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Periodic solutions of a singular Hamiltonian system of 2-body type
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0. Introduction and results

In this short note, we study the existence of periodic solutions of a Hamiltonian system

$\dot{q}+\nabla V(q,t)=0$ , $(HS)$

where $q=$ $(q_{1}, \cdots , q_{N})\in R^{N}(N\geq 3)$ and $V(q, t)$ : $R^{N}\cross Rarrow R$ is a given potential. We
deal with the case where a potential has a singularity and is related to 2-body problem.

More precisely, we assume $V(q, t)$ satisfies
(V1) $V(q,t)\in C^{2}((R^{N}\backslash \{0\})\cross R, R)$ is T-periodic in $t$ ;
(V2) $V(q, t)<0$ and $V(q, t),$ $\nabla V(q, t)arrow 0$ as $|q|arrow\infty$ uniformly in $t$ ;

(V3). $V(q,t)$ is of a form:
-V$(q, t)=- \frac{1}{|q|^{\alpha}}+W(q, t)$ ,

where $\alpha>0$ and $W(q, t)\in C^{2}((R^{N}\backslash \{0\})\cross R, R)$ satisfies

$|q|^{\alpha}W(q,t),$ $|q|^{\alpha+1}\nabla W(q, t),$ $|q|^{\alpha+2}\nabla^{2}W(q, t)$ ,

$|q$ ’ $W_{t}(q, t)arrow 0$ as $qarrow 0$ uniformly in $t$ .

We consider the following two problems:
(i) Prescribed Period Problem (PP): For a given $T>0$ , we study the existence of T-

periodic solutions of (HS), i.e., solutions of (HS) such that

$q(t+T)=q(t)$ for all $t$ . (HS.P)

(ii) Prescribed Energy Problem (PE): Assume $V$ is independent of $t$ . For a given $H\in R$ ,
we study the existence of periodic solutions of (HS) such that

$\frac{1}{2}|\dot{q}(t)|^{2}+V(q(t))=H$ for all $t$ . (HS.E)

(Here we do not fix the period of $q(t).$ )

We study via variational methods these problems. Recently it is observed that the
order $\alpha$ of the singularity of $V(q,t)$ at $q=0$ plays an important role for the existence of
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periodic solutions for both of problems. We consider the following cases separately; (i) the
strong force case $\alpha\geq 2$ for (PP) and $\alpha>2$ for (PE) (ii) the weak force case $\alpha\in(0,2)$ .

For the Prescribed Period problem (PP), we use the following variational formulation.
Let $E=$ { $q\in H_{l^{1}oc}(R,$ $R^{N});q(t)$ is T-periodic in $t$ } is a space of T-periodic functions with
norm $\Vert q\Vert_{E}^{2}=\int_{0^{T}}[|\dot{q}(t)|^{2}+|q(t)|^{2}]dt$ and set

$\Lambda=$ { $q\in E;q(t)\neq 0$ for all $t$ }.

We define the functional $I(q)$ : $\Lambdaarrow R$ by

$I(q)= \int_{0}^{T}[\frac{1}{2}|\dot{q}|^{2}-V(q(t),t)]dt$ .

Then there is one-to-one correspondence between critical points $q\in\Lambda$ of $I(q)$ and T-
periodic solutions of (HS), (HS.P). Therefore we try to find critical points of $I(q)$ .

If $(V1)-(V3)$ holds and $\alpha\geq 2$ , more generally, under the conditions of $(V2)-(V3)$ and
(V1’) $V(q, t)\in C^{1}((R^{N}\backslash \{0\})\cross R, R)$ is T-periodic in $t$

and the following strong force condition (SF) of Gordon [Go]:
(SF) there is a neighborhood $\Omega$ of $0$ and $U(q)\in C^{1}(\Omega\backslash \{0\}, R)$ such that

$U(q)arrow\infty$ , $qarrow 0$ ,

$-V(q, t)\geq|\nabla U(q)$ 2 for all $q\in\Omega\backslash \{0\}$ and $t$ ,

we can see the functional $I(q)$ satisfies the Palais-Smale condition and we can apply min-
imax methods to obtain critical points of $I(q)$ . We refer to [BR, Gr, ACI]. Our main
purpose is to study the weak force case $\alpha\in(0,2)$ . We remark that the Palais-Smale
condition does not hold in this case. Our result is as follows:

Theorem 0.1 ([T2]). Suppose $(Vl)-(V3)$ and $\alpha\in(1,2)$ . Then the prescribed period
problem $(HS)$, (HS.P) possesses at least one periodic solution.

For the Prescribed energy problem (PE), we can expect the existence of periodic
solutions only under the situations

(i) $H>0$ if $\alpha>2$ , or
(i) $H<0$ if $\alpha\in(0,2)1$

Actually, if $V(q)=-\overline{|q|^{\alpha}}$ we can easily see that periodic solutions of (HS), (HS.E) exist

if and only if (i) or (ii) holds. In the strong force case $\alpha>2$ , the Palais-Smale condition
holds under additional assumptions and we refer to Ambrosetti and Coti Zelati [AC2] for
the existence result. We study the case $\alpha\in(0,2)$ . Here we assume

(V4) there is $\overline{\alpha}\in(0, \alpha$ ] such that

$\nabla V(q)q\geq-\overline{\alpha}V(q)$ for all $q\in R^{N}\backslash \{0\}$

in addition to $(V1)-(V3)$ .



66

Theorem 0.2 ([T3]). Suppose $V$ is independent of $t,$ $H<0$ and $(Vl)-(V4)$ . Moreover
$ass$ume $\alpha\in(1,2)$ if $N\geq 4$ and $\alpha\in(4/3,2)$ if $N=3$ . Then the prescribed energy problem
$(HS)$, (HS.E) possesses at least one periodic solution.

We remark that in case of weak force the existence of generalized solutions, which may
enter the singularity $0$ , is obtained by [BR] for the prescribed period problem (PP) and
by [AC2] for the prescribed energy problem (PE). We also remark the result very closely
related to Theorem 0.1 is obtained by Coti Zelati and Serra [CS] independently.

In what follows, we sketch outline of the proof of Theorem 0.1. The proof of Theorem
0.2 is done essentially in a same way (but more complicated) to Theorem 0.1 and we refer
to [T3].

1. Perturbed functionals

We take the following approach, which is used by [BR] first time.
$1^{o}$ First we introduce a perturbed potential $V_{\epsilon}(q,t)=V(q,t)-qW^{\epsilon}$ . The correspond-

ing functional
$I_{\epsilon}(q)= \int_{0}^{T}[\frac{1}{2}|q|^{2}-V_{\epsilon}(q, t)]dt$

$= \int_{0}^{T}[\frac{1}{2}|q|^{2}-V(q,t)+\frac{\epsilon}{|q|^{2}}]dt$

satisfies a variant of the Palais-Smale condition and we can apply a minimax
method of [BR] to get approximate solution $q_{\epsilon}(t)$ for each $\epsilon\in(0,1$ ].

$2^{o}$ Second we try to pass to the limit as $\epsilonarrow 0$ and we try to obtain a solution as a
limit of $q_{\epsilon}(t)$

More precisely, we use the following minimax method; we set

$\Gamma=\{\gamma\in C(S^{N-2}, \Lambda);\deg\gamma\sim\neq 0\}$ (1.1)

where $\tilde{\gamma}$ : $S^{1}\cross S^{N-2}\simeq([0, T]/\{0, T\})\cross S^{N-2}arrow S^{N-1}$ is defined by

$\sim\gamma(t, x)=\frac{\gamma(x)(t)}{|\gamma(x)(t)|}$

and $\deg\overline{\gamma}$ denote the Brower degree of $\tilde{\gamma}$ . We define

$b_{\epsilon}=$ $inf\max I_{\epsilon}(\gamma(x))$ . (1.2)
$\gamma\in\Gamma x\in S^{N-2}$

Then we have
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Proposition 1.1 ([BR]). For any $\epsilon\in(0,1$ ], $b_{\epsilon}$ is a critical value of $I_{\epsilon}(q)$ . That is, there
$is$ a critica1 poin$tq_{\epsilon}(t)$ of $I_{\epsilon}(q)$ such that $I_{\epsilon}(q_{\epsilon})=b_{\epsilon}$ . Moreover, there are constants $M$ ,
$m>0$ independent of $\epsilon\in(0,1$ ] such that

$m\leq b_{\epsilon}\leq M$ for all $\epsilon\in(0,1$ ]. (1.3)

I

Using the uniform estimate (1.3), we can get

Proposition 1.2 ([BR]). There is a constant $C>0$ independent of $\epsilon\in(0,1$ ] such that

$\Vert q_{\epsilon}\Vert_{E}\leq C$ for all $\epsilon\in(0,1$ ]. I

Therefore we can choose a subsequence –still we denote by $\epsilonarrow 0$ –such that
$q_{\epsilon}arrow q_{0}\in E$ weakly in $E$ and strongly in $L^{\infty}$ . If $q_{0}(t)\neq 0$ for all $t$ , in other words, if
$q_{0}\in\Lambda$ , we can easily see $q_{0}(t)$ is a periodic solution of (HS), (HS.P). The difficulty is to
prove $q_{0}\in\Lambda$ .

Even if $q_{0}\not\in\Lambda$ , we can see
(i) Set $D=\{t;q_{0}(t)=0\}$ . Then meas $D=0$ ;
(ii) $q_{0}(t)\in C^{2}(R\backslash D, R^{N})\cap C(R, R^{N})$ ;
(iii) $q_{0}(t)$ satisfies (HS) in $R\backslash D$ .

Bahri and Rabinowitz [BR] called such a limit function $q_{0}(t)$ generalized solution of (HS),
(HS.P). They constructed generalized solutions under the conditions (V1’), (V2) and

(V3’) $V(q, t)arrow-\infty$ as $qarrow 0$ uniformly in $t$ .
To prove $q_{0}(t)$ does not enter the singularity $0$ , we use a combination of a re-scaling

argument and an estimate of Morse indices.

2. Re-scaling argument

Suppose $q_{0}(t)$ enters the singularity $0$ at $t_{0}\in(0, T$], i.e., $q_{0}(t_{0})=0$ . Then there is a
sequence $t_{\epsilon}\in(O, T$] such that

1’ $t_{\epsilon}arrow t_{0}$ ;
$2^{o}|q_{\epsilon}(t)|$ takes its local minimum at $t_{\epsilon}$ .

Case 1: First we study the behavior of $q_{\epsilon}(t)$ near the singularity $0$ more precisely via a
re-scaling argument. We set

$\delta_{\epsilon}=|q_{\epsilon}(t_{\epsilon})|$ ,
$x_{\epsilon}(s)=\delta_{\epsilon}^{-1}q_{\epsilon}(\delta_{\epsilon}^{(\alpha+2)/2}s+t_{\epsilon})$.
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Then $x_{\epsilon}(s)$ satisfies $|x_{\epsilon}(O)|=1$ and

$\ddot{x}_{\epsilon}+\frac{\alpha x_{\epsilon}}{|x_{\epsilon}|^{\alpha+2}}+\delta_{\epsilon}^{\alpha+1}\nabla W(\delta_{\epsilon}x_{\epsilon}(s), \delta_{\epsilon}^{(\alpha+2)/2}s+t_{\epsilon})+\frac{2\epsilon}{\delta_{\epsilon}^{2-\alpha}}\frac{x_{\epsilon}}{|x_{\epsilon}|^{4}}=0$.

We study the behavior of $x_{\epsilon}(s)$ instead of $q_{\epsilon}(t)$ .
After taking a suitable subsequence –still we denote by $\epsilon-$ , we may assume that

$d= \lim_{\epsilonarrow 0}\frac{\epsilon}{\delta_{\epsilon}^{2-\alpha}}\in[0, \infty]$ (2.1)

exists. We consider the following two cases separately.
Case 1: $d<\infty$ ;

Case 2: $d=\infty$ .
Case 1: First we deal with Case 1.

Proposition 2.1. Suppose $d<\infty$ . After taking a $su$bsequence – still denoted by $\epsilon-$,
$x_{\epsilon}(s)$ converges to a $fun$ction $y_{\alpha,d}(s)$ in $C_{loc}^{2}(R, R^{N})$ , where $y_{\alpha,d}(s)$ is the solution of

$\dot{y}+\frac{\alpha y}{|y|^{\alpha+2}}+\frac{2dy}{|y|^{4}}=0$ , in $R$,

$y(0)=e_{1}$ , (2.2)
$\dot{y}(0)=\sqrt{2(1+d)}e_{2}$ .

Here, $e_{1},$ $e_{2},$ $\cdots,$
$e_{N}\in R^{N}$ are vectors satisfying $e_{i}\cdot e_{j}=\delta_{ij}$ . I

Case 2: In this case, we introduce another re-scaled function

$z_{\epsilon}(s)=\delta_{\epsilon}^{-1}q_{\epsilon}(\epsilon^{-1/2}\delta_{\epsilon}^{2}s+t_{\epsilon})$.

Then $z_{\epsilon}(s)$ satisfies

$\dot{z}_{\epsilon}+\frac{\alpha\delta_{\epsilon}^{2-\alpha}}{\epsilon}\frac{z_{\epsilon}}{|z_{\epsilon}|^{\alpha+2}}+\frac{\alpha\delta_{\epsilon}^{2-\alpha}}{\epsilon}\delta_{\epsilon}^{\alpha+1}\nabla W(\delta_{\epsilon}z_{\epsilon}, \epsilon^{-1/2}\delta_{\epsilon}^{2}s+t_{\epsilon})+\frac{2z_{\epsilon}}{|z_{\epsilon}|^{4}}=0$ .

We have

Proposition 2.2. Suppose $d=\infty$ . Then, after taking a subsequence –still denoted by
$\epsilon-$, we have

$z_{\epsilon}(s)arrow z_{0}(s)=e_{1}\cos\sqrt{2}s+e_{1}\sin\sqrt{2}s$ in $C_{loc}^{2}(R, R^{N})$ .
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Here, $e_{1},$ $e_{2}$ , –, $e_{N}\in R^{N}$ are vectors satisfying $e_{*}\cdot\cdot e_{j}=\delta_{ij}$ . I

We remark $z_{0}(s)$ is a solution of

$z+ \frac{2z}{|z|^{4}}=0$ , in $R$,

$z(0)=e_{1}$ ,

$z(0)=\sqrt{2}e_{2}$ .

3. Estimates of Morse index

Using the propositions 2.1 and 2.2, we have the following estimate of Morse indices.

Proposition 3.1. Suppose $q_{0}(t)$ enters the singularity $0$ and set

$\nu=\#\{t\in(0,t];q_{0}(t)=0\}$ .

Then
$\lim_{\epsilonarrow}\inf_{0}$ index $I_{\epsilon}’’(q_{\epsilon})\geq(N-2)i(\alpha)\nu$ (3.1)

where
$i( \alpha)=\max\{k\in N;k<\frac{2}{2-\alpha}\}$ . @

Before we sketch the proof of Proposition 3.1, we give a proof of Theorem 0.1.

Proof of Theorem 0.1. First we remark that the following estimate of Morse index
follows from the minimax characterization $(1.1)-(1.2)$ of $b_{\epsilon}$ .

Proposition 3.2 (c.f.[BL, LS, Tl]). $q_{\epsilon}(t)\in\Lambda$ satisfies

index $I_{\epsilon}’’(q_{\epsilon})\leq N-2$ for all $\epsilon\in(0,1$ ]. (3.2)

1

Comparing (3.1) and (3.2), we have

$i(\alpha)\nu\leq 1$ . (3.3)

Since $i(\alpha)\geq 2$ for $\alpha\in(1,2)$ and $i(\alpha)=1$ for $\alpha\in(0,1$ ], we find

$\nu=0$ , if $\alpha\in(1,2)$ ,

$\nu\leq 1$ , if $\alpha\in(0,1$].



70

Therefore in case $\alpha\in(1,2),$ $weobtainq_{0}(t)\neq 0foral1tanditisaclassicalsolution$ . I
Sketch of the proof of Proposition 3.1. Suppose $q_{0}(t_{0})=0$ and choose $t_{\epsilon}\in(O, T$] as
above. We deal with only the Case 1: $d<\infty$ . The Case 2: $d=0$ can be treated similarly.
For $L>0,$ $\varphi(s)\in H_{0}^{1}(-L, L;R)$ and $j=1,2,$ $\cdots,$

$N$ , we set

$h_{\epsilon,j}(t)=\delta_{\epsilon}\varphi(\delta_{\epsilon^{-(\alpha+2)/2}}(t-t_{\epsilon}))e_{j}$ .

After the change of variable, we take a limit as $\epsilonarrow 0$ and obtain
$\delta_{\epsilon}^{-(2-\alpha)/2}I_{\epsilon}’’(q_{\epsilon})(h_{\epsilon,j}, h_{\epsilon,j})$

$arrow\int_{-L}^{L}[|\dot{\varphi}|^{2}-\frac{\alpha|,\varphi|^{2}}{|y_{\alpha d}|^{\alpha+2}}+\frac{\alpha(\alpha+2)(y_{\alpha,d},e_{j})^{2}|\varphi|^{2}}{|y_{\alpha,d}|^{\alpha+4}}$

$- \frac{2d|\varphi|^{2}}{|y_{\alpha,d}|^{4}}+\frac{8d(y_{\alpha,d},e_{j})^{2}|\varphi|^{2}}{|y_{\alpha,d}|^{6}}]ds$ .

Recalling $y_{\alpha,d}(s)\in span\{e_{1}, e_{2}\}$ for all $s$ , we can see

$\lim_{\epsilonarrow}\inf_{0}$ index $I_{\epsilon}’’(q_{\epsilon})\geq(N-2)i(\alpha, d)$ (3.4)

where

$i( \alpha, d)=\sup_{L>0}(^{the}e_{\varphi(L)^{-(\frac{ingeige\alpha}{|_{\varphi(-L)=^{2}}y_{\alpha,d}|^{\alpha+}}}0^{+\frac{P_{2d}^{rob1e}}{|y_{\alpha,d}|^{4}})^{s_{\varphi}}}}^{um}-\ddot{\varphi}^{ber_{=}ofnegativeeigenva1ue_{m}}=0,)$ .

We repeat the above argument at all other $t\text{\’{o}}\in(0, T$] such that $q_{0}(t\text{\’{o}})=0$ and we find

$\lim_{\epsilonarrow}\inf_{0}$ index $I_{\epsilon}’’(q_{\epsilon})\geq(N-2)i(\alpha)\nu$

where
$i( \alpha)=\min_{d\geq 0}i(\alpha, d)$ .

Now Proposition 3.1 follows from the following proposition. I
Proposition 3.3.

$i( \alpha, d)=\max\{k\in N;k<\frac{2\sqrt{1+d}}{2-\alpha}\}$ . (3.5)

Thus $i( \alpha)=\max\{k\in N;k<\frac{2}{2-\alpha}\}$ .

Proof. The case $d=0$ is proved in [T2]. The case $d>0$ is proved similarly. The key of
the proof is the Sturm comparison theorem and the following property of $y_{\alpha,d}(s)$ . We use
the polar coordinate and write

$y_{\alpha,d}(s)=r(s)(e_{1}\cos\theta(s)+e_{2}\sin\theta(s))$
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where $r(s)>0$ and $\theta(s)\in R$ with $\theta(0)=0$ . Then we have
(i) $sr(s)>0$ for all $s\neq 0$ and $r(s)arrow\infty$ and $sarrow\pm\infty$ ;
(ii) $\dot{\theta}(s)>0$ for all $s$ ;

(iii) $\theta(s)arrow\pm\frac{2\pi\sqrt{1+d}}{2-\alpha}$ as $sarrow\pm\infty$ .
1

4. Remarks

In case $\alpha\in(0,1$ ], it seems that the existence of classical periodic solutions is not known.
However by (3.3) we can see there is a generalized solution of (HS), (HS.P) that enters at
most one time in its period. By (3.4) and (3.5), we also have

$d\leq(2-\alpha)^{2}-1$ (4.1)

where $d$ is defined in (2.1).
We get the following additional information under slightly stronger conditions: (V1),

(V2) and
(V3”) $V(q,t)$ is of a form:

$V(q,t)=- \frac{1}{|q|^{\alpha}}+W(q,t)$ ,

where $\alpha>0$ and $W(q,t)\in C^{2}((R^{N}\backslash \{0\})\cross R, R)$ satisfies

$|q|^{\alpha-\rho}W(q,t),$ $|q|^{\alpha-\rho+1}\nabla W(q,t),$ $|q|^{\alpha-\rho+2}\nabla^{2}W(q,t)$ ,

$|q|^{\alpha-\rho}W_{t}(q, t)arrow 0$ as $qarrow 0$ uniformly in $t$

for some $\rho\in(0, \alpha)$ .
We assume $q_{0}(t)$ is a generalized solution such that $q_{0}(t_{0})=0$ . Beaulieu [B] proved that
the limits

$a \pm=\lim_{tarrow t_{0}\pm 0}\frac{q_{0}(t)}{|q_{0}(t)|}\in S^{N-1}$

exist. We have

Theorem 4.1 ([T4]). Assume $(Vl),$ $(V2),$ $(V3’)$ and let $q_{\epsilon}(t)$ be a critical poin$t$ of $I_{\epsilon}(q)$

which is obtained through a $m$inimax method $(1.1)-(1.2)$. Suppose $q_{0}(t)= \lim_{\epsilonarrow 0}q_{\epsilon}(t)$ is
a generalized solution such that $q_{0}(9=0$ and let $a \pm=\lim_{tarrow t_{0}\pm 0}\frac{q_{0}(t)}{|qo(t)|}\in S^{N-1}$ . Then we
have

the angle between $a+ anda_{-}=\frac{2\pi\sqrt{1+d}}{2-\alpha}$ modulo $2\pi$

where $d\in[0, (2-\alpha)^{2}-1]$ is defined in (2.1). I

In particular, in case $\alpha=1$ we have $d=0$ and $a+=a_{-}$ .
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