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Continuation of Real Analytic Solutions of Partial Differential Equations
up to Convex Conical Singularities

内田素夫
(Motoo UCHIDA)

Osaka University, College of General Education, Mathematics

In his talk at the RIMS Seminar in December 1985, Kaneko gave the following conjec-
ture (cf. [Kn3]):

Kaneko’s Conjecture. Let $P=D_{t}^{2}-\triangle$ be the wave operator on the Euclidean $n$ space
$R^{n}$ . Let $\Gamma$ be a closed convex proper cone of $R^{n}$ with vertex at the origin, sharp enough
in a certain direction; i.e., $\Gamma$ is contain$ed$ in $\{x_{1}\geq C|x_{2}|\}$ for a Euclidean coordinate
$(x_{1}, \cdots x_{n})$ of $R^{n}$ , for a large $C>0$ . Let $R>0$ and set $K=\{(x, t)\in R^{n}\cross R|x\in$

$\Gamma,$ $|t|\leq R|x|$ }. Then any real analytic solution to the wave equation $Pu=0$ defined
outside $K$ can be analytically continued up to the origin $(0,0)$ of $R^{n}\cross R$ .

We give an answer to this conjecture in a general context.

Definition. Let $K$ be a dosed $su$bset of a real analytic manifold $M$ of dimension $n$ . $K$

is said to be $C^{\alpha}$ -convex at $x\in M(1\leq\alpha\leq\omega)$ if there exist a neighborhood $U$ of $x$ and
an open $C^{\alpha}$ -immersion $\phi$ : $Uarrow R^{n}$ such that $\phi(U\cap K)$ is convex in $R^{n}$ . $K$ is said to
$h$ave a conical singularity at $x$ if $x\in K$ and the tangent cone $C_{x}(K)$ is a closed proper
cone of $T_{x}M$ .

Theorem 0.1. Let $K$ be a $C^{1}$ -convex closed $su$bset of a real analytic manifold $M,$ $h$aving
a conical singularity at $x$ . Let $P=P(x, D)$ be a second order differenti$aI$ operator with
analytic coefficients defined in a neigh\’oorhood of $x$ . Assume that $P$ is of $real$ principal
type and is not elliptic. Then any real analytic solution to the equation $Pu=0$ defined
outside $K$ is analytically continued up to $x$ .

In order to state a similar result for overdetermined systems of differential equations, we
first recall the notion of a virtual bicharacteristic manifold of a system $\mathcal{M}$ of differential
equations.

Let $V=Char(\mathcal{M});V^{c}$ denotes the complex conjugate of $V$ with respect to $T_{M}^{*}X$ . Let
$p\in V\cap(T_{M}^{*}X\backslash M)$ . Assume the following:
(b.1) $V$ is nonsingular at $p$ .
(b.2) $V$ and $V^{c}$ intersect cleanly at $p$ ; i.e., $V\cap V^{c}$ is a smooth manifold and

$T_{p}V\cap T_{p}V^{c}=T_{p}(V\cap V^{c})$ .

(b.3) $V\cap V^{c}$ is regular; i.e., $\omega|_{V\cap V^{c}}\neq 0$ , with $\omega$ being the fundamental l-form on $T^{*}X$ .
(b.4) The generalized Levi form of $V$ has constant rank in a neighborhood of $p$ .
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Then one can define the virtual bicharacteristic manifold $\Lambda_{p}$ of $\mathcal{M}$ passing through $p$ (cf.
[SKK, Ch.III, Sect.2.4]). we assume
(b.5) $d\pi(T_{p}\Lambda_{p})\neq\{0\}$ .

Theorem 0.2. Let $(K, x)$ be as in Theorem 0.1. Let $\mathcal{M}$ be a system of differential
equation$s$ defned in a neighborhood of $x$ . Assume that Char$(\mathcal{M})\cap\pi^{-1}(x)$ has codimension
$\geq 2$ in $\pi^{-1}(x)$ and that $V=$ Char(M) satisfies conditions $(b.1)-(b.5)$ at each poin$tp$

of $V\cap(T_{M}^{*}X\backslash M)\cap\pi^{-1}(x)$ . Then any real analytic solution to $\mathcal{M}$ defined outside $K$ is
analytically contin$ued$ up to $x$ .

Corollary. Let $(K, x)$ be as in Theorem 0.2. Let $\mathcal{M}$ be an elliptic system of differential
equation$s$ an$d$ assum$e$ that Char$(\mathcal{M})\cap\pi^{-1}(x)$ has codimensi$on\geq 2$ in $\pi^{-1}(x)$ . Then any
solution $u$ of $\mathcal{M}$ defined outside $Kc$an be analytically contin$ued$ up to $x$ .

$Rema\tau k$ . Cf. [Kw], theorems 4 and 5, for general results on analytic continuation of the
solutions of overdetermined systems of differential equations.

The following theorem is a generalization of Theorem 0.1 to higher order differential
equations for $K=\{x_{0}\}$ . Cf. Theorem 17 and Corollary 22 of [Kn2].

Theorem 0.3. Let $P=P(x, D)$ be a differential operator of real princip$a1$ type. Assume
that the polynomiaJ $f(x0;\zeta)$ in $\zeta$ has no elliptic factors. Then any real analytic solution
to the equation $Pu=0$ defined in a neighborhood of $x_{0}$ except $x_{0}$ can be analytically
contin$ued$ on the whole of a neighborhood of $x_{0}$ .
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