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1. Introduction

The purpose of this note is to explain some results, conjectures and problems on
discriminant polynomials of root systems.

Let ¥ be a root system on a vector space V of dimension r. For simplicity, we always
assume that ¥ is irreducible in this note. Let Wy be its Weyl group. Then it is knwon
by C. Chevalley that there are » number of algebraically independent homogeneous
polynomials #1,23, -,2, on V such that C[V]"* is generated by #1,%3,--,2,. This
implies that V,/Wy is identified with an affine space S with the coordinate ring C[V]"=,
where V. is the complexification of V.

Let D be a non-trivial anti-invariant of Wy. Then since its square D? is contained
in C[V]"=, there is a polynomial F(z1,3,--,2,) of @1,23, -,2, such that D? =
F(z1,22, -+ ,2,). In this note, we call F the discriminant polynomial (of X).

2. Invariant Differential Operators and b-Functions

We begin this note by explaining a relation between the b-function (or Bernstein-
Sato polynomial) of F and that of a discriminant polynomial of a tangent space of a
symmetric space.

Let g be a complex semisimple Lie algebra and let o be its complex linear involution.
Let k (_resp. p) be the +1 (resp. —1) eigenspace of o of g. We take an abelian
subspace a of p consisting of semisimple elements. If 3 is equal to the root system
of the symmetric pair (g, k), then a is identified with V.. Let K be the connected closed
subgroup of Int g with Lie algebl:a k. Then, by an unpublished result of C. Chevalley,
there are algebraically independent homogeneous polynomials hy(X),:--,hk,(X) on P
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such that C[]_)]K =Clhy,--+,h,]. As a result, the map ¢ of p to S defined by
o(X) = (h(X),---, k(X)) is surjective and C[p]¥ = C[zy,---,2,] by p. For any

polynomial f €C[p|%, we denote by f~ the unique polynomial on S such that f = f~oep.

If we treat the algebra of K-invariant differential operators on p instead of C[p]¥,
how do we formulate a claim analogous to the result of Chevalley mentioned above? To
consider this question, we need some notation. Let Dz ff (2) be the algebra of polynomial
coefficient differential operators on p and let Dif f(p)X be the subalgebra of Diff(p)
consisting of K-invariant differential operators. On the other hand, let Ds be the Weyl
algebra on S, that is, Ds=Cl[ey,---,#,,0/02,+--,8/8z,]. For any P € Diff (p)¥, there
is a differential operator ¢, (P) on S defined by ¢, (P)f = (P(foe))™ (Vf € C>(S)). Put
R, = go,,(Diﬂ(ZJ_)K ). Then a differential operator @ €Dgs is p-liftable if Q) is contained
in R,, that is, there is a differential operator P € Diff(p)¥ such that p.(P) = Q. We
note that ¢ is not injective. There is a constant coefficient K-invariant second order

differential operator A on p- By definition, A is unique up to a constant factor. Put
A = p.(A).
Then we have the proposition below which gives a characterization of elements of

R

P

Proposition 2.1. For any P €Dg, the two conditions below are equivalent.
(1) P is p-liftable.
(2) ad(A)™P = 0 for some m > 0.

Now let R; be the subalgebra of R, generated by @;,---,2, and A. Then it seems
true that R coincides with R,. (I think that this kind of statements is regarded as an
analogue of Chevalley’s Theorem.)

Let bp(s) be the b-function of the discriminant polynomial F(z). Then there is a
differential operator Q(z,d/8z) on S such that QF(z)**! = bp(s)F(z)*. The explicit
form of br(s) was conjectured in [YS] and later was proved by E.Opdam [Op]. The
result is

br(s) = [Tiey TT5in" (s + 1/2 + j/d3).

We consider the pull-back of F(z) to p, that is, F,(X) = F(p(X)) which is K-
invariant and is called the discriminant poI_ynomial of pt- It follows from the definition
that the map ¢ is smooth outside the set {F, = 0}. Let 'Ep(s) be the b-function of F,(X).
Then it is an interseting problem to determine by (). Still this problem being open, we
obtain the proposition below which follows from that R, is a subalgebra of Dg.

Proposition 2.2. b,(s) is divisible by bz(s).
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Now we restrict our attention to the case where X is of type A. Let m, be the
multiplicity of a root @ € X. Since, in this case, all roots of X are Wyx-conjugate, the
integer m = m, is independent of a.

Conjecture 2.3. If X is of type A, then b,(s) is divisible by bp(s)br(s+(m —1)/2).

Example 2.4. (i) If 3 is of type Ay, then F(z) = 2; and F,(X) is a quadratic
form of (dim p)-variables. It is known that, in this case, br(s) = s + 1 and by(s) =
(s+1)(s+ (m_— 1)/2), where m is the multiplicity of restricted roots, that is, m=
dim p — 1.

(i1) We consider the case A,. In this case, we may take as F(z;,z;) the polynomial
23 + 22 and therefore its b-function is bg(s) = (s + 1)(s +5/6)(s + 7/6). On the other

hand, there is a polynomial Q(u) of  whose coefficients are differential operators in Dg
with the following conditions.

(1) Q(u)F(2)"*" = br(s)br(s+(p—1)/2)(s+(p+2)/4)(s+(n+4) /) F(2)".
(2) Let (g, k) be a symmetric pair whose root system X is of type A,. If m is the
- multiplicity of roots of X for the pair (g, k), then Q(m) € R,.

Therefore Conjecture 2.3 seems true in this case.

I have to point out here the similarity of Proposition 2.2 and the argument due
to T. Shintani (cf.[Sh]) on the determination of b-functions of relative invariants of
prehomogeneous vector spaces obtained from a given prehomogeneous vector space by
using Castling transform. In fact, in his talk [Gy], A. Gyoja said that the Chevalley’s
Theorem referred to in this section is regarded as a kind of a Castling transform. In
particular, if I do not misunderstand, the polynomial b,(s)/br(s) is an analogue of a
relative b-function in his sense and seems to have a meaning.

I thank to M.Muro who is interested in the b-function of F, and told me the literature
[Sh). | B

3. A Classification of Weighted Homogeneous Polynomials with
Some Additional Conditions : Three Variables Case

The subject of this section is a problem of finding certain weighted homogeneous
polynomials which have some nice properties as discriminant polynomials have.

First we formulate the problem which we treat here. Let 2,y,z be variables and
let p,q,7 be natural numbers such that p < ¢ < » and that p,q,» have no common
factor. We consider three vector fields on (z,y, z)-space including the Euler operator
with weight:
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Vo =pegs +qys + 725,

Vi =gy + {rz + an(z,9)} & + a2s(2,9,2) 55,

Vo = 'rz% + a32(:c,y,z)5‘—9; + a33(z,y,z)-58;,
where a;;(2,y,z) are polynomials. In addition, we define a matrix M obtained from
Vo, V1, V2 by

M=|qy rz+ azz(z,y) 023(3,2‘/, z)
rz  asa(z,y,2z) ass(e,y,2)

Now we consider the conditions on Vp, V;, V3 below:

Condition 3.1.

(i) [VO, Vl] = (q - p)Vli [%a ‘/2] = (‘I‘ - p)%-

(ii) There exist polynomials f;(2,y,2) (j = 0,1,2) such that

_ {V.l,I/Z] :fg(:c,y,z)Vg+f1(z,y,z)T/1+f2(a:,y,z)I/'2.

(iii) The polynomial det(M) is not trivial. (det(M) is trivial if it becomes 2% by a
weight preserving coordinate change.)

Condition 3.1 (i),(ii) claim that the C[z,y,z]-module L(det(M)) spanned by
Vo, V1, V2 becomes a Lie algebra. If Vg, Vi,V satisfy Condition 3.1, it follows that
V;det(M)/det(M) is a polynomial (j = 0,1,2). Namely, Vp, Vi, V2 and therefore all
the vector fields of L(det(M)) are logarithmic along the set {(z,v,z);det(M) = 0} in
the sense of [Sa]. Conversely, it is possible to reconstruct the vector fields Vg, V1, V3 from
the polynomial det(M) of =, y, z.

If the root system X is of rank 3, the type of ¥ is one of A3, B3, Hs. In this
case, there exist vector fields Vg, V3, V; satisfying Condition 3.1 such that det(M) is
its discriminant polynomial. In this sense, the polynomial det(M) is regarded as an
analogue of a discriminant polynomial. For this reason, it is natural to ask the following
problem:

Problem 3.2. Find all the triples {Vp, V1, V2} of vector fields satisfying Condition
3.1. Or equivalently, find all polynomials F(z,y, z) of the form F = det(M).

The following theorem answers to this problem.

Theorem 3.3. (i) If (p, q,7) # (2, 3,4),(1, 2, 3),(1,3,5), there is no triple {Vy, V1, V2}
of vector fields satisfying Condition 3.1.
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(i) If (p, g, 7) is ome of (2, 3, 4),(1,2,3),(1,3,5), any polynomial F(z,y, z) of the form
F = det(M) is reduced to one of the following polynomials up to a constant factor by a
weight preserving coordinate change.

(ii.A) The case (p,gq,7) = (2,3,4). (This case corresponds to the root system of type
As.)

(ii.A1)  162%z — 423y® — 1282222 + 1442y*z — 2Ty* + 25623,

(ii.A2) 22° — 32z + 1823y® — 18zy%z + 2Ty* + 2°.
(ii.B) The case (p,q,7) = (1,2,3). (This case corresponds to the root system of type
B3.) :

(ii.B1) (2° — 30z%*y — 1502z + 2252%y® + 2250zyz — 500y° + 562527)z.

(ii.B2) (5=° + 6z*y + 182%2z — 322y + 18zyz — 4y° + 92%)z.

(ii.B3)  (22° — 302ty — 2252%2 + 15022y + 11252yz — 2503° + 562522)z.

(ii.B4)  (2® — 18z*y — 10823z + 10822y + 972zyz — 2169® + 29162%)=.

(ii.B5)  790343001z° - 599107055427y + ' 99323708638z°2 +

146008555562°y? —3212905573500x*yz —161567571569042%2% + 1822813627958422y% 2 4+
170267363884296zy2% — 37837191974288y°%2 + 47605365004384823.

(ii.B6) 239625z° +95917502"y — 16446850262 — 3241350025y? — 10235463002 yz +
3458880600=322 + 41506567200z%y%z + 508455448200zy22 — 1129900996003z +
9965726784722°. ‘

(ii.B7) 132° — 662"y — T142%2 + 8425y + 229322%yz + 2222642227 — 987842%y%2 —
5186162yz2 + 11524833z + 363031223,

(1i.H) The case (p,q,7) = (1, 3,5). (This case corresponds to the reflection group of type
Hs.) : '

(ii.H1) —8z%y% + 82"yz — 202%y® + 82°2% + 1202*y?z — 23023y* — 10022yz? +
4502z — 13535 — 1002°. ,

(ii.H2) —370014797021536=15 + 52259033400539715z1%y —
75436626205586070210z — 41780713064402°y2 — 6640888024090949402"yz +
13496327105554702802%y% + 10703877237823546802°2% — 24589794431671088402*y2z —
©172008243497380698023y* + 89550899100449910022y2% + 42586427572213957202y%2 —
1277592827166418716y° — 147261478520739852023.

(1.H3)

—2943652093952215 4 861805197068802 2y — 312642820224021%2 —35533953090802°%y2 —
191730439908027yz + 7994776674602%y% + 714024687602522 + 412222381202%y%z —
1223633061023y* +1070558370022y2% — 92878172102y%2 4 2786345163y° — 4050761402,

(ii.H4) —19543288375146825 — 42403561389032552%y — 6338555106270102%2 —
3923208421_631520:139'_112 +  37974980502615802"yz — 39696361236467602%y> +
8104253834188402522 + 1905527842803480z%*y%z — 1112218128823340=3y* —
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8281543382707002%y2? +  1603040457798360=y°z —  480912137339508y°> —

2213960341507602°.
(1.H5) 12925663723879424=21° + 107240950855923840z1%y —

503399838574483202%2 + 813430955593713602°y? — 163632798084097440="yz +
37540976679801180=%y® + 491816974639708802°22 — 58487209341007140=%y*z +
175042240496937023y* + 6054349711665510022y2? — 10979922358444230zy°z +
3293976707533269y° — 141610213594888202°.

(1LH6) —186786982666504=' +24863535319618602'2y — 7162348657370280210z —
656022070207503102%y% — 100928478709658760="yz + 5702762693358355952%y> —
2160458421967954802°2% + 249187997641139190z*y*2 — 1255852911490211520=3y* —
3820523746342671002%yz> + 2590390753955902080=zy%z — T77117226186770624y° —
6309538226633242802°.

(ii.H7) —356214322% — 1893758097212y — 488175534210z — 7017940728z°%y% +
1094091742827yz - 1977580332028y + 478943992825 22 +
239992729202%y?z — 26525700180=3y* — 15077834100=%yz> + 48159052200zy3z —
14447715660y° — 94517766002°.

(ii.H8) —33122656701638172999682% +  20084193944246508625920=2%y +

270237484774963928678402°2 — 1717628268379222076497202°y> —
922889076630730247835720z " yz + 27140030281402185375131402%4° +
39213645094131573030840z° 22 + 1327911872930716718683080z*y%2 —
9122364737108139707456490=3y* — 256831772005156780661670022y22 +
189657602904653098733681102y°2 — 5689728087139592962010433y° -

46849835915467834476432602°.

Remark 3.4. (i)The polynomials in (ii.A1), (ii.B1), (ii.H1) are the discriminant
polynomials of types Ag, B3, Hg, respectively.

(ii) The polynomial in (ii.A2) is obtained by M.Sato.

(it1) Let F(e,y,z) be one of the polynomials in Theorem 3.3. Then the curve
{(y,2); F(0,y, z) = 0} is regarded as the simple singularity of type Eg, Ev, Es if F(z,y, 2)
is one of the polynomials in (ii.A), (ii.B), (ii.H), respectively. Is it possible to explain
this observation?

Since it is known by P.Deligne, E.Brieskorn, K.Saito that if F' is a discriminant
polynomial, the complement of F = 0 in S is a K(x,1)-space and that = ({F # 0}) is
related with Artin braid groups (we used the notation in section 2), it is natural to ask
the problem:

Problem 3.5. Let F(z,y,z) be one of the polynomials in Theorem 3.3 and let T be
the complement of F(e,y,z) = 0 in (z, y, z)-space.
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(i) Is T a K(=,1)-space?
(ii) Compute the fundamental group of 7.

Problem 3.5 (i) is a conjecture proposed in [Sa].

It is easy to generalize Problem 3.2 to n variables case which was originally formulated
by Prof. M. Sato more than 15 years ago in connection with the study of prehomogeneous
vector spaces. I formulate here the problem only in three variables case, because this is
the unique case which I could succeed a classification of such vector fields by using Lap
Top computer under the guidance of my colleague Prof. K.Okubo.

You can find topics related with the subject of this section in RIMS Kokyuroku 281
(1976), 40-105.

4. A Construction of Invariant Spherical Hyperfunctions

It is an important problem to construct tempered invariant spherical hyperfunctions
on a semisimple symmetric space G/ H because they contribute to the Plancherel formula
for G/H. Last summer, S.Sano explained me an idea how to construct them in the case
SL(2,R)/SO(1,1). Computing those in this case, I was impressed by their interesting
support property. In fact, their support is contained in the closure of a conjugacy
class of a Cartan subspace as the case of characters of principal series representations
of semisimple groups. The subject of this section is to explain a result on invariant
spherical hyperfunctions which relates with the support property mentioned above. For
the details, see [Se]. ‘

This time, let 9, be a real semisimple Lie algebra and let o be its involution. Then
we have a symmetric pair (20 vhy ) and a direct sum decomposition 9, = -hlo +q,- For
simplicity, we assume that (20 by ) is irreducible in the sequel. From the definition, k,
acts on ¢ via the adjoint action. We also assume that the complexifications of gy Eo » 4y
are g, k, p of section 2, respectively. (I am sorry that the notation are confusing.) In the
sequ_el,_ we use the notation of section 2 without any comment. Then, from the definition,
Dif f(p) is regarded as an algebra of differential operators on q,- Let Dif Feonst(p)®
be the subalgebra of Dif f(p)X consisting of constant coefficient differential operators.
From the definition, P; = ad(A)%h; (j = 1,2,---,7) are contained in Dif foonst(p)¥.
We now recall the following lemma due to Harish-Chandra which supports the claim
after Proposition 2.1.

Lemma 4.1. (cf.[HC]) The differential operators Py, Py,---, P, are algebraically
independent and generate Dif fcon,t(g)K .
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For any A = (Ay,---,A;) €C", we define a system of differential equations M, on q,
by

(B=M)u=0  (G=17)
TY)u=0 (VY €h),

where, forany Y € b , 7(Y) is the vector field on g defined by

(r(V)F)(X) = £F(X +1[X,Y]) =0 (Vf €C =(g,)).

Solutions to the system M, are called invariant spherical hyperfunctions on q,-

There is a deep relation between the system M, with the discriminant polynomial
F,. To explain this, we introduce logarithmic vector fields along the set {F 0}.

(For a general theory of logarithmic vector fields, see [Sa]). We put I; = = [A, h; ;] — Ak;
(7 = 1,2,---,7). Then each L is a vector field on q, which is logarithmic along the

set {F, = 0}. Namely, there exist polynomials ¢;(X) eC[g]K (7 =1,2,---,7) such that
L; F, = ¢j(X)F,. Accordingly we see that L; = go,.(z_,-) (7=1,2,:--,7) are vector fields
logarithmic along the set {F = 0}.. Conversely, the differential operator A is obtained
from L; (j =1,---,r) by the lemma below.

Lemma 4.2. There is a vector field Ly on S such that
A:%E—l B:c L +L0

In the sequel, we assume the condition below on the symmetric pair (go’ éo ) unless
otherwise stated.

Condition 4.3. There is a normal real form g, of g such that lc_ N g, is its maximal
compact subalgebra.

In this case, Lemma 4.2 is refined as follows.
: 1
Lemma 4.2°. A=z ; 1 az,L

As a direct consequence of Lemma 4.2°, we have the following.

Proposition 4.4. A |F£|‘ = s2¢qp [F£|'_1, where g = BFE eClp¥



93

" Remark 4.5. We return to the general case, forgetting Condition 4.3. Then the
statement below seems to be true:

There is a polynomial go(X) €C[p]¥ and a constant a such that

A|Fy| = s(s+a)go |Fp| .

As a consequence, s + o has to be a factor of the b-function of F,.

We put g; ={X € q, ;FQ(X ) # 0}. By definition, g_; has finitely many connected
components. For any connected component  of g; , we define a function ng_I;z on g,
(8 €C) by | Fplg(X) =| Fp(X)|" if X € Q and | Fp|g(X) = 0 otherwise. Needless to
say, |F£ | is a continuous function on g, ifRe s > 0 and is extended to a D’(g0 )-valued
meromorphic function of s on the whole s-space, where D’(go ) is the space of distributions

on g . Moreover, it is clear that Yg =| Fplq |s=o0 is the characteristic function of Q. As
a corollary to Proposition 4.4, we have the following.

Proposition 4.6. AYy = (squ IF?; ;;1)

s=0

For simplicity, we put Zg = (szqo IFpl;z_l) . In spite that it is not clear whether
rd -

(32 | F,p ;{1) is holomorphic near s = 0 or not, Zg is well-defined because of
- s=0

Proposition 4.6. From the definition, Supp(Zg) is contained in the set {X € 2, Fp (X) =
0,(dF,)x = 0}. Then we obtain the theorem below which is related with the s_upport
property mentioned at the first part of this section. For its proof, we need Lemma 4.1
and Proposition 4.6.

- Theorem 4.7. We assume that Condition 4.3 holds for the symmetric pair (go , éo )-
If there are connected components Q;,---,Q of g; and constants ¢y, ---, ¢, such that
k
2j=1¢Za; =0,
we have the following.
@) n= Z;’___l c;Ya, is a solution to the system My with A = (0,---,0).

(i1) Let A = (Ag,--+,A;) be arbitrary. If f(X) is an analytic solution to M), then
F(X)n(X) is a hyperfunction solution to M.
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