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1. Introduction

The purpose of this note is to explain some results, conjectures and problems on
discriminant polynomials of root systems.

Let $\Sigma$ be a root system on a vector space $V$ of dimension $r$ . For simphcity, we always
assume that $\Sigma$ is irreducible in this note. Let $W_{\Sigma}$ be its Weyl group. Then it is knwon
by C. Chevalley that there are 2* number of algebraically independent homogeneous
polynomials $x_{1},$ $x_{2},$ $\cdots,$ $x_{7}$ on $V$ such that $C[V]^{W}\Sigma$ is generated by $x_{1},$ $x_{2},$ $\cdots,$ $x_{r}$ . This
implies that $V/W_{\Sigma}$ is identffied with an affine space $S$ with the coordinate ring $C[V]^{w_{\Sigma}}$ ,
where $V$ is the complexffication of $V$ .

Let $D$ be a non-trivial anti-invariant of $W_{\Sigma}$ . Then since its square $D^{2}$ is contained
in $C[V]^{W_{\Sigma}}$ , there is a polynomial $F(x_{1}, x_{2}, \cdots, x_{\gamma})$ of $x_{1},$ $x_{2},$ $\cdots,$ $x_{r}$ such that $D^{2}=$

$F(x_{1}, x_{2}, \cdots, x_{r})$ . In this note, we call $F$ the discriminant polynomial (of $\Sigma$ ).

2. Invariant Differential Operators and b-Functions

We begin this note by explaining a relation between the b-function (or Bernstein-
Sato polynomial) of $F$ and that of a discriminant polynomial of a tangent space of a
symmetric space.

Let $\underline{g}$ be a complex semisimple Lie algebra and let $\sigma$ be its complex linear involution.
Let $\underline{k}$ (resp. p) be the $+1$ (resp. $-1$ ) eigenspace of $\sigma$ of $\underline{g}$ . We take an abelian
subspace $\underline{a}$ of $\underline{p}$ consisting of semisimple elements. If $\Sigma$ is equal to the root system
of the symmetric pair $(\underline{g}, \underline{k}),$ then $\underline{a}$ is identified with $V_{c}$ . Let $K$ be the connected closed
subgroup of Int $\underline{g}$ with Lie algebra $k$ . Then, by an unpublished result of C. Chevalley,
there are algebraically independent homogeneous polynomials $h_{1}(X),$ $\cdots,$ $h_{r}(X)$ on $\underline{p}$

数理解析研究所講究録
第 810巻 1992年 85-94



86

such that $C[\underline{p}]^{K}=C[h_{1}, \cdots, h_{\tau}]$ . As a result, the map $\varphi$ of $\underline{p}$ to $S$ defined by
$\varphi(X)=(h_{1}(X), \cdots, h_{r}(X))$ is surjective and $C[\underline{p}]^{K}\cong C[x_{1}, \cdots, x_{r}]$ by $\varphi$ . For any
polynomial $f\in C[\underline{p}]^{K}$ , we denote by $f^{-}$ the unique polynomial on $S$ such that $f=f^{-}o\varphi$ .

If we treat the algebra of K-invariant differential operators on $\underline{p}$ instead of $C[\underline{p}]^{K}$ ,
how do we formulate a claim analogous to the result of Chevalley mentioned above? To
consider this question, we need some notation. Let $Diff(\underline{p})$ be the algebra of polynomial
coefficient differential operators on $\underline{p}$ and let $Diff(\underline{p})^{K}$ be the subalgebra of $Diff(\underline{p})$

consisting of K-invariant differential operators. On the other hand, let $D_{S}$ be the Weyl
algebra on $S$ , that is, $D_{S}=C[x_{1}, \cdots , x,, , \partial/\partial x_{1}, \cdots , \theta/\theta x_{r}]$ . For any $P\in Diff(\underline{p})^{K}$ , there
is a differential operator $\varphi_{*}(P)$ on $S$ defined by $\varphi.(P)f=(P(fo\varphi))^{-}(\forall f\in \mathcal{P}(S))$ . Put
$R_{\underline{p}}=\varphi_{*}(Diff(\underline{p})^{K})$ . Then a differential operator $Q\in D_{S}$ is $\varphi$-liftable if $Q$ is contained
in $R_{\underline{p}}$ , that is, there is a differential operator $P\in Diff(\underline{p})^{K}$ such that $\varphi_{*}(P)=Q$ . We
note that $\varphi$ is not injective. There is a constant coefficient K-invariant second order
differential operator $\Delta$ on $\underline{p}$. By definition, $\overline{\Delta}$ is unique up to a constant factor. Put
$\Delta=\varphi_{*}(\overline{\Delta})$ .

Then we have the proposition below which gives a characterization of elements of
$R_{\underline{p}}$ .

Proposition 2.1. For any $P\in D_{S}$ , the two conditions below are equivalent.

(1) $P$ is $\varphi$-liftable.

(2) $ad(\Delta)^{m}P=0$ for some $m\gg O$ .

Now let $R_{\underline{p}}^{l}$ be the subalgebra of $R_{\underline{p}}$ generated by $x_{1},$ $\cdots,$ $x_{\tau}$ and $\Delta$ . Then it seems
true that $R_{\underline{p}}^{l}$ coincides with $R_{\underline{p}}$ . (I think that this kind of statements is regarded as an

analogue of Chevalley’s Theorem.)

Let $b_{F}(s)$ be the bfunction of the discriminant polynomial $F(x)$ . Then there is a
differential operator $Q(x, \partial/\partial x)$ on $S$ such that $QF(x)‘+1=b_{F}(s)F(x)$ . The explicit
form of $b_{F}(s)$ was conjectured in [YS] and later was proved by E.Opdam [Op]. The
result is

$b_{F}(s)= \prod_{i=1}^{r}\prod_{j=1}^{d_{l}-1}(s+1/2+j/d_{i})$ .

We consider the pull-back of $F(x)$ to $\underline{p}$, that is, $F_{\underline{p}}(X)=F(\varphi(X))$ which is K-
invariant and is called the discriminant polynomial of $\underline{p}$. It follows from the definition
that the map $\varphi$ is smooth outside the set $\{F_{\underline{p}}=0\}$ . Let $b_{\underline{p}}(s)$ be the bfunction of $F_{\underline{p}}(X)$ .
Then it is an interseting problem to determine $b_{\underline{p}}(s)$ . $StiU$ this problem being open, we
obtain the proposition below which follows from that $R_{\underline{p}}$ is a subalgebra of $D_{S}$ .

Proposition 2.2. $b_{\underline{p}}(s)$ is divisible by $b_{F}(s)$ .
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Now we restrict our attention to the case where $\Sigma$ is of type $A$ . Let $m_{\alpha}$ be the
multiplicity of a root $\alpha\in\Sigma$ . Since, in this case, all roots of $\Sigma$ are $W_{\Sigma}$-conjugate, the
integer $m=m_{\alpha}$ is independent of $\alpha$ .

Conjecture 2.3. lf $\Sigma$ is of type $A$ , then $b_{\underline{p}}(s)$ is divisible by $b_{F}(s)b_{F}(s+(m-1)/2)$ .

Example 2.4. (i) If $\Sigma$ is of type $A_{1}$ , then $F(x)=x_{1}$ and $F_{\underline{p}}(X)$ is a quadratic
form of $(\dim\underline{p})$-variables. It is known that, in this case, $b_{F}(s)=s+1$ and $b_{\underline{p}}(s)=$

$(s+1)(s+(m-1)/2)$ , where $m$ is the multiplicity of restricted roots, that is, $m=$

$\dim\underline{p}-1$ .
(ii) We consider the case $A_{2}$ . $\ln$ this case, we may take as $F(x_{1}, x_{2})$ the polynomial

$x_{1}^{3}+x_{2}^{2}$ and therefore its b-function is $b_{F}(s)=(s+1)(s+5/6)(s+7/6)$ . On the other
hand, there is a polynomial $Q(\mu)$ of $\mu$ whose coefficients are differential operators in $D_{S}$

with the following conditions.

(1) $Q(\mu)F(x)^{s+1}=b_{F}(s)b_{F}(s+(\mu-1)/2)(s+(\mu+2)/4)(s+(\mu+4)/4)F(x)^{*}$ .
(2) Let $(\underline{g},\underline{k})$ be a symmetric pair whose root system $\Sigma$ is of type $A_{2}$ . If $m$ is the

multiplicity of roots of $\Sigma$ for the pair $(\underline{g}, \underline{k})$ , then $Q(m)\in R_{\underline{p}}$ .
Therefore Conjecture 2.3 seems true in this case.

I have to point out here the similarity of Proposition 2.2 and the argument due
to T. Shintani (cf.[Sh]) on the determination of b-functions of relative invariants of
prehomogeneous vector spaces obtained from a given prehomogeneous vector space by
using Castling transform. In fact, in his talk [Gy], A. Gyoja said that the Chevalley’s
Theorem referred to in this section is regarded as a kind of a Castling transform. $\ln$

particular, if I do not misunderstand, the polynomial $b_{\underline{p}}(s)/b_{F}(s)$ is an analogue of a
relative bfunction in his sense and seems to have a mean ng.

I thank to M.Muro who is interested in the bfunction of $F_{\underline{p}}$ and told me the literature
[Sh].

3. A Classification of Weighted Homogeneous Polynomials with
Some Additional Conditions : Three Variables Case

The subject of this section is a problem of finding certain weighted homogeneous
polynomials which have some nice properties as discriminant polynomials have.

First we formulate the problem which we treat here. Let $x,$ $y,$ $z$ be variables and
let $p,$ $q,$ $r$ be natural numbers such that $p<q<r$ and that $p,$ $q,$ $r$ have no common
factor. We consider three vector fields on $(x, y, z)$-space including the Euler operator
with weight:
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$V_{0}=px \frac{\partial}{\partial x}+qy\frac{\partial}{\partial y}+rz\frac{\partial}{\partial z}$,
$V_{1}=qy \frac{\partial}{\partial x}+\{rz+a_{22}(x, y)\}\frac{\partial}{\partial y}+a_{23}(ae, y, z)\frac{\partial}{\partial z}$ ,
$V_{2}=rz \frac{\partial}{\partial x}+a_{32}(x, y, z)\frac{\partial}{\partial y}+a_{33}(ae, y, z)\frac{\partial}{\partial z}$ ,

where $a_{ij}(x, y, z)$ are polynomials. In addition, we define a matrix $M$ obtained from
$V_{0},$ $V_{1},$ $V_{2}$ by

$M=(\begin{array}{llll}px qy rz qy rz+a_{22}(x,y) a_{23}(x zy,)rz a_{32}(x,y,z) a_{33}(x y,z)\end{array})$ .

Now we consider the conditions on $V_{0},$ $V_{1},$ $V_{2}$ below:

Condition 3.1.

(i) $[V_{0}, V_{1}]=(q-p)V_{1}$ , $[V_{0}, V_{2}]=(r-p)V_{2}$ .
(ii) There exist polynomials $f_{j}(x, y, z)(j=0,1,2)$ such that

$[V_{1}, V_{2}]=f_{0}(x, y, z)V_{0}+f_{1}(x, y, z)V_{1}+f_{2}(x, y, z)V_{2}$ .
(iii) The polynomial $det(M)$ is not trivial. ( $det(M)$ is trivial if it becomes $z^{3}$ by a

weight preserving coordinate change.)

Condition 3.1 (i),(ii) claim that the $C[x, y, z]$-module $L(det(M))$ spanned by
$V_{0},$ $V_{1},$ $V_{2}$ becomes a Lie algebra. If $V_{0},$ $V_{1},$ $V_{2}$ satisfy Condition 3.1, it follows that
$V_{j}det(M)/det(M)$ is a polynomial $(j=0,- 1,2)$ . Namely, $V_{0},$ $V_{1},$ $V_{2}$ and therefore all
the vector fields of $L(det(M))$ are logarithmic along the set $\{(x, y, z);det(M)=0\}$ in
the sense of [Sa]. Conversely, it is possible to reconstruct the vector fields $V_{0},$ $V_{1},$ $V_{2}$ from
the polynomial $det(M)$ of $x,$ $y,$ $z$ .

If the root system $\Sigma$ is of rank 3, the type of $\Sigma$ is one of $A_{3},$ $B_{3},$ $H_{3}$ . In this
case, there exist vector fields $V_{0},$ $V_{1},$ $V_{2}$ satisfying Condition 3.1 such that $det(M)$ is
its discriminant polynomial. In this sense, the polynomial $det(M)$ is regarded as an
analogue of a discriminant polynomial. For this reason, it is natural to ask the following
problem:

Problem 3.2. Find all the triples $\{V_{0}, V_{1}, V_{2}\}$ of vector fields satisfying Condition
3.1. Or equivalently, find all polynomials $F(x, y, z)$ of the form $F=det(M)$ .

The following theorem answers to this problem.

Theorem 3.3. (i) If $(p, q, r)\neq(2,3,4),$ $(1,2,3),$ $(1,3,5)$ , there is no triple $\{V_{0}, V_{1}, V_{2}\}$

of vector fields satisfying Condition 3.1.
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(ii) If $(p, q, r)$ is one of (2, 3, 4), (1, 2, 3), (1, 3, 5), any polynomial $F(x, y, z)$ of the form
$F=det(M)$ is reduced to one of the following polynomials up to a constant factor by a
weight preserving coordinate change.
(ii.A) The case $(p, q, r)=(2,3,4)$ . (This case corresponds to the root system of type
$A_{3}.)$

(ii Al) $16x^{4}z-4x^{3}y^{2}-128x^{2}z^{2}+144xy^{2}z-27y^{4}+256z^{3}$ .
(ii A2) $2x^{6}-3x^{4}z+18x^{3}y^{2}-18xy^{2}z+27y^{4}+z^{3}$ .

(ii.B) The case $(p, q, r)=(1,2,3)$ . (This case corresponds to the root system of type
$B_{3}.)$

(ii.Bl) $(x^{6}-30x^{4}y-150x^{3}z+225x^{2}y^{2}+2250xyz-500y^{3}+5625z^{2})z$ .
(ii.B2) $(5x^{6}+6x^{4}y+18x^{3}z-3x^{2}y^{2}+18xyz-4y^{3}+9z^{2})z$ .
(ii.B3) $(2x^{6}-30x^{4}y-225x^{3}z+150x^{2}y^{2}+1125xyz-250y^{3}+5625z^{2})z$ .
(ii.B4) $(x^{6}-18x^{4}y-108x^{3}z+108x^{2}y^{2}+972xyz-216y^{3}+2916z^{2})z$.
(ii.B5) $790343001x^{9}$ $-$ $5991070554x^{7}y$ $+$ $99323708638x^{6}z$ $+$

$14600855556x^{S}y^{2}-3212905573500x^{4}yz-16156757156904x^{3}z^{2}+18228136279584x^{2}y^{2}z+$

$170267363884296xyz^{2}-37837191974288y^{3}z+476053650043848z^{3}$ .
(ii.B6) $239625x^{9}+9591750x^{7}y-16446850x^{6}z-32413500x^{5}y^{2}-1023546300x^{4}yz+$

$3458880600x^{3}z^{2}+41506567200x^{2}y^{2}z+508455448200xyz^{2}-112990099600y^{3}z+$
$996572678472z^{3}$ .

(ii.B7) $13x^{9}-66x^{7}y-714x^{6}z+84x^{5}y^{2}+22932x^{4}yz+222264x^{3}z^{2}-98784z^{2}y^{2}z-$

$518616xyz^{2}+115248y^{3}z+3630312z^{3}$ .
(ii.H) The case $(p, q, r)=(1,3,5)$ . (This case corresponds to the refiection group of type
$H_{3}.)$

$(\ddot{u}.H1)$ $-8x^{9}y^{2}+8x^{7}yz-20x^{6}y^{3}+8x^{5}z^{2}+120x^{4}y^{2}z-230x^{3}y^{4}-100x^{2}yz^{2}+$

$450xy^{3}z-135y^{5}-100z^{3}$ .
(ii.H2) $-370014797021536x^{15}$ $+$ $52259033400539715x^{12}y$

$75436626205586070x^{10}z$ $-$ $4178071306440x^{9}y^{2}$ $-$ $664088802409094940x^{7}yz$ $+$

$1349632710555470280x^{6}y^{3}+1070387723782354680x^{5}z^{2}-2458979443167108840x^{4}y^{2}z-$

$1720082434973806980x^{3}y^{4}+895508991004499100x^{2}yz^{2}+4258642757221395720xy^{3}z-$

$1277592827166418716y^{5}-1472614785207398520z^{3}$ .
(ii H3)

$-2943652093952x^{15}+86180519706880x^{12}y-3126428202240x^{10}z-3553395309080ae^{9}y^{2}-$

$1917304399080x^{7}yz+799477667460x^{6}y^{3}+71402468760x^{5}z^{2}+41222238120x^{4}y^{2}z-$

$12236330610x^{3}y^{4}+10705583700x^{2}yz^{2}-9287817210xy^{3}z+2786345163y^{5}-405076140z^{3}$ .
(ii H4) $-195432883751468x^{15}-4240356138903255x^{12}y-633855510627010x^{10}z-$

$3923208421631520x^{9}y^{2}$ $+$ $3797498050261580x^{7}yz$ $-$ $3969636123646760ae^{6}y^{3}$ $+$

$810425383418840x^{5}z^{2}$ $+$ $1905527842803480x^{4}y^{2}z$ $-$ $1112218128823340x^{3}y^{4}$ $-$
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$828154338270700x^{2}yz^{2}$ $+$ $1603040457798360xy^{3}z$ $480912137339508y^{5}$

$221396034150760z^{3}$ .
$(\ddot{u}.H5)$ $12925663723879424x^{15}$ $+$ $107240950855923840x^{12}y$

$50339983857448320x^{10}z$ $+$ $81343095559371360x^{9}y^{2}$ $-$ $163632798084097440x^{7}yz$ $+$

$37540976679801180x^{6}y^{3}$ $+$ $49181697463970880x^{5}z^{2}$ $-$ $58487209341007140x^{4}y^{2}z$ $+$

$1750422404969370x^{3}y^{4}$ $+$ $60543497116655100x^{2}yz^{2}$ $-$ $10979922358444230xy^{3}z$ $+$

$3293976707533269y^{5}-14161021359488820z^{3}$ .
$(\ddot{u}.H6)$ $-186786982666504x^{15}+2486353531961860x^{12}y-7162348657370280x^{10}z-$

$65602207020750310x^{9}y^{2}-100928478709658760x^{7}yz+570276269335835595x^{6}y^{3}-$
$216045842196795480x^{5}z^{2}+249187997641139190x^{4}y^{2}z-1255852911490211520x^{3}y^{4}-$

$382052374634267100x^{2}yz^{2}+2590390753955902080xy^{3}z-777117226186770624y^{5}-$
$630953822663324280z^{3}$ .

(ii H7) -35621432\sim 15 – $1893758097x^{12}y-488175534x^{10}z-7017940728x^{9}y^{2}+$

$10940917428x^{7}yz$ $-$ $19775803320x^{6}y^{3}$ $+$ $4789439928x^{5}z^{2}$ $+$

$23999272920x^{4}y^{2}z-26525700180x^{3}y^{4}-15077834100x^{2}yz^{2}+48159052200xy^{3}z-$

$14447715660y^{5}-9451776600z^{3}$ .
(ii.H8) -3312265670163817299968\sim 15 $+$ $20084193944246508625920x^{12}y$ 十

$27023748477496392867840\sim^{10}z$ $-$ $171762826837922207649720x^{9}y^{2}$

$922889076630730247835720x^{7}yz$ $+$ $2714003028140218537513140x^{6}y^{3}$ 十

$39213645094131573030840x^{5}z^{2}$ $+$ $1327911872930716718683080x^{4}y^{2}z$

$9122364737108139707456490x^{3}y^{4}$ $2568317720051567806616700x^{2}yz^{2}$ $+$

$18965760290465309873368110xy^{3}z$ $5689728087139592962010433y^{5}$

$4684983591546783447643260z^{3}$ .

Remark 3.4. (i)The polynomials in (ii.Al), (ii.Bl), (ii.Hl) are the discriminant
polynomials of types $A_{3},$ $B_{3},$ $H_{3}$ , respectively.

(ii) The polynomial in (ii.A2) is obtained by M.Sato.
(i\"u) Let $F(x, y, z)$ be one of the polynomials in Theorem 3.3. Then the curve

$\{(y, z);F(O, y, z)=0\}$ is regarded as the simple singularity of type $E_{6},$ $E_{7},$ $E_{8}$ if $F(x, y, z)$

is one of the polynomials in (ii.A), (ii.B), (ii.H), respectively. Is it possible to explain
this observation?

Since it is known by P.Deligne, E.Brieskorn, K.Saito that if $F$ is a discriminant
polynomial, the complement of $F=0$ in $S$ is a $K(\pi, 1)$ -space and that $\pi_{1}(\{F\neq 0\})$ is
related with Artin braid groups (we used the notation in section 2), it is natural to ask
the problem:

Problem 3.5. Let $F(x, y, z)$ be one of the polynomials in Theorem 3.3 and let $T$ be
the complement of $F(x, y, z)=0$ in $(x, y, z)$-space.
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(i) Is $T$ a $K(\pi, 1)$-space?

(ii) Compute the fundamental group of $T$ .

Problem 3.5 (i) is a conjecture proposed in [Sa].

It is easy to generalize Problem 3.2 to $n$ variables case which was originally formulated
by Prof. M. Sato more than 15 years ago in connection with the study of prehomogeneous
vector spaces. I formulate here the problem only in three variables case, because this is
the unique case which I could succeed a classification of such vector fields by $us$ing Lap
Top computer under the guidance of my colleague Prof. K.Okubo.

You can find topics related with the subject of this section in RIMS Kokyuroku 281
(1976), 40-105.

4. A Construction of Invariant Spherical Hyperfunctions

It is an important problem to construct tempered invariant spherical hyperfunctions
on a semisimple symmetric space $G/H$ because they contribute to the Plancherel formula
for $G/H$ . Last summer, S.Sano explained me an idea how to construct them in the case
$SL(2, R)/SO(1,1)$ . Computing those in this case, I was impressed by their interesting
support property. In fact, their support is contained in the closure of a conjugacy
class of a Cartan subspace as the case of characters of principal series representations
of semisimple groups. The subject of this section is to explain a result on invariant
spherical hyperfunctions which relates with the support property mentioned above. For
the detail$s$ , see [Se].

This time, let
$\underline{g}_{0}$ be a real semisimple Lie algebra and let $\sigma$ be its involution. Then

we have a symmetric pair $(\underline{g}_{0}, \underline{h}_{0})$ and a direct sum decomposition $\underline{g}_{0}=\underline{h}_{0}+\underline{q}_{O}$ . For
simplicity, we assume that $(\underline{g}_{0}, \underline{h}_{0})$ is irreducible in the sequel. From the definition, $\underline{h}_{0}$

acts on
$\underline{q}_{0}$

via the adjoint action. We also assume that the complexifications of
$g_{\triangleleft}-,$

$\underline{h},$
$\underline{q}_{O}$

,
are $g,$ $k,$ $p$ of section 2, respectively. (I am sorry that the notation are confusing.) In the
sequel, we use the notation of section 2 without any comment. Then, from the definition,
$Diff(\underline{p})$ is regarded as an algebra of differential operators on

$\underline{q}_{0}$
. Let $Diff_{const}(p)^{K}$

be the subalgebra of $Diff(\underline{p})^{K}$ consisting of constant coefficient differential operators.
From the definition, $P_{j}=ad(\tilde{\Delta})^{d_{j}}h_{j}(j=1,2, \cdots, r)$ are contained in $Diff_{con\cdot t}(\underline{p})^{K}$ .
We now recall the following lemma due to Harish-Chandra which supports the claim
after Proposition 2.1.

Lemma 4.1. (cf.[HC]) The differential operators $P_{1},$ $P_{2},$
$\cdots,$

$P_{r}$ are algebraically
independent and generate $Diff_{con\cdot t}(\underline{p})^{K}$ .



92

For any $\lambda=(\lambda_{1}, \cdots, \lambda_{\tau})\in C$‘, we define a system of differential equations $M_{\lambda}$ on
$\underline{q}_{0}$

by

$(P_{j}-\lambda_{j})u=0$ $(j=1, \cdots, r)$

$\tau(Y)u=0$ $(\forall Y\in h)-- 0$

where, for any $Y\in-h_{\lrcorner},$ $\tau(Y)$ is the vector field on $\lrcorner 1q$ defined by

$( \tau(Y)f)(X)=\frac{d}{dt}f(X+t[X, Y])|_{t=0}(\forall f\in C\infty(q))\lrcorner)$

Solutions to the system $M_{\lambda}$ are called invariant spherical hyperfunctions on
$\underline{q}_{0}$

.
There is a deep relation between the system $M_{\lambda}$ with the discriminant polynomial

$F_{\underline{p}}$ . To explain this, we introduce logarithmic vector fields along the set $\{F_{\underline{p}}=0\}$ .
(For a general theory of logarithmic vector fields, see [Sa]). We put $\overline{L}_{j}=[\overline{\Delta}, h_{j}]-\tilde{\Delta}h_{j}$

$(j=1,2, \cdots, r)$ . Then each $\tilde{L}_{j}$ is a vector field on
$\underline{q}_{0}$

which is logarithmic along the
set $\{F_{\underline{p}}=0\}$ . Namely, there exist polynomials $c_{j}(X)\in C[\underline{p}]^{K}$ ($j=1,2,$ $\cdots$ , r) such that

$L_{j}F_{\underline{p}}=c_{j}(X)F_{\underline{p}}$. Accordingly we see that $L_{j}=\varphi_{*}(\overline{L}_{j})(j=1,2, \cdots, r)$ are vector fields
logarithmic along the set $\{F=0\}$ . Conversely, the differential operator $\Delta$ is obtained
from $L_{j}(j=1, \cdots, r)$ by the lemma below.

Lemma 4.2. There is a vector field $L_{0}$ on $S$ such that

$\Delta=\frac{1}{2}\sum_{j=1}^{r}\frac{\partial}{\partial x_{j}}L_{j}+L_{0}$ .

In the sequel, we assume the condition below on the symmetric pair $(\underline{g}_{0},\underline{h}_{0})$ unless
otherwise stated.

Condition 4.3. There is a normal real form
$\underline{g}_{1}$

of $\underline{g}$ such that $\underline{k}\cap\underline{g}_{1}$ is it $s$ maximal
compact subalgebra.

In this case, Lemma 4.2 is refined as follows.

Lemma 4.2’. $\Delta=\frac{1}{2}\sum_{j=1}^{\tau}\frac{\partial}{\partial x_{j}}L_{j}$ .

As a direct consequence of Lemma 4.2’, we have the following.

Proposition 4.4. $\overline{\Delta}|F_{\underline{p}}|=s^{2}q_{0}|F_{\underline{p}}|-1$ where $q_{0}=\overline{\Delta}F_{\underline{p}}\in C[\underline{p}]^{K}$ .
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Remark 4.5. We return to the general case, forgetting Condition 4.3. Then the
statement below seems to be true:

There is a polynomial $q_{0}(X)\in C[\underline{p}]^{K}$ and a constant $\alpha$ such that

$\tilde{\Delta}|F_{\underline{p}}|^{*}=s(s+\alpha)q_{0}-|F_{\underline{p}}|^{*-1}$ .

As a consequence, $s+\alpha$ has to be a factor of the b-function of $F_{\underline{p}}$.

We put $\underline{q}_{0}’=\{X\in\underline{q}_{0}; F_{\underline{p}}(X)\neq 0\}$. By definition, $\underline{q}_{0}’$ has finitely many connected
components. For any connected component $\Omega$ of $\underline{q}_{0}’$ , we define a function $|F_{\underline{p}}|_{\Omega}$ on

$\underline{q}_{4}$

$(s\in C)$ by $|F_{\underline{p}}|_{\Omega}(X)=|F_{\underline{p}}(X)|$ if $X\in\Omega$ and $|F_{\underline{p}}|_{\Omega}^{*}(X)=0$ otherwise. Needless to
say, $|F_{\underline{p}}|_{\Omega}$ is a continuous function on

$\underline{q}_{0}$
if ${\rm Re} s>0$ and is extended to a $D’(\underline{q}_{0})$-valued

meromorphic function of $s$ on the whole s-space, where $D’(\underline{q}_{0})$ is the space of distributions
on

$\underline{q}_{0}$
. Moreover, it is clear that $Y_{\Omega}=|F_{p}|_{\Omega}|.=0$ is the characteristic function of $\Omega$ . As

a corollary to Proposition 4.4, we have the following.

Proposition 4.6. $\tilde{\Delta}Y_{\Omega}=(s^{2}q_{0}|F_{\underline{p}}|_{\Omega^{-1}}^{l})_{*=0}$ .

For simplicity, we put $Z_{\Omega}=(s^{2}q_{0}|F_{\underline{p}}|_{\Omega}^{*-1})_{=0}$ . In spite that it is not clear whether

$(s^{2}|F_{\underline{p}}|_{\Omega}^{*-1})_{=0}$ is holomorphic near $s=0$ or not, $Z_{\Omega}$ is well-defined because of

Proposition 4.6. From the definition, Supp$(Z_{\Omega})$ is contained in the set { $X\in\underline{q}_{0}$ ; $F_{\underline{p}}(X)=$

$0,$ $(dF_{p})_{X}=0$}. Then we obtain the theorem below which is related with the support
property mentioned at the first part of this section. For its proof, we need Lemma 4.1
and Proposition 4.6.

Theorem 4.7. We assume that Condition 4.3 holds for the symmetric pair $(\underline{g}_{0-}h_{4})$ .
If there are connected components $\Omega_{1},$ $\cdots$ , $\Omega_{k}of\underline{q}_{O}’$ and constants $c_{1},$ $\cdots,$ $c_{h}$ such that

$\sum_{j=1}^{k}c_{j}Z_{\Omega_{j}}=0$,
we have the following.

(i) $\eta=\sum_{j=1}^{h}c_{j}Y_{\Omega_{j}}$ is a solution to the system $M_{\lambda}$ with $\lambda=(0, \cdots, 0)$ .
(ii) Let $\lambda=(\lambda_{1}, \cdots, \lambda_{r})$ be arbitrary. lf $f(X)$ is an analytic solution to $M_{\lambda}$ , then

$f(X)\eta(X)$ is a hyperfunction solution to $JI_{\lambda}$ .
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母校を訪れて

$<$学術を究むるところ大寒に入る $>$

昭和五十二年 新田次郎

「新田氏の俳句のこと」 遠藤一郎

$<<$ . . . . . . . . . .
この句はまず「学術を究むるところ」と大学を定義しておられる。これは重い定義であ

る。 それに続く 「大寒」は、「学術を究むる」に対応し、大学像にぴったりの季語であろ
う。大学は春風たいとうであってはならず、興奮吠態の夏、沈滞凋落ムードの秋であって
もならない。寒稽古や寒行に象徴されるきびしい修練の季節、大寒こそふさわしい。
. . . . . . . . . . $>>$

「電気通信大学の夜間社会人の教育」より抜粋


