Continuation of Real Analytic Solutions of Partial Differential Equations up to Convex Conical Singularities

內田素夫

(Motoo UCHIDA) Osaka University, College of General Education, Mathematics

In his talk at the RIMS Seminar in December 1985, Kaneko gave the following conjecture (cf. [Kn3]):

Kaneko's Conjecture. Let $P = D_t^2 - \Delta$ be the wave operator on the Euclidean *n* space \mathbf{R}^n . Let Γ be a closed convex proper cone of \mathbf{R}^n with vertex at the origin, sharp enough in a certain direction; i.e., Γ is contained in $\{x_1 \geq C | x_2 |\}$ for a Euclidean coordinate (x_1, \dots, x_n) of \mathbf{R}^n , for a large C > 0. Let R > 0 and set $K = \{(x, t) \in \mathbf{R}^n \times \mathbf{R} \mid x \in \Gamma, |t| \leq R|x|\}$. Then any real analytic solution to the wave equation Pu = 0 defined outside K can be analytically continued up to the origin (0,0) of $\mathbf{R}^n \times \mathbf{R}$.

We give an answer to this conjecture in a general context.

Definition. Let K be a closed subset of a real analytic manifold M of dimension n. K is said to be C^{α} -convex at $x \in M$ $(1 \leq \alpha \leq \omega)$ if there exist a neighborhood U of x and an open C^{α} -immersion $\phi: U \to \mathbb{R}^n$ such that $\phi(U \cap K)$ is convex in \mathbb{R}^n . K is said to have a conical singularity at x if $x \in K$ and the tangent cone $C_x(K)$ is a closed proper cone of $T_x M$.

Theorem 0.1. Let K be a C^1 -convex closed subset of a real analytic manifold M, having a conical singularity at x. Let P = P(x, D) be a second order differential operator with analytic coefficients defined in a neighborhood of x. Assume that P is of real principal type and is not elliptic. Then any real analytic solution to the equation Pu = 0 defined outside K is analytically continued up to x.

In order to state a similar result for overdetermined systems of differential equations, we first recall the notion of a virtual bicharacteristic manifold of a system \mathcal{M} of differential equations.

Let $V = \text{Char}(\mathcal{M})$; V^c denotes the complex conjugate of V with respect to $T^*_M X$. Let $p \in V \cap (T^*_M X \setminus M)$. Assume the following:

(b.1) V is nonsingular at p.

(b.2) V and V^c intersect cleanly at p; i.e., $V \cap V^c$ is a smooth manifold and

$$T_p V \cap T_p V^c = T_p (V \cap V^c).$$

(b.3) $V \cap V^c$ is regular; i.e., $\omega|_{V \cap V^c} \neq 0$, with ω being the fundamental 1-form on T^*X .

(b.4) The generalized Levi form of V has constant rank in a neighborhood of p.

Then one can define the virtual bicharacteristic manifold Λ_p of \mathcal{M} passing through p (cf. [SKK, Ch.III, Sect.2.4]). we assume

(b.5) $d\pi(T_p\Lambda_p) \neq \{0\}.$

Theorem 0.2. Let (K, x) be as in Theorem 0.1. Let \mathcal{M} be a system of differential equations defined in a neighborhood of x. Assume that $\operatorname{Char}(\mathcal{M})\cap \pi^{-1}(x)$ has codimension ≥ 2 in $\pi^{-1}(x)$ and that $V = \operatorname{Char}(\mathcal{M})$ satisfies conditions (b.1)—(b.5) at each point p of $V \cap (T_M^*X \setminus M) \cap \pi^{-1}(x)$. Then any real analytic solution to \mathcal{M} defined outside K is analytically continued up to x.

Corollary. Let (K, x) be as in Theorem 0.2. Let \mathcal{M} be an elliptic system of differential equations and assume that $\operatorname{Char}(\mathcal{M}) \cap \pi^{-1}(x)$ has codimension ≥ 2 in $\pi^{-1}(x)$. Then any solution u of \mathcal{M} defined outside K can be analytically continued up to x.

Remark. Cf. [Kw], theorems 4 and 5, for general results on analytic continuation of the solutions of overdetermined systems of differential equations.

The following theorem is a generalization of Theorem 0.1 to higher order differential equations for $K = \{x_0\}$. Cf. Theorem 17 and Corollary 22 of [Kn2].

Theorem 0.3. Let P = P(x, D) be a differential operator of real principal type. Assume that the polynomial $f(x_0; \zeta)$ in ζ has no elliptic factors. Then any real analytic solution to the equation Pu = 0 defined in a neighborhood of x_0 except x_0 can be analytically continued on the whole of a neighborhood of x_0 .

- [Kn1] A. Kaneko On continuation of regular solutions of linear partial differential equations, Publ. RIMS, Kyoto Univ., 12, Suppl., 1977, 113-121.
- [Kn2] A. Kaneko On continuation of real analytic solutions of linear partial differential equations, Astérisque 89-90, Soc. Math. France (1981), 11-44.
- [Kn3] A. Kaneko On continuation of real analytic solutions of linear partial differential equations up to convex conical singularities, Sûriken-Kôkyûroku 592, RIMS Kyoto Univ. (1986), 149-172 (Japanese).
- [Kw] T. Kawai Extension of solutions of systems of linear differential equations, Publ. RIMS, Kyoto Univ. 12 (1976), 215-227.
 - [U] M. Uchida (to appear in Bull.S.M.F.)