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1 Introduction

The subject treated here is an attempt to lllde\iota$\cdot$ staIld the efficiency of algorithms for

solving a non-linear equation. Among otliers, Newton’s method has played a central role

in root-finding algoritlims for a polynomial and antounts to the dynamical properties of

a certain rational function (Newton Illap) under iterations. Tlie global study of the

algorithm forces the introduction of topology $aI\downarrow d$ geometry into tliis subject.

We write $N$ : $P_{d}\cross\overline{C}arrow\overline{C},$ $wl\iota el\cdot eP_{d}$ is tlie space of polynomials of degree $\leq d$ and

$\overline{C}$ is the Riemann sphere $C\cup\infty$ . Then $N(l, z)=N_{p}(z)=z-p(z)/p’(z)$ is rational over

$\overline{C}$ in $p\in P_{d}$ and $z\in\overline{C}$ ; that is, $N$ call lee $fo1^{\backslash }1^{\cdot}\Pi cd$ from the complex rational operations

$(+, -, \cross, \div)$ from the coeffcients of l) and $z$ .

If $z$ is sufficiently close to a root $\uparrow l$ of $l^{J}$ , then the sequence defined by

$z_{1}=N_{|J}(z),$ $z_{2}=\Lambda^{;_{|J}2}(z)=N_{|J}(z_{1}),$
$\cdots,$

$z_{k}=N_{f}^{k}(z)=\Lambda_{p}^{r}(z_{k-1})$

converges to $\eta$ as $k$ tends to $\infty$ . IIowcver, as is well known there is an open set $U$ in $P_{d}\cross\overline{C}$

such that this convergence will not liappen for $(f, z)$ in $U$ . Consequently, for Newton’s

iterative scheme, two distinctly $clifr_{ClC11}\iota$ types of behavior have been $ol$) $served$ . In the

first case, this algorithm succeeds for an open dense set of starting points. The set of

exceptional points (Julia set) is closed, nowhere dcnse and $1\downarrow a.s$ two diniensional measure

zero. The second case exhibits an open set of initial conditions where $tl\iota is$ algorithIn fails.
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The failure is due to the existence of an attracting periodic cycle of a Newton map.

By Smale([10]), it was conjectured that no such algorithm could be generally con-

vergent. C.McMullen ([5])answered the question by showing that there is no generally

convergent purely iterative algorithm, rational over $\overline{C}$ , for finding roots of polynomials

of degree $\geq 4$ . Here “purely iterative” means that the algorithm can be expressed as a

discrete dynamical system on $\overline{C}$ parameterized by the polynomial.

However it was shown by M.Shub and S.Smale([9]) that if one adds the operation of

complex conjugation, then there do exist generally convergent purely iterative algorithms

for finding zeros of polynomials.

In this paper we shall analyze the global behavior of Newton’s map from the viewpoint

of complex dynamics of rational functions. In Section 3 as Theorem 3.1, we give a complete

criterion for a rational function to be a Newton’s method as applied to a polynomial map.

In Section 4, we study how one can guarantee success of Newton’s method, by measuring

the width of basins of roots. In Section 5, Newton map is studied for the generic cubic

polynomials. After a change of variables, these polynomials parameterized by a single

complex parameter. The Newton map has a single critical point other than its fixed

points at the roots of the polynomial. One observe the variety of behavior of the orbit

of the free critical point depending on parameters. The Julia set, points where Newton’s

method fail to converge, is also pictured.

2 Preliminaries from Complex Dynamical Systems

In this section some minimal knowledge and notations from iteration theory for rational

functions are given. For examples, to study the behavior of orbits, the structure of

invariant sets (Julia sets etc.) for the iteration of rational functions on the Riemann
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Sphere, and how they change when the functions are varied.

Let $\overline{C}=C\cup\{\infty\}$ be the Riemann sphere. We consider a rational function $f$ : $\overline{C}arrow\overline{C}$

as a dynamical system (complex dynamical system) on $\overline{C}$ The n-th iteration $f^{n}$

$(n\in Z)$ is defined by:

$f^{0}=id,$ $f^{n+1}=f^{n}of$ , and $f^{-n}=(f^{n})^{-1}(n\geq 0)$ .

The orbit of a point $z\in\overline{C}$ is the sequence $\{f^{n}(z);n\geq 0\}$ . The degree of $f(z)= \frac{P(z)}{Q(z)}$

, denoted by $\deg(f)$ , is equal to the maximum of the degree of $P(z)$ and $Q(z)$ , i.e.

$\deg(f)=\max\{\deg(P), \deg(Q)\}$ , where we assume that $P(z)$ and $Q(z)$ have no common

roots. This is equal to degree of mapping of $f$ . In fact, for any $z\in\overline{C}$ , the inverse image

$f^{-1}(z)$ consists of exactly $d(=\deg(f))$ solutions, counted with multiplicity. From now

on, we assume $d\geq 2$ , since for $d\leq 1$ there are only simple dynamical systems. At first

we note that

$\bullet$ a rational function of degree $d$ has precisely $d+1$ fixed points.

conjugacy

global conjugacy A rational function $f$ is (analytic) conjugate to a rational function

$g$ iff there exist a M\"obius transformation $A(z)= \frac{az+b}{cz+d}\in PSL(2, C)$ , which satisfies the

following commutative diagram:
$j$

$\overline{C}arrow\overline{C}$

$A\downarrow$ $\downarrow A$

$\overline{C}arrow^{g}\overline{C}$

By this transformation $A(z)$ , the orbit of a point $z_{0}$ under $f$ corresponds to that of

the point $A(z_{0})$ under A $ofoA^{-1}$ . Therefore, if necessary, we consider $A$ $ofoA^{-1}$

instead of $f$ , after such a conjugation. We note that if $f$ and $g$ are (global)conjugate,

then $\deg(f)=\deg(g)$ .

local conjugacy Another important property of conjugacy is concerning about fixed
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points. Let $f$ and $g$ are rational function with fixed point $z_{0}$ and $w_{0}$ respectively. If there

exists a biholomorphic function $\varphi$ : $U(z_{0})arrow V(w_{0})$ such that $\varphi of=go\varphi$ , then it is said

that $f$ is (locally) conjugate to $g$ by $\varphi$ in $U$ . Namely the following diagram commutes:
$U$

$arrow^{f}$
$U$

$\varphi\downarrow V$

$arrow^{g}$

$V^{\varphi}\downarrow$

period point

Let $x_{0}$ be a periodic point of period $s$ , i.e. $f^{s}(x_{0})=x_{0}$ for a rational function $f$ . If $x_{0}\neq\infty$

then we define eigen value of $x_{0}$ as follows:

$\lambda=(f^{s})’(x_{0})$

A periodic point $x_{0}$ is said to be

attracting if $0<|\lambda|<1$

super-attracting if $\lambda=0$

neutral (indifferent) if $|\lambda|=1$

repelling if $|\lambda|>1$ .

Julia set

We fix a metric $\rho$ , on C. A family $\mathcal{F}$ of continuous mappings from an open set $U$ on $\overline{C}$

to $\overline{C}$ is said to be equicontinuous if for any $\epsilon>0$ and $x\in U$ there exists $\delta>0$ such

that $\rho(f(x),f(y))<\epsilon$ for any $f\in \mathcal{F}$ , whenever $\rho(x, y)<\delta$ and $y\in U$ . According to

Ascoli-Arzela’s theorem, it is equivalent to the condition that $\mathcal{F}$ is a normal family $($

it is a family of which any sequence of functions contains a subsequence that converges

uniformly on any compact set.)

Now for any rational function $f,$ $z$ is said to be normal with respect to $f$ if there

exists a neighborhood of $z\in\overline{C}$ such that $\{f^{n}|_{U} ; n\geq 0\}$ is a equicontinuous. The Julia

set of $f$ is defined as

$J_{f}=$ { $z\in\overline{C}$ ; $z$ is not normal with respect to $f$}
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and $F_{f}=\overline{C}-J_{f}$ is called the Fatou set.

Critical Point

A point $z$ is called a critical point if $f$ is not injective on any neighborhood of $z$ . When

$z\neq\infty$ and $f(z)\neq\infty,$ $z$ is a critical point if and only if $f’(z)=0$ . And multiplicity as

the number of the solutions of a equation $f’(z)=0$ is called the multiplicity of $z$ (as

the critical point).

By an easy calculation, we can see that a rational function with degree $d$ has exactly

$2(d-1)$ critical points, counted with multiplicity. These critical points play very important

rolls when we characterize the behavior of dynamical systems.

basin

Let $\alpha$ be a (super-)attracting fixed point for a rational function $f(z)$ . The set

$\{z ; f^{n}(z)arrow\alpha, (narrow\infty)\}$

is called the attracting basin of $\alpha$ . The immediate basin of $\alpha$ , denoted by $B(\alpha)$ , is

the connected component of attracting basin which contains $\alpha$ .

index of a fixed point

For $f(z)$ , we define the multiplicity of a fixed point $z_{0}$ as follows.

1 If $f’(z_{0})\neq 1$ , multiplicity of $z_{0}$ is 1.

$\bullet$ If $f’(z_{0})=1$ , then the Taylor expansion of $f$ at $z_{0}$ is

$f(z)=z_{0}+(z-z_{0})+a(z-z_{0})^{m}+\cdots,$ $a\neq 0$ .

In this case, multiplicity is defined by $m$ .

We define the holomorphic index $\iota$ of a fixed point $z_{0}$ for $f$ as follows([6]):

$\iota(f;z_{0})=\frac{1}{2\pi i}\int_{|z-zo|=\delta}\frac{1}{z-f(z)}dz={\rm Res}(\frac{1}{z-f(z)}$ ; $z_{0})$ .
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Note that the index at $z_{0}$ is a local analytic invariant. That is, if $g$ is locally cojugate to

$f$ under $\varphi$ , then $\iota(f;z_{0})=\iota(g;\varphi(z_{0}))$ .

Theorem 2.1 (Milnor) $([\theta])$ For a rational function $f(z)(\not\equiv z)$ , we have

$\sum\iota(f;z)=1$ .
$f(z)=z$

If $z_{0}=f(z_{0}),$ $f’(z_{0})=\lambda\neq 1$ then $\iota(f;z_{0})=\frac{1}{1-\lambda}$ .

Since a repelling or a certain neutral periodic points belong to the Julia set, this theorem

yields the following:

Corollary 2.2 The Julia set for a rational function of degree two or more is always

non empty.

3 Characterization of rational functions to be a New-
ton map

For a polynomial $p(z)$ , we define Newton map as follows.

$N_{p}(z)=z- \frac{p(z)}{p’(z)}$

It is clear that if $p(z)$ has $n$ distinct roots then $N_{p}$ is a rational function of degree $n$ .

The following facts concerning to an immediate basin $B(\alpha)$ of Newton map $N_{p}$ are

known, where $\alpha$ is a root of $p$ .

1. An immediate basin $B(\alpha)$ is simply connected. ([7],[8])

2. $\infty$ lies on the boundary of $B(\alpha)$ for every root $\alpha$ of $p(z)$ . ([4])

3. If the local degree of $N|_{B(\alpha)}$ is $s$ , then $B(\alpha)$ approaches $\infty$ in $s-1$ different directions.

([7])
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We shall characterize rational functions that are conjugate to a Newton’s map as

applied to a polynomial map. Namely, there is a complete criterion for a rational function

to be a Newton’s method.

Lemma 3.1 Let $p$ be a polynomial of degree $d$ , and $N_{p}$ Newton map for $p$ .

1. The set of fixed points of $N_{p}(z)$ is $\{\infty\}\cup p^{(-1)}(0)$ .

2. If $\alpha$ is a root of $p(z)$ with multiplicity $m$ then $N_{p}’( \alpha)=\frac{m-1}{m}$ Hence a root of $p$

is attracting fixed point of $N_{p}$ . Especially if $\alpha$ is simple root of $p(z)(i.e. m=1)$

then $\alpha$ is super-attracting fixed poin $t$ of $N_{p}$ .

3. $\infty$ is the unique repellin$g$ fixed poin $t$ of $N_{p}$ , and its eigen value is $\frac{d}{d-1}$ .

Theorem 3.2 The next two statements are equivalent for a $ra$tion$al$ function $f$ of

degree $d$ .

1. $fh$as $dist$inct $d$ fxed poin$ts,$ $z_{1},$ $z_{2},$ $\cdots,$ $z_{d}$ , whose eigen valu $es$ are given $as$

$f’(z_{i})= \frac{m_{i}-1}{m_{i}},$ $m_{i}\in N,$ $i=1,$ $\cdots,$
$d$ .

2. There exists a polynomial $p$ for which Newton map $N_{p}$ is conju$gate$ to $f$ .

Proof of Theorem

It is well known and easy to check that $2$ . $\Rightarrow 1$ . Now we shall only to prove that $1$ . $\Rightarrow$

2. Note that $f(z)$ has precisely $d+1$ fixed points. Let $\zeta$ be a fixed point $\neq z_{i}(i=1, \cdot\cdot , d)$ .

The multiplicity of the fixed point $\zeta$ is 1, because that multiplicity of each fixed point

$z_{i}(1\leq i\leq d)$ is 1.

Put $k= \sum_{i=1}^{d}m_{i}$ . We obtain that $f’( \zeta)=\frac{k}{k-1}$ from the equation in Theorem 2.1:

$\sum_{z=f(z)}\iota(f;z)=\sum_{i=1}^{d}\frac{1}{1-\frac{m_{j}-1}{m:}}+\frac{1}{1-f’(\zeta)}=1$ .
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Hence it turns out that $\zeta$ is a repelling fixed point.

If $\zeta\neq\infty$ then by change of coordinate, $\zeta$ is transformed to $\infty$ , and $f$ to a conjugate

rational function $\tilde{f}$ . We denote $f$ by same $f$ for notational simplicity.

Hence we can write $f(z)= \frac{q(z)}{r(z)}$ where $q(z)$ and $r(z)$ are polynomial of $\deg q=d$

and $\deg r<d$ . Let

$f(z)-z= \frac{q(z)-z\cdot r(z)}{r(z)}$ .

The polynomial $q(z)-z\cdot r(z)$ of degree less than $d$ has fixed points $z_{1},$ $\cdots,$ $z_{d}$ . Therefore

$q(z)-z\cdot r(z)\equiv 0$ or $q(z)-z \cdot r(z)=c\cdot\prod_{i=1}^{d}(z-z_{i})$ .
.

From $f(z)\not\equiv z$ , the first case does not occur. Then $q(z)-z \cdot r(z)=c\cdot\prod(z-z_{i})=c\cdot s(z)$ .

Hence

$f(z)-z= \frac{c\cdot\Pi(z-z_{i})}{r(z)}=\frac{c\cdot s(z)}{r(z)}$ .

For each $i(1\leq i\leq d)$ ,

$f’(z_{i})=(z+ \frac{c\cdot s(z)}{r(z)})’|_{z=z_{i}}=1-\frac{1}{m_{i}}$ .

Hence

$( \frac{c\cdot s(z)}{r(z)})’|_{z=z;}=\frac{c\cdot s’(z_{i})}{r(z_{i})}=-\frac{1}{m_{i}}$

So we have that $r(z_{i})=-c\cdot m_{i}\cdot s’(z_{i})$ .

Let

$t(z)=r(z)- \sum_{i=1}^{d}m_{i}\cdot\prod_{i\neq j}(z-z_{j})$ .

Then $t(z)$ is a polynomial of degree $d-1$ , satisfying that $t(z_{i})=0$ for each $i(1\leq i\leq d),$ .

Therefore $t(z)$ must be constant $0$ .

Hence

$r(z)= \sum_{i=1}^{d}m_{i}\cdot\prod_{i\neq j}(z-z_{j})$ .
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Put $P_{0}(z)=c \cdot\prod_{i=1}^{d}(z-z_{j})^{m}\cdot$ . Then we have

$f(z)$ $=$ $z- \frac{c\cdot\Pi_{i.1}^{d_{=}}(z-z_{j})}{\Sigma_{i}^{d_{=1}}m_{i}\Pi_{i\neq j}(z-z_{j})}\cdot\frac{\Pi_{i=1}^{d}(z-z_{i})^{m_{|-1}}}{\Pi_{i=1}^{d}(z-z_{i})^{m.-1}}$

$=$ $z- \frac{P_{0}(z)}{P_{0}’(z)}=N_{P_{0}}(z)$ .
1

This theorem covers the result by J.Head as a corollary:

Corollary 3.3 (Head) $([3J)$ Any $ra$tion$al$ function $f$ of degree $d$ having $d$ distinct

supper-attracting fixed points is conjugate to the $N_{P}$ for a polynomi$alP$ of degree $d$ .

Moreover if $\infty$ is not supper-attractin$g$ for $f$ , but fixed point , then $f=N_{P}$ for some

polynomial $P$ of degree $d$ .

4 Sutherland’s estimate for the basins of Newton’s
method

The problem of devising optimal methods for finding numerically approximate zeros of a

polynomial has been of interest and is now far from solved. In order to have an estimate

on the complexity of a root-finding algorithm, we need a compactness condition under

a suitable norm on the space of polynomials. This can be done by placing conditions

either of the location of the roots or of the coefficients. Hence we consider hereafter a

polynomial in the family $\mathcal{P}_{d}(1)$ :

$\mathcal{P}_{d}(1)=\{p(z)=z^{d}+a_{d-1}z^{d-1}+\cdots+a_{0}, |a_{i}|\leq 1(i=0,1, \cdots, d-1)\}$ .

Moreover if $a_{d-1}=0$ then $p(z)$ is called centered polynomial. It is easy to see that the

roots of a polynomial in $\mathcal{P}_{d}(1)$ lie within the disk with center $0$ and radius 2. It is possible

to transform an arbitrary polynomial into an element of $\mathcal{P}_{d}(1)$ : for $p(z)= \sum_{j=0}^{d}c_{j}z^{j}$ , let

$C= \max\{\frac{c_{j}}{c_{d}}\}$ , then $q(z)= \frac{p(Cz)}{C^{d}}\in \mathcal{P}_{d}(1)$ . Note that the Newton map $N_{p}$ induced by $p$
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is conjugate to $N_{q}$ induced by $q$ . Therefore, withoutloss of generality, we can treat only

centered polynomials $p\in \mathcal{P}_{d}(1)$ , after such conjugacy.

Newton’s method converges very fast in a neighborhood of a simple root, but can fail

in for some initial point outside this neighborhood. Let $B(\alpha)$ be an immediate basin

of attracting fixed point $\alpha$ (a root of p) of $N_{p}$ . S.Sutherland ([11]) attempted how one

can gurantee convergence of Newton’s method, by estimating the “width” of $B(\alpha)$ . But

unfortunately there are ambigous parts and errors in his paper([ll]). In this section we

shall correct his results. Especially Proposition 3.5 in ([11]) is reformed as Proposition

4.2

Definition 4.1 Any annulus can be mapped by an analytic diffeomorphism onto

a unique ”standard annulus” whose inner boundary is the unit circle and with outer

boundary the circle of radius $e^{2\pi m}$ for some $m\in R^{+}$ . In this $case$, the modulus of the

annulus is said to be $m$ .

Proposition 4.2 Let $T$ be a torus, isomorphic to $C/(Z\oplus Z\tau)$ , and $A$ an annulus with

modulus(A) $=m$ , contain$ed$ in $T$ (see fig 1). Then the distance between the boundary

curves of $A$ is at leas$t$

$\frac{2ke^{\frac{m}{2\pi}}}{1+e^{\frac{\pi}{m}}’}$

where $k= \min\{1, \Im(\tau)\}$ .
fig 1

$0$ /

Proof of Proposition Consider an open ellipse whose major axis is the interval

$(- \frac{r+1/r}{2}, \frac{r+1/r}{2})$ and minor axis is $(- \frac{r-1/r}{2}i, \frac{r-1/r}{2}i)$ . Remove two points $-1,1$ from the

ellipse and denote by $E$ the resulting set. Let $\Gamma$ be the set of curves in $E$ which join the

boundary of the ellipse passing through the interval $(-1,1)$ .

The map $z rightarrow\frac{z+1/z}{2}$ is two to one. And a punched annulus
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1
$PA=\{z ; \overline{r}<|z|<r\}-\{-1,1\}$

is mapped to $E$ . Let $\Gamma’$ be the set of curves in $PA$ joining inner boundary and outer

boundary.

$arrow$

Then the extremal lengths are calculated as follows:

$\lambda(\Gamma’)=\frac{1}{\pi}\log r$ , and $\lambda(\Gamma)=\frac{2}{\pi}\log r$ .

We may assume that the “narrow part” of this embedded annulua is located at the

center of $T$ . Let $\delta$ be the width of the narrow part of $E$ . Scale the ellipse by $\frac{\delta}{2}$ and embed

it in $T$ so that the interval $[- \frac{s}{2}, \frac{5}{2}]$ corresponds to the narrow part.

Let

where $k= \min\{1, \Im(\tau)\}$ .

Let $\Gamma_{A}$ be the family of closed curves in $A$ .

Then $\lambda(\Gamma_{A})=\frac{1}{m}$ .

Since each curve in $\Gamma_{A}$ contains a curves in $\Gamma$ , we have

$\frac{1}{m}\geq\lambda(\Gamma)=\frac{2\log r}{\pi}=\frac{2\log((\frac{k}{\delta})+\sqrt{(\frac{k}{\delta})^{2}-1})}{\pi}$

.

Solving for $\delta$ , we obtain

$\delta\geq\frac{2k\exp(\frac{\pi}{2m})}{1+\exp(\frac{\pi}{m})}$ 1
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By estimating the “width” of immediate basin of a root of $p(z)\in \mathcal{P}_{d}(1)$ , we have the

following revised results, essentially due to S.Sutherland ([11]).

Theorem 4.3 (Sutherland) Let $\alpha$ be a root of multiplicity $m$ , with $N|_{B(\alpha)}$ of degree

$s+1$ . Then there are points $t_{1},$ $\cdots t_{s}$ of magnitude $2+2\sqrt{2}$ for which a disk of $ra$dius $r_{i}$

centered at $t_{i}$ lies entirely within $B(\alpha)$ . These radii satisfy $\sum_{i=1}^{s}r;\geq\frac{(2+2\sqrt{d})\pi}{12d(1+\sqrt{\frac{2m}{2m-1}})}$

Corollary 4.4 Let $p(z)$ be a centered polynomial in $\mathcal{P}_{d}(1)$ , and $|z|\geq 2+2\sqrt{d}$. Then

the probability that $N^{n}(z)$ will converge to a root of $p$ is at least $\frac{1}{29\pi d}$

Corollary 4.5 Let $p(z)$ be a centered polynomial in $\mathcal{P}_{d}(1)$ . Let $t_{1},$ $\cdots,$
$t_{n}$ be points

equally spaced around the circle of radius $2+2\sqrt{d}$, where $n\geq 29\pi d(d-1)$ . Then for each

root $\alpha$; of $p(z)$ , at least one of the points $t_{j}$ lies in $B(\alpha_{i})$ .

5 Computer experiments with Newton’s method

In this section we study Newton’s method for cubic polynomials using computer graphics.

We forcus on the Fatou set of $N_{p}$ containing basins of an attracting periodic point of
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period two or more. If such periodic points exist, they do not correspond to roots of

$p$ , and Newton’s method with any initial point in such a basin fails to converge. The

following theorm plays central role:

Theorem 5.1 (Fatou) $( \int 2])$ The immediate $b$asin of an $att$racting periodic poin $t$

contains at least one critical point.

Thus we only follow the orbits of free critical points of $N_{p}$ .

We consider hereafter one-parameter family, called Milnor model, $\{p_{\mu}=z^{3}-2z+$

$\mu(\mu\in C)\}$ . Note that $p_{\mu}\not\in \mathcal{P}_{d}(1)$ . $N_{p_{\mu}}$ has only one free critical point $0$ . Note that the

Newton map for an arbitrary cubic polynomial with more than one root can be conjugated

to $N_{p_{\mu}}$ for some $\mu$ .

In the next figures 5.1 and 5.2 (enlargement), we plot a white point at a parameter

whose associated Newton map fails to converge if the free critical point $0$ is a starting

point.

We observed in these parameter plane that there are copies of Mandelbrot set $\mathcal{M}$ (see

figure 5.3) :

$\mathcal{M}=\{c\in C : z_{0}=0, z_{n+1}=z_{n^{2}}+c\star\infty\}$

The figure 5.4 is filled-in Julia set of quadratic map $z^{2}+c$ where $c$ is in Mandelbrot set.

The figure 5.5 is Fatou set for a value $\mu$ chosen from white region in Figure 5.2.

To the question why we obtain images of the Mandelbrot set or of a filled-in Julia

set of quadratics, A. Douady and J. H. Hubbard ([1]) answered by using the theory of

polynomial-like mapping. Roughly speaking, Newton map $N_{p_{\mu}}$ locally may behave as a

quadratic polynomial.
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Milnor Model
$-1\emptyset<\rangle\langle\langle 1\emptyset$

$-1\emptyset\langle y\langle 1\emptyset$

se ITERRTION
$\emptyset\emptyset 1$ EPSILON

figures 5.1 and 5.2 (enlargement)

Mandelbrot set $\mathcal{M}$

figure 5.3
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figure 5.4

figure 5.5
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