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Abstract. $W$ algebras arise in the study of various nonlinear integrable systems such as:

self-dual gravity, the KP and Toda hierarchies, their quasi-classical (or dispersionless)

limit, etc. Twistor theory provides a geometric background for these algebras. Present

state of these topics is overviewed. A few ideas on possible deformations of self-dual

gravity (including quantum deformations) are presented.

1. INTRODUCTION

The dramatic progress of the $2D$ gravity/string theory in the last few years [1] has revealed

a new relation of field theory to integrable hierarchies of $KdV$, KP and Toda lattice type.

The theory of nonlinear integrable systems has thus again proven its usefulness in physics.

It is Virasoro and $W$ symmetries of these integrable hierarchies that plays a central role

in characterizing these models of gravity and strings as special solutions of an integrable

hierarchy.

The structure of Virasoro and $W$ symmetries arises in several different (but actually

equivalent) forms. Firstly, the partition function $Z$ (or its square root $\sqrt{Z}$) of these
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models can be identified with the tau function $\tau$ of an integrable hierarchy, and satisfies

a set of linear constraints (Virasoro constraints) of the form

$\mathcal{L}_{n}\tau=0$ , $n\geq-1$ (1)

for a set of Virasoro symmetry generators $\mathcal{L}_{n}$ ; these constraints can be further generalized

to $W$ algebraic analogues ($W$ constraints)[2]. Secondly, the same model of $2D$ gravity

can be reproduced from the canonical commutation relation (Douglas equation) [3]

$[P, Q]=1$ (2)

of two ordinary differential operators in one variable. A third expression is due to the

Schwinger-Dyson equation (or loop equations) for loop correlation functions [4]. Al-

though less obvious, the latter two expressions of $2D$ gravity, too, stem from Virasoro

and $W$ symmetries.

$W$ symmetries also exist in the self-dual vacuum Einstein equation [5], a higher di-

mensional nonlinear integrable system. Not only being an integrable model of $4D$ gravity

(self-dual gravity), this equation (as well as its hyper-K\"ahler versions in $4k$ dimensions)

has also been extensively studied in the context of supersymmetric nonlinear sigma mod-

els [6], relativistic membranes [7], $SU(\infty)$ Toda fields [8] etc., and very recently, as an

effective theory of $N=2$ strings [9]. These diverse models of field theory may be thought

of as higher dimensional counterparts of the above mentioned models of the $2D$ grav-

ity/string theory.

Our basic standpoint is that $W$ symmetries (in particular, $W_{1+\infty},$ $w_{1+\infty}$ and their

variations [10]) provide us with a unified framework for understanding these nonlinear

integrable systems. We start with a brief review of $W$ algebraic structures in self-dual

gravity, then turn to similar results on the KP and Toda hierarchies and their quasi-

classical limits. In the final section, we shall present a few ideas on deformations of

self-dual gravity and associated $W$ algebraic structures.

2. SELF-DUAL GRAVITY

$W$ algebraic structures of self-dual gravity can be deduced from Penrose’s twistor theo-
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retical approach (nonlinear graviton construction) [11]. To see this, it is convenient to

start from the Plebanski equation [12]

$\Omega_{p\overline{p}}\Omega_{q\overline{q}}-\Omega_{p\overline{q}}\Omega_{q\overline{p}}=1$ (3)

where $\Omega$ is a K\"ahler potential and $p,$ $q,\overline{p},\overline{q}$ are suitably chosen complex coordinates. This

equation (actually known to mathematicians before Plebanski) represents Ricci-flatness

of a K\"ahler metric. We now introduce a new variable $\lambda$ (known in the theory of nonlinear

integrable systems as “spectral parameter”) and, following Gindikin [13], make a linear

combination

$\omega(\lambda)def=d\overline{p}\wedge d\overline{q}+\lambda\omega+\lambda^{2}dp\wedge dq$ (4)

of the holomorphic 2-form $dp\wedge dq$ , the anti-holomorphic 2-form $d\overline{p}\wedge d\overline{q}$ and the K\"ahler

form $\omega=def\Omega_{p^{i}\overline{p}^{j}},$ $p^{i}=(p, q),\overline{p}^{i}=(\overline{p},\overline{q})$ . The Plebanski equation can be now cast into

the exterior differential equations

$d\omega(\lambda)=0$ , $\omega(\lambda)\wedge\omega(\lambda)=0$ $(d\lambda=0)$ , (5)

where $d$ stands for total differential in $(p, q,\overline{p},\overline{q})$ viewing $\lambda$ a constant.

By a classical theorem of Darboux, one can find two “Darboux coordinates” $P(\lambda)$

and $Q(\lambda)$ as

$\omega(\lambda)=dP(\lambda)\wedge dQ(\lambda)$ $(d\lambda=0)$ . (6)

In particular, these Darboux coordinates give a canonical conjugate pair

$\{P(\lambda), Q(\lambda)\}_{\overline{p},\overline{q}}=1$ (7)

for the Poisson bracket $\{F, G\}_{\overline{p},\overline{q}}=defF_{\overline{p}}G_{\overline{q}}-F_{\overline{q}}G_{\overline{p}}$ . Actually, these Darboux coordi-

nates are not unique, but allow transformations

$P(\lambda),$ $Q(\lambda)arrow f(\lambda, P(\lambda),$ $Q(\lambda)),$ $g(\lambda, P(\lambda),$ $Q(\lambda))$ (8)

by a two-dimensional symplectic (i.e, area-preserving) diffeomorphism depending also

on $\lambda;f$ and $g$ are required to have a unit Jacobian for the second and third variables,
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hence defines an area-preserving diffeomorphism with parameter $\lambda$ . The relevance of a

$W$ algebra (in this case, $w_{1+\infty}$ ) is already manifest.

Penrose’s idea is to consider two special pairs of Darboux coordinates, say $\mathcal{U}(\lambda),$ $\mathcal{V}(\lambda)$

and $\hat{\mathcal{U}}(\lambda),\hat{\mathcal{V}}(\lambda)$ , with different complex analytic properties with respect to $\lambda$ . These

Darboux coordinate systems are then linked with each other by a symplectic mixing as

in (8):

$f(\lambda,\mathcal{U}(\lambda),$ $\mathcal{V}(\lambda))=\hat{\mathcal{U}}(\lambda)$ , $g(\lambda,\mathcal{U}(\lambda),$ $\mathcal{V}(\lambda))=\hat{\mathcal{V}}(\lambda)$ , (9)

and this gives a Riemann-Hilbert problem in the group SDiff(2) of area preserving diffeo-

morphisms. The data $(f,g)$ , which then becomes an element of the loop group $\mathcal{L}SDiff(2)$

of SDiff(2), is exactly Penrose’s twistor data, and conversely, solving the above Riemann-

Hilbert problem (which is generally a hard task though) for a given data give rise to all

(local) solutions of self-dual gravity.

The existence of a large set of symmetries is now an obvious consequence of the

$\mathcal{L}SDiff(2)$ group structure in the twistor data $(f, g)$ : the action of this loop group on

itself (from left or right) gives transformations of the corresponding solution of self-dual

gravity via the Riemann-Hilbert problem. Infinitesimal symmetries accordingly have the

structure of the loop algebra of $w_{1+\infty}$ .
Algebraic structures found in self-dual gravity are thus more or less reminiscent of

$2D$ gravity as well as $W$ gravity [14], in which $W$ algebras (both quantum and quasi-

classical) give basic symmetries. This is also the case for dimensionally reduced models

of $4D$ self-dual gravity [15]. Note, however, that the full symmetry algebra of $4D$ self-

dual gravity is the loop algebra of $w_{1+\infty}$ , far larger than $w_{1+\infty}$ itself. This reflects a

higher dimensional characteristic of self-dual gravity, and suggests a possible direction of

extending the notion of $W$ algebras. We shall return to this issue in the final section.

3. KP HIERARCHY AND CANONICAL CONJUGATE PAIR

We have seen that a canonical conjugate pair, $\mathcal{U}$ and V, takes place in the description of

general solutions of self-dual gravity. The KP hierarchy, too, turns out to have a similar

pair (of pseudo-differential operators).
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The KP hierarchy, by definition, describes a commuting set of isospectral flows

$\frac{\partial L}{\partial t_{n}}=[B_{r\iota}, L]$ , $B_{n}def=(L^{n})\geq 0$ $n=1,2,$ $\ldots$ , (10)

of a one-dimensional pseudo-differential operator

$L def=\partial+\sum_{n=1}^{\infty}u_{n+1}\partial^{-n}$ , $\partial def=\partial/\partial x$ , (11)

where $($ $)_{\geq 0}$ stands for dropping negative powers of $\partial$ to obtain a differential operator.

This is the ordinary Lax formalism of the KP hierarchy.

We need some other variables to describe the $W_{1+\infty}$ symmetries explicitly. One

way is to use the tau function to realize those symmetries as linear differential operators

$W_{n}^{(s)},$ $s=1,2,$ $\ldots,$
$n\in Z$ , in the $t’ s[16]$ . Another way is to introduce a pseudo-differential

operator of the form

$M= \sum_{n=1}^{\infty}nt_{n}L^{n-1}+O(\partial^{-1})$ (12)

that satisfy the Lax equations

$\frac{\partial M}{\partial t_{n}}=[B_{n}, M]$ , $n=1,2,$ $\ldots$ , (13)

and the canonical commutation relation

$[L, M]=1$ . (14)

Such a second Lax operator does exists, and arises in the linear system of the so called

Baker-Akhiezer function $\psi=\psi(x, t, \lambda)$ as:

$L\psi=\lambda\psi$ , $M \psi=\frac{\partial\psi}{\partial\lambda}$ , $\frac{\partial\psi}{\partial t_{n}}=B_{n}\psi$ . (15)

The $W_{1+\infty}$ symmetries of the KP hierarchy can be reformulated as symmetries acting

on this $(L, M)$ pair [17].

The above description of $W_{1+\infty}$ symmetries elucidates an origin of $(P, Q)$ pairs in

$d\leq 1$ string theory [18]. The Douglas pair for $d<1$ strings, indeed, is given by a

(noncommutative) canonical transformation

$P=L^{p}$ , $Q=ML^{1-p}/p+h(L)$ (16)



70

of the $(L, M)$ pair under the constraints

$P=(P)\geq 0$ , $Q=(Q)\geq 0$ , (17)

where $h(L)= \sum h_{n}L^{n}$ with suitable constant coefficients $h_{n}$ . At the $(p, q)$ critical point,

the time variables are restricted to so called “small phase space”: $t_{p+q}=p/(p+q)$ ,

$t_{p+q+1}=t_{p+q+2}=\cdots=0$ .

4. QUASI-CLASSICAL LIMIT OF KP HIERARCHY

The KP hierarchy has a quasi-classical (or dispersionless) limit [19]. This is a system of

Lax type,

$\frac{\partial \mathcal{L}}{\partial t_{n}}=\{\mathcal{B}_{n}, \mathcal{L}\}_{k,x}$ , $\mathcal{B}_{n}=(\mathcal{L}^{n})\geq 0$ , $n=1,2,$ $\ldots$ , (18)

where $\mathcal{L}$ , a quasi-classical counterpart of $L$ , is a Laurent series of the form

$\mathcal{L}def=k+\sum_{n=1}^{\infty}u_{n+1}k^{-n}$ , (19)

$k$ is a parameter like $\lambda$ , $($ $)_{\geq 0}$ now means dropping all negative powers of $k$ , and

$\{$ , $\}_{k,x}$ the Poisson bracket in $(k, x):\{F, G\}_{k,x}=defF_{k}G_{x}-F_{x}G_{k}$ . As in the case

of the KP hierarchy, one can introduce a second Laurent series $\mathcal{M}=\sum_{n}^{\infty_{=1}}nt_{n}\mathcal{L}^{n-1}+$

$O(k^{-1})$ that obeys similar equations,

$\frac{\partial \mathcal{M}}{\partial t_{n}}=\{B_{n}, \mathcal{M}\}_{k,x}$ , $\{\mathcal{L}, \mathcal{M}\}_{k,x}=1$ . (20)

The above hierarchy (dispersionless or semi-classical KP hierarchy) gives a quasi-

classical limit of the KP hierarchy in the following sense. Introduce a Planck constant $\hslash$

into the KP hierarchy and the associated linear system by replacing

$\partial=\frac{\partial}{\partial x}arrow\hslash\frac{\partial}{\partial x}$ , $\frac{\partial}{\partial t_{n}}arrow\hslash\frac{\partial}{\partial t_{n}}$ , $\frac{\partial}{\partial\lambda}arrow\hslash\frac{\partial}{\partial\lambda}$ (21)

and assume a quasi-classical (WKB) asymptotic form of the the Baker-Akhiezer function,

$\psi(\hslash, x, t, \lambda)\sim\exp\hslash^{-1}S(x, t, \lambda)$ . (22)
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The linear system then gives rise to a set of eikonal (or Hamilton-Jacobi) equations for the

phase function $S$ , which after somewhat lengthy calculations turn out to be equivalent

to the above equations of the $(\mathcal{L}, \mathcal{M})$ pair. Futher, the tau function has accordingly an

asymptotic form

$\tau\sim\exp[\hslash^{-2}F(x, t)+O(\hslash^{-1})]$ . (23)

In view of the relation to matrix models of $2D$ gravity in large-N limit [1], the function

$F$ should be called the “free energy” of the semi-classical KP hierarchy. Its exponential

$\exp F$ gives exactly the tau function introduced in Ref. 20. A set of $w_{1+\infty}(=SDiff(2))$

symmetries are also constructed in the same paper.

A quasi-classical limit of the Douglas pair $(P, Q)$ is given by

$\mathcal{P}$ $=$ $\mathcal{L}^{p}$ , $\mathcal{Q}$ $=$ $\mathcal{M}\mathcal{L}^{1-p}/p+h(\mathcal{L})$ , (24)
def def

and constrained by

$\mathcal{P}=(\mathcal{P})\geq 0$ , $\mathcal{Q}=(\mathcal{Q})\geq 0$ . (25)

The “genus zero” part of $2D$ gravity [1] as well as “topological minimal models” [21] are

included into this family of solutions.

5. TODA LATTICE AND ITS QUASI-CLASSICAL LIMIT

What we have seen in the previous two sections persists in the Toda lattice hierarchy.

The relativistic Toda field theory is given by the equation of motion

$\frac{\partial^{2}\Phi_{n}}{\partial z\partial\overline{z}}+\exp(\Phi_{n+1}-\Phi_{n})-\exp(\Phi_{n}-\Phi_{n-1})=0$ , $n\in Z$ . (26)

In quasi-classical limit, the discrete variable $n$ , too, has to be scaled as $\hslash n=s[22]$ , and

one obtains the equation

$\frac{\partial^{2}\Phi}{\partial z\partial\overline{z}}+\frac{\partial}{\partial s}\exp\frac{\partial\Phi}{\partial s}=0$ (27)

for a three-dimensional field $\Phi=\Phi(z,\overline{z}, s)$ . Because of this correspondence, the above

equation [also called $SU(\infty)$ Toda equation] has been studied in detail by the methods
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of conformal field theories [8] and nonlinear integrable systems [23]. The notion of tau

function (or free energy) and $w_{1+\infty}$ symmetries, too, have been established [24].

Quite accidentally, the same equation describes a dimensional reduction of self-

dual gravity by a rotational $S^{1}$ symmetry, as first pointed out by relativists [25]. In

their interpretation, remarkably, the $\Phi$ field is nothing but the radial coordinate of a $4D$

cylindrical coordinate system; a Legendre-like transformation converts it into a dependent

variable. This is somewhat reminiscent of the fact [26] that the Liouville mode in a

subcritical string theory can be interpreted as a time-like coordinate in a critical string

theory. The $\Phi$ field might be a kind of Liouville mode in higher dimensional strings or

membranes (in suitable quantization, if necessary).

We have seen that the semi-classical version of the $KP/Toda$ hierarchy has two

distinct characteristics in itself: In one hand, it has a Lax formalism very similar to the

ordinary $KP/Toda$ hierarchy; on the other hand, it has a pair of canonical conjugate

variables like those in self-dual gravity. The corresponding twistor theory is a kind of

“minitwistor theory” [27] associated with a two (rather than three) complex dimensional

twistor space. Naturally, one may imagine that a higher dimensional analogue of the

$KP/Toda$ hierarchy should exist and reproduce self-dual gravity as a kind of quasi-

classical limit. We now turn to this issue.

6. DEFORMATIONS OF SELF-DUAL GRAVITY

The ordinary twistor theoretical framework based on $3D$ twistor spaces already provides

us with a wide range of deformations of self-dual gravity. Penrose’s nonlinear graviton

construction, indeed, covers all conformally self-dual spaces. An interesting subfamily

of deformations describing an Einstein-Maxwell theory is proposed by Flaherty [28] and

recently studied by Park [29]. It recently turned out that a group of volume-preserving

diffeomorphisms, SDiff(3), underlies this family of deformations and plays the same role

as the $\mathcal{L}SDiff(2)$ group in self-dual gravity [30]. This kind of deformations associated

with an SDiff(3) group deserve further study.

Another idea, which might lead to quantum deformations, is to generalize the corre-
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spondence between the KP hierarchy and its quasi-classical version to self-dual gravity.

As already mentioned, the correspondence

$KP/Toda$ hierarchy
$\hslasharrow 0arrow$

quasi-classical $KP/Toda$ hierarchy

strongly suggests a higher dimensional analogue such as

? $\hslasharrow 0arrow 4D$ self-dual gravity

At the place of “?” should come a kind of quantization of self-dual gravity and twistor

theory. A symmetry algebra coming into the place of “?” should be a quantum defor-

mation of the loop algebra $\mathcal{L}w_{1+\infty}$ of $w_{1+\infty}$ .

A candidate of quantum deformations of $\mathcal{L}w_{1+\infty}$ is the loop algebra $\mathcal{L}W_{1+\infty}$ of

$W_{1+\infty}$ . We do not know what an associated deformation of self-dual gravity looks like.

Recent diverse proposals for a $3D$ field formulation of $d=1$ matrix models [31] are

very suggestive in that respect. Also interesting are a family of nonlinear integrable

systems recently presented by Hoppe et al [32]; Lax representations of these models

exploit the $W_{1+\infty}$ algebra or the Moyal algebra [33] in a quite explicit way. This will

also be related to the star-product membrane theory [34], a deformation of relativistic

membrane theory with a Moyal bracket replacing a Poisson bracket in its Hamiltonian

density. Such a possible link with membrane theory is very significant, because Ooguri

and Vafa [9] point out that $N=2$ strings look like membranes.

Another possible deformation of $\mathcal{L}w_{1+\infty}$ might be due to the notion of “quantized

spectral parameters” [35]. A basic idea of this notion is, roughly, to replace a spectral

(i.e., loop) parameter, say (, by an operator of the form

$\hat{\zeta}=\zeta\exp(-\hslash\partial/\partial x)$ ,

where $x$ is a space variable like that of the KP hierarchy. One can indeed derive such an

operator from a reduction of the Toda lattice (or, rather, modified KP) hierarchy [36].

If the loop algebra $\mathcal{L}w_{1+\infty}$ can be deformed to a (quantized’ loop algebra with such a

“quantized spectral parameter,” an associated deformation of self-dual gravity, if exists,
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will naturally include the extra variable $x$ within its independent variables. This is a

very interesting possibility, because the deformed self-dual gravity then will have a direct

connection with a KP-type hierarchy, hence will offer a hint to unify self-dual gravity

with KP-type hierarchies.

A similar idea of deformations of self-dual gravity can be found in a paper of Bakas

and Kiritsis [37]. They first introduce an extension $W_{\infty}^{N}$ of $W_{\infty}$ (or rather $W_{1+\infty}$ ) with

$U(N)$ inner symmetries, and point out that the large-N limit $W_{\infty}^{\infty}$ of $W_{\infty}^{N}$ will become

isomorphic to the SpDiff(4) algebra of $4D$ infinitesimal symplectic diffeomorphisms. (In

the current convention of $W$ algebra, therefore, this algebra should rather be called

$w_{\infty}^{\infty}$ ; no quantum deformation seems to have been constructed until now.) This algebra

includes the loop algebra $\mathcal{L}w_{1+\infty}$ of $w_{1+\infty}$ (i.e., of the SDiff(2) algebra) as a subalgebra.

On the basis of these observations, they argue that this algebra (and possible quantum

deformations) should be related to a quantum deformation of self-dual gravity.

Note that the loop algebra $\mathcal{L}w_{1+\infty}$ is three dimensional in its nature, the three

variables being, e.g., $\lambda,\overline{p}$ and $\overline{q}$. (There are some other choices of those variables [5].)

The $W_{\infty}^{\infty}$ algebra should be accompanied with four variables, i.e., canonical coordinates

of a $4D$ symplectic manifold. It is amusing to imagine that the extra variable $x$ associated

with the quantized spectral parameter is exactly the fourth one that should be added to

the previous three variables.

This will suggest to consider an extended $4D$ twistor space rather than an ordinary

$3D$ twistor space. The first two variables $\lambda$ (or rather k) and $x$ are fundamental ingredi-

ents of the quasi-classical KP hierarchy. A $4D$ symplectic manifold with four coordinates,

say $\lambda,$ $x,$ $y,$ $z$ and a symplectic form $d\lambda\wedge dx+dy\wedge dz$ apparently look like a nice framework

for the aforementioned unification program. Unfortunately, this program has not been

successful due to unexpected difficulties. This is a quite technical issue and details are

omitted here.

A more hopeful direction would be that of the ordinary formulation of nonchiral $w_{\infty}$

gravity [14] and its hypothetical “topological” version [38]. In these theories, SpDiff(4)

symmetries are rather living in a $4D$ space-time with a symplectic structure (typically,
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the cotangent bundle $T^{*}\Sigma$ of a Riemann surface $\Sigma$ ), or acting on a moduli space $M_{\infty}$

of such manifolds. The $\mathcal{L}w_{1+\infty}$ subalgebra of SpDiff(4), in that picture, cannot be

identified with the twistor theoretical symmetry algebra that stems from a $3D$ twistor

space. Nevertheless, a link with self-dual gravity still persists as Hitchin conjectures [38].

This conjecture seems to have been verified in the context of the $N=2$ string theory by

Ooguri and Vafa [9]; they show a construction of a hyper-K\"ahler metric (i.e., a solution

of self-dual gravity) on $T^{*}\Sigma$ . It would be interesting to see how the SpDiff(4) algebra on

$M_{\infty}$ act on these solutions; those SpDiff(4) symmetries might give rise to “constraints”

like the $W$ constraints of $2D$ gravity. If this is true, we expect a new nonlinear integrable

system to lie behind.
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