of times that give is at most $p*r$ even for $t=0$ and $t’=$

$T_{end}$ .
In this paper we have restricted our consideration in the case where $f_{C}$ is a total function,

that is, the expansion of $f_{C}$ is eventually stops by $f_{C_{-}condition}$ value being empty.

For a three phase simulation system $<\Phi,$ $\Pi_{F}>the$ resultant system that $<\Phi,$ $\Pi_{F}>$

defines is denoted by ${\rm Res}(<\Phi, \Pi_{F}>)$, that is, ${\rm Res}(<\Phi, \Pi_{F}>)=\{(L(x),y)$ I $(\exists((f, e^{C}))(\forall t)(y(t)=$

$\Pi_{F}\cdot\phi_{0t}(f, e^{C}, L(x)_{0t}))\}$ .

Definition 9. $L$ (time-list representation) $f4$]

Let $x$ be an input of a discrete event system $(A’, B, T, X, Y, S)$ . Notice $x(t)\epsilon P(A’)$

holds for any $t\epsilon$ T.
Define $L:Xarrow\{Tarrow\{A^{t}arrow R^{+}\}\}$ as

$L(x)(t)(b)=\{\begin{array}{l}T_{end},ifx(t^{\dagger})doesnotincludebforanyt’,t\leq t’<T_{end}\min\{t^{\dagger}|x(t^{t})includesbatt^{|},t^{t}>t\},otherwise\end{array}$

for any $x\epsilon X,$ $t\epsilon T$ , and $b\epsilon A’$ . $L(x)$ is called a time-list representation of $x$ .

The function $L$ has its inverse which is written as $L^{-1}$ . For a discrete event system $S$ whose
input space is X, the time system whose input space is $L(X)$ is written as $L(S)$ .
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Definition 10. discrete event dynamical system [4]

Let $S$ be a discrete event system. A discrete event dynamical system of $S$ is a state space
representation of $L(S)$ .

Theorem 1
Let $<\Phi,$ $\Pi_{F}>be$ a three phase simulation system. Then $<\Phi,$ $\Pi_{F}>is$ a discrete event

dynamical system of $L^{-1}({\rm Res}(<\Phi, \Pi_{F}>))$ .

Let $<\Phi,$ $\Pi_{F}>be$ a business transaction system. If every activty acts on files with
preservation of relations on the file $of<\Phi,$ $\Pi_{F}>then$ the consistency condition on the file is
preserved.

5. Conclusion

A state space representation of transaction system is proposed. Its state space is files and
intemally set times when some internal activities occur. This model provides a conceptual basis
of both analysis and design of business transaction system.

It provides how a file system is modeled and used in a business system.

It also can be used to explain the reason why some of documents and activities in
information systems methodologies are indispensable. Most of business analysis in information
systems methodologies contain analysis of flows of physical objects and of infornation through
functional units in an organization. If some of them has character that accumulates, then all of
those must captured in modelling of dynamic behavior of business transaction, otherwise the
behavior cannot be correctly reflect actual one. Since this task is usually undertaken by writing
data flow diagrams or something like that, many methodologies have the diagrams as the part of
the output documents. In other words, a collection of information requirements solely, without
other information like analyzed flows, may not provide a sound model of the target system’s
behavior.
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