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Simple construction of parameter map germ and its applications
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In this note, we shall construct a simple parameter map germ (R",0) —
(R?,0) under the assumption that there is an A-morphism (resp. topological
A-morphism) from a given deformation ¥ : (R® x R",(0,0) — (R?,0) of
a given map germ  f : (R™,0) — (R?,0) to the trivial deformation f :
(R* x R",(0,0)) — (R?,0).

This parameter map germ induces a K-morphism (resp. topological K-
morphism) from ¥ to the graph deformation of f.

By this construction, we can prove the following:

THEOREM D ([M2]): Let f,g: (R*,0) — (R?,0) be two C*™ stable map germs.
Suppose there exist a C* diffeomorphic germ s : (R*,0) — (R®,0) and a C*
map germ M : (R™,0) — (GL(p,R), M(0)) such that f(z) = M(z)(g o s)(=).
Then f and g are right-left equivalent.

Though our method seems to be close to Martinet’s one ([Mr]), we can
treat also map germs which are not necessarily C* stable.

TueoreM E ([FF]): Let f,g:(R",0) — (R?,0) be two MT stable map germs.
Suppose there exist a C* diffeomorphic germ s : (R*,0) — (R™,0) and a C*
map germ M : (R"®,0) — (GL(p,R), M(0)) such that f(z) = M(z)(gos)(z)
Then f and g are topologically right-left equivalent.

THEOREM A: Let f,g:(R™,0) — (R?,0) be two C*™ map germs. Suppose there
exist a C* diffeomorphic germ s : (R*,0) — (R™,0) and a C* map germ

M(:B) = (ml(z)) < 1rnp(z)) : (Rnio) - (GL(p, R)a M(O))

such that f(z) = M(z)(g o s)(z). Suppose furthermore there exists a positive
integer k such that

m;(z) — m;(0) € m*&? ¢ tf(m,E7) + wf(myEP)

for any i (1 <z < p). Then f and g are right-left equivalent.
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As a corollary of theorem A, we get

CoROLLARY A: Let f: (R*,0) — (R?,0) be a C* map germ. Suppose there
exist positive integers k,! such that

mgEl C tf(mall) +wf(my£f)

and
m,EP Ctf(mIET) + fm,miED,

Then f is (I — 1)-determined with respect to right-left equivalence.

Corollary A induces the following Gaffney type estimate of ‘the order of
determinacy (c.f. [G]).

CoRrOLLARY B: Let f : (R*,0) — (R?,0) be a C* map germ. Suppose there
exist positive integers k,l such that .

maEl Ctf(mall) + wf(myE])

and
mLE2 C tf(maEy) + Frmy 2.
Then fis (k+ 1! — 1)-determined with respect to right-left equivalence.

Corollary B induces the following du Plessis-Wall’s estimate of the order of
determinacy.

CoroLLARY C ([dP,W]): Let f: (R",O) — (R?,0) be a C*™ map germ. Sup-

pose there exist a positive integer k such that
mEED CLf(MaE7) + wf(m ED).
Then f is (2k — 1)-determined with respect to right-left equivalence.

In [W], we can find an estimate of the order of topological determinacy of
an MT stable map germ (corollary D bellow) which is due to T. Gaffney, but
without proof. By using of our method, we can give a proof of his estimate.

CorOLLARY D (GAFFNEY): Let f : (R*,0) — (R?,0) be an MT stable map
germ. Suppose there exist a positive integer k such that

mAEZ C LA(maED) + £*(m2)ED.
Then f is k-determined with respect to topologically right-left equivalence.

For details on these corollaries, refer to [N].

This note is organized in the following way. In §1 and §2, we give sev-
eral preparations for the proofs of theorem A, a generalized version of Mather’s



classification theorem (theorem D in §5) and the theorem of Fukuda-Fukuda
(theorem E in §6). §3 treats algebraic argument which we need for the proof of
theorem A. Theorem A will be proved in §4. A generalized version of Mather’s
classification theorem will be proved in §5. In §6, an alternative proof of the
theorem of Fukuda-Fukuda will be given.

The results in this paper are all valid in the complex analytic category as well
except example (1.5.2).
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§1. K-MORPHISM
FROM A GIVEN DEFORMATION TO THE GRAPH DEFORMATION

Let f : (R™,0) — (R?,0) be a C® map germ and ¥; : (R® x R"(¥),(0,0)) —
(R?,0) be a C* deformation of f (i.e. ¥;(z,0) = f(z)) (=1, 2).

DeFINITION (1.1). We say if there exist C™® (resp. continuous) map germs
h: (R* x R"(1),(0,0)) — (R™ x R*(® (0,0)), H : (R* x R"() x R?,(0,0,0)) —
(R™ x R"(®) x R?,(0,0,0)) and ¢ : (R"(),0) — (R*(3),0) such that the fol-
lowing conditions (1.1.1), (1.1.2), (1.1.3) and (1.1.4) hold, then {h, H, ¢} is a
K-morphism (resp. topological K-morphism) from ¥; to ¥,.

(1.1.1) the restrictions h|gnyqa) and H|g~x{r}xre
are C* diffeomorphic (resp. homeomorphic)
for any A € R"(1),

(1.1.2) HR" x R x {0}) c R x R x {0},

(1.1.3) the following diagram commutes:

(R™ x R x R?,(0,0,0)) —— (R x "M, (0,0)) —2 (R"M,0)

o d ‘|

LY

(R* x R7® x R?,(0,0,0) — (R" x R'(®),(0,0)) —— (R"(»,0),



(1.1.4) the following diagram commutes:

(Ta, 1‘I1)
(R x R, (0,0)) — (R* x R x Re, (0,0,0))

| |

(1!',' N 4 )
(R* x R"®,(0,0)) ——— (R™ x R"®) x R?,(0,0,0)).

Here 7., ) mean the canonical projection to R® x R*(), R*() respectively.
We remark that the conditions (1.1.1), (1.1.2) and (1.1.3) in the definition (1.1)
imply H(R™ x R"() x (R? — {0})) C R* x R"(®) x (R? — {0}); and the condition
(1.1.4) implies H(graph(¥,)) C graph(¥,).

DEFINITION (1.2). We say if there exist C® (resp. continuous) map germs
h: (R x R"1),(0,0)) —» (R* x R"(),(0,0)), H : (R x R"™,(0,0)) — (R? x
R™(®,(0,0)) and ¢ : (R"(V),0) — (R™(®,0) such that the following conditions
(1.2.1) and (1.2.2) hold, then {h, H, ¢} is a A-morphism (resp. topological
A-morphism) from ¥, to ¥,.

(1.2.1) the restrictions h|g~y (1} and H|gsx{r}
are C* diffeomorphic (resp. homeomorphic)
for any A € R™(),

(1.2.2) the following diagram commutes:

'I;,‘R' x
(R* x R"(1),(0,0)) _(___A_L (R? x R*(1) (0, 0)) T, (R*™), 0)

Jl | g

(‘I’n,TA) A

(R™ x R"®),(0,0)) —— (R? x R"(®),(0,0)) —— (R"(),0).

Let G be K or A. A G-morphism (resp. topological G-morphism) {k, H, ¢}
from ¥, to¥, is said to be equivalent (resp. topologically equivalent) if ¢
is C*®-diffeomorphic (resp. homeomorphic). Definitions of G-morphism and
equivalent G-morphism are equivalent to those of Martinet’s definitions ([Mr]);
and definitions of topological G-morphism and topologically equivalent topolog-
ical G-morphism are topological analogues of these. If there exists an equivalent
A-morphism (resp. topologically equivalent topological .4-morphism) from a
given deformation ¥ : (R® x R",(0,0)) — (R?,0) to the trivial deformation
f:(R* xR",(0,0)) — (R?,0), then we say ¥ has a triviality (resp. topological
triviality).



In this chapter, we show if there is a .4-morphism (resp. topological A-
morphism) from a given deformation ¥ : (R® x R, (0,0)) — (R?,0) to the trivial
deformation f : (R® x R",(0,0)) — (R?,0) , then we can directly construct a
K-morphism (resp. topological K-morphism) from ¥ to the graph deformation.

Now suppose there exist C™ (resp. continuous) map germs h : (R® x
rR",(0,0)) — (R* x R",(0,0)),H : (R? x R",(0,0)) — (R? x R",(0,0)) and
é:(R",0) — (R",0) such that the following (1.3.1) and (1.3.2) hold:

(1.3.1) the restrictions h|gny (2} and H|grx {2}
are C® diffeomorphic (resp. homeomorphic)
for any A € R",

(1.3.2) the following diagram commutes:

(\I’,‘K ) x
(R* x R",(0,0)) —— (R? x R",(0,0)) —— (R",0)

| | d

R xR, (0,0)) 2 (R xR, (0,0)) —2 (R",0).

By (1.3.2), we can write

h =(h1,¢) and H = (Hi,¢).
Then, set  ¢% : (R",0) — (RP,0) as

¢u(2) = H1(0, ).
Also, set  h': (R x R",(0,0)) — (R* x R?,(0,0)) as
k'(z,A) = (ha(z,2), 6(}))

and set H':(R™ xR" xR?,(0,0,0)) — (R* x R? x R?,(0,0,0)) as

H'(z:A, y) = (h'(za A)) Hl(y1 A) - Hl(oa }‘))

Then we have

(1.4.0) h' and H' are C*™ (resp. continuous) map germs,

(1.4.1) the restrictions A'|gn (2} and H'|gnyx {2} xre
are C* diffeomorphic (resp. homeomorphic)
for any A € R",



(1.4.2) H'(R® xR" x {0}) C R* x R? x {0},

(1.4.3) the following diagram commutes:

(R™ x R" x R?,(0,0,0)) —2— (R™ x R",(0,0)) —=— (R",0)

.l Jd sl
(R™ x R? x R?,(0,0,0)) —— (R™ x RP,(0,0)) —— (R®,0).
Next, we set F:(R® x R?,(0,0)) — (R?,0) as

F(z,y) = f(z) — v.

We call F : (R* x R?,(0,0)) — (R?,0) the graph deformation of f : (R“,.O) —
(R?,0).

Then, we can see

F(h'(z,2)) = F(hi(z,), d5(2)) (definition of A')
= f(hi(z,A)) — o5 (A) (definition of F)
S D@ )N - e(h)  (182)
= Hy(¥(z,A), ) — H,(0,) (definition of ¢'%).

Hence, we have

(1.4.4) the following diagram also commutes:

("'n. )
(R™ x R",(0,0)) ——— (R™ x R" x RP, (0,0,0))

h'l Hll
(T-.y»F)
(R* x R?,(0,0)) ——— (R™ x R? x R?,(0,0,0)).

Therefore, {h', H', ¢y} is a K-morphism (resp. topological KX-morphism) from
the given deformation ¥ to the graph deformation F.

In particular, by (1.4.2) and (1.4.4) we have
(1.4.5) R'(271(0)) C F~Y(0).
Furthermore, by (1.4.1) - (1.4.4) and the remark after definition (1.1) we have

(1.4.6) R'(R* x R" — ¥71(0)) C R® x R? — F~1(0).



For the proofs of theorems A, D, E, we need only the properties (1.4.1), (1.4.5)
and (1.4.6) (see §. 2).

ExaMPLE (1.5): For any C* map germ f : (R™,0) — (R?,0) ,

(1)  let ¥, : (R x R?,(0,0)) — (R?,0) be its C™ deformation of the form
¥y(z,A) = f(z) +A. Then, {h(z,A) = (2,1), H(y,A) = (y— A, A) and ¢(}) =
A} gives a triviality of ¥1. In this case, ¢%z(A) = —A, h'(2,A) = (=,—A) and
H'(z,A,y) = (z,—A,y) as we expect. Of course, {h', H', ¢y} is an equivalent
K-morphism from ¥, to F .

(2) let ¥, : (R™ x R?,(0,0)) — (R?,0) be the deformation of f of the form
To(z,A) = f(z) — A% where A* = (A},...,A%). Then {h(z,A) = (z,]),
H(y,A) = (y + A%,)) and ¢()) = A} gives a topological triviality of ¥,. In
this case, ¢z () = A3, A'(z,A) = (2,23) and H'(z,),y) = (z,23,y). We see
{h', H', $'3} is a topologically equivalent topological X-morphism from ¥, to
F.

DEFINITION (1.6). Let f : (R*,0) — (R?,0) be a C*™ map germ and let ¥ :
(R® xR",(0,0)) — (R?,0) be a C* deformation of f. We say ¥ is K-versal (resp.
topologically K-versal) if for any C*® deformation ¥ : (R* x R, (0,0)) — (R, 0)
of f there exist C* (resp. continuous) map germs h : (R™ x R*,(0,0)) —
(R™ x R",(0,0)),H : (R* x R* x R?,(0,0)) — (R™ x R” x R?,(0,0)) and ¢ :
(R%,0) — (R",0) which give a K-morphism (resp. topological K-morphism)
from ¥ to ¥. ‘

We can define A-versality and topological 4-versality similarly. Let G be K
or A. The definition of G-versality is equivalent to that of Martinet’s definitions
([Mr]); and the definition of topological G-versality is its topological analogue.

Since any C* stable map germ is ,when viewed as a C*™ deformation of
itself, A-versal: i.e. any C™ deformation ¥ of a C* stabe map germ has a
triviality; by the above argument we see

THEOREM B (MARTINET([Mr]). For any C*™ stable map germ f : (R",0) —
(R?,0), its graph deformation F(z,y) = f(z) —y 1is K-versal.

There are several definitions for topological stable map germs (for instance,
[dW]). However, it is well-known that for any MT-stable map germ (map germ
multi-transversal to Thom-Mather canonical stratification) any C*® deformation
of it has a topological triviality (see [M3] or [GWdL]). Hence, again by the
above argument, we see

THEOREM C. For any MT-stable map germ f : (R®,0) — (RP,0), its graph
deformation F(z,y) = f(z) —y is topologically K-versal.

§2. SPECIAL CASE oOF §1

In this chapter, we review a part of Martinet’s argument in [Mr]. Let f,g:



(R™,0) — (R?,0) be C*™ map germs. Suppose there exist a C* diffeomorphic
(resp. homeomorphic) map germ s : (R*,0) — (R™,0) and a C* map germ

M(z) = (my(z),...,my(z)) : (R",0) — (GL(p,R), M(0))

such that f(z) = M(z)(g o s)(=).
We set a C*® map germ & : (R x R?,(0,0)) — (R?,0) as

&(z,y) = M(z)((g 0 5)(z) - )
= f(z) — M(2)y.
Hereafter, we concentrate on studying deformatins of this type. Hence, in par-
ticular, we assume r = p. We treat two kinds of p-dimensional euclidean space

R?. When we are considering R? as the target space, we write it RE. When we
are considering R? as the parameter space, we write it R}.

Now suppose there exist C®-diffeomorphic (resp. homeomorphic) map
germs h : (R* x R%,(0,0)) — (R® x R§,(0,0)), H : (R? x R%,(0,0)) — (R? x
R%,(0,0)) and ¢ : (R%,0) — (R%,0) such that the following diagram commutes:

(®8,71) x
(R* x RZ, (0,0)) —— (RE x RZ,(0,0)) —— (RZ,0)

3l dl gl
n P (#.72) P P A P
(R™ x R%,(0,0)) —— (RE x R%,(0,0)) —— (R%,0)

In §1, we defined C* (resp. continuous) map germs

¢u ¢ (RX,0) — (R, 0)
R : (R x R%,(0,0)) — (R™ x RF,(0,0))
H':(R" x R} x R?,(0,0,0)) —» (R" x R? x R?,(0,0,0))

and we saw {h', H', ¢’ } is a K-morphism from & to F. By (1.4.5) in §1 and by
the form of ®, we have

(2.1) f(h1(z, (g 0 3)(2)) = ¢u((g 0 5)(2))

as germs at the origin.

We would like to show the following map germ (2.2) is C* diffeomorphic

(resp. homeomorphic) if we assume ¢ is C* diffeomorphic (resp. homeomor-
phic).

(2.2) z — hi(z,(g 0 5)(2))



The map germ (2.2) can be decomposed as follows.

(2.3) z - (2,(g 0 5)(z)) = h'(,(g 0 5)(2)) = ha(z, (g © 3)(2)).

The first map germ of (2.3) is trivially C*° diffeomorphic. If we assume ¢%; is
C> diffeomorphic (resp. homeomorphic), then by (1.4.1) in §1 &' = (hy,dY%)
is C* diffeomorphic (resp. homeomorphic). Thus, the second map germ of (2.3)
is C* diffeomorphic (resp. homeomorphic). Furthermore, in the case that we
assume @ is C™ diffeomorphic (resp. homeomorphic), by (1.4.5) and (1.4.6)
in §1 we have

(2.4)  R(@Y(0)) = F-1(0).

By the form of & and F, (2.4) means

(2.5) the germ of the set {h'(z,(g 0 5)(z))|z € R"}
=the germ of F~1(0)
=graph(f).

By (2.5) and by the form of A' = (hq,¢Y%y), the last map germ of (2.3) is also
C* diffeomorphic.

Therefore, we see
LEMMA (2.6). If ® has a triviality (resp. topological triviality) and ¢ is C*

diffeomorphic (resp. homeomorphic), then f and g are right-left equivalent (resp.
topologically right-left equivalent).

$§3. MODULE
Let f: (R",0) — (R?,0) be a C*® map germ and let
M(z) = (my(2),...,m,(2z)) : (R*,0) — (GL(p,R), M(0))

be also a C° map germ. Let & : (R™ x R},(0,0)) — (R?,0) be the C=
deformation of f having the following form:

®(z,A) = f(z) — M(2)A.

In this chapter, we prove the following lemma.

LeMMA (3.1). Suppose there exists a positive integer k such that

my(z) — m;(0) € mEEZ C tF(mER) + wi(m, £7)
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for any i (1 < i< p). Then m;(z) — m;(0) is included in

t®,(maalpn) + w(@,ma)(My A&7 )
foranyi (1<i<p).
PROOF OF LEMMA (3.1): Since we assumed

WAED C 4F(maE2) + wi(my D),

by Malgrange preparation theorem we have
(3.2) miER | Ctf(ma€l ) + w(fym)(myél 5).
We set & : (R™ x R%,(0,0)) — (R2,0) as

$(z,A) = &(2,A) + M(0)A
= f(z) — (M(z) — M(0))A.

Since we assumed
m,-(z) - m.,(O) € m:.ﬁ’ﬁ,’

forany i (1<i< p), the difference

%(2,2) - f(2) = (M(=2) - M(0))A = Zk(ms('«') m; (0))

is included in
*
ximymis oa C (&, 7)) m, ymk S

Hence, we can approximate (3.2) as follows.

(3.3)
:5: A C t‘}z(mz‘s:,,\) + “’(‘}1 7l'J\)(m EPA) + (§ 7",\) My, Aml:;g: A
C 18, (menE25) + (B, ma)(My AE7 ) + (8,72 )" my amEED |
We set

A = image of w(@, WA)(my‘;‘E;”A) by the canonical projection to C,
B =mktC.

Then, by (3.3) we have

!QH

(3.4) B C A+ (3,m)" m,,B.



"

Since

dimg B/(®,7,)" m, , B
=dimg mEE2 /mA(tf(m E2) + fPm, E27) < oo,

by Malgrange preparation theorem we see B is finitely generated £, x-module
via (®, 7). Hence, by Nakayama’s lemma (3.4) implies

(3.5) BcA
From the form  &(z,)) = &(z, ) + M(0)), we see

(3.6) t®,(me 2 ER5) + w(®, 72)(my 2E7 )
=t§,(mz‘,\5:;\) + W(Q, 7r,\)(my,,\5:'}‘)

(8.5) and (3.6) yields
m;(z) —m;(0) € ml:sg:,x Ct®z(mapn &) + w(, "J\)(my,z\g:,,\)
forany i (1<i<p). 1 |

$§4. PROOF OF THEOREM A

Let &:(R™xR%,(0,0)) — (R2,0) be the O deformation of f having
the following form:

®(z,A) = f(z) — M(z)A.

Since

i®
6Ai = —H].,'(Z)

for any i (1 < i< p), by lemma (3.1) we can choose germs of C*® vector fields
& e, and 7 € 55’,\

_ such that

(4.1) o = Ei(3) ~ 0 (3,73)
(42) () = 7(0,0)

for any ¢ (1 <i < p).



By (4.1), integrating germs of C* vector fields
El +0/0/\1)---)£p +6/0Ap

and

m+08/0A,...,mp +0/0A,

yields C* diffeomorphic map germs
Bt (R x RE, (0,0)) — (R™ x RZ, (0,0))

and
H': (Rz X R’;\,(0,0)) — (IR; x R%,(0,0))

such that the following diagram commutes.

(§,7r ) r
(R* x R, (0,0)) ——> (R? x RE,(0,0)) —— (RZ,0)

] ] ;
A

(R* < RZ,(0,0)) ™% (R2 « B2, (0,0) —2— (RZ,0)

Consider the inverse map germ H of H~! and
¢z : (R3,0) — (R, 0)

associated with H.

Let O;(t;y) be the integral curve of 7; starting from y and of time ¢. Then we
can get the image y(Ay,...,2;) = é(A1,...,Ap) of A = (Aq,...,A,) by @)y as
the unique solution of the integral equation

(43) @1(A1; @2(A2; ey GP(AP; y(Al, ey )(p)) e ) = 0.
We differentiate (4.3) with respect to A;. Then we get
(4.4) 7% (Oit1(Ait15. . :0p(Ap3¥))- )

+(dO1)y ...(dO,)y 8y(A1,...,2,)/0X; =0
forany: (1 <i<p).
Taking values at A = 0 in (4.4), we get
00w 0y — 0¥
=—2(0,0)  (¥(0,-..,0)=0)
0®
=-m0 (42

1]
0

= my(0). = -m;)
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Since (m1(0),...,m,(0)) = M(0) is in GL(p,R), ¢} is C= diffeomorphic.
Hence, by lemma (2.3), f and g are right-left equivalent. |

§5.AN ALTERNATIVE PROOF
OF MATHER’S CLASSIFICATION THEOREM

In this chapter, we give a proof of the following theorem D which is a
generalized version of Mather’s classification theorem.

DEFINITION (5.1). Let X be a Banach space. We say a C® map germ f :
(X,0) — (RP,0) is C*™ stable if for any finite dimensional C* deformation
& :(X xR",(0,0)) — (R?,0) of f there exist C* diffeomorphic map germs

h: (X xR7,(0,0)) — (X xR",(0,0))
H:(R? xR",(0,0)) — (R? x R",(0,0))
é:(R",0) - (R",0)

such that the following diagram commutes:

(&,72) ®
(X X RT’(O)O)) —’:’" (RP X R’,(0,0)) — (Rf’o)
| | d
(#:%1) x
(X x R",(0,0)) —— (R? x R",(0,0)) —— (R",0).
THEOREM D. Let X be a Banach space. Let f,g:(X,0) — (R?,0) be two C*®

stable map germs. Suppose there exists a C™ diffeomorphic germ s (X 0) —
(X,0) and a C* map germ

M(z) = (my(z),...,my(z)) : (X,0) — (GL(p,R), M(0))
such that f(z) = M(z)(go s)(z). Then f and g are isomorphic.
Mather’s classification theorem ([M2]) is the case when X is finite dimen-
sional.

Proor: Let M,(R) be the set of all (p x p) matrices of real elements and let
Ep be the (p x p) unit matrix. For any fixed matrix 4 = (ay,...,a,) € Mp(R),
define a map germ

®a: (X x RY x My(R), (0,0, B;)) — (R, 0)

as

&4(2,) B) = f(z) — (A+ M(z)B)A.



Then &4 is a finite dimensional C*™ deformation of f. Since f is C* stable, for
any ¢ (1<i<p)and A= 0O (zero matrix) we see

P P (9@0
Y bimj(z) = 0+ ) bjimy(z) = W
ji=1 j=1 *

is included in the set
t(éﬂ)c( BT ""(@0’ X 7"5)( ¥, B)

Here we set B = [b;;]1<i j<p- Since we see trivially
1(®0)s = t(B4)a

and
W(QU,WA,WB)( AB)_W(QA’WA"KB)(S AB)

for any fixed A € M,(R), we can choose germs of C*® vector fields
Geéap and  ma€f),p
such that

A = +Eb,.m,(z))

= &'(@A) — 7,40 (®4,72,7B)

for any 7 (1 < i < p). Since f is C*™ stable, we can choose germs of C™ vector
fields
§ina €EE3aB and  7k,4 €], B

such that

834
" b

= Apm;(z))
= &ik,a(®4) — Mik,4 0 (24,72, 7B)

for any j,k (1 < j,k < p) and any A of M,(R).

By integrating

T,4 + 0/(9A1, ceyMp,A + 0/0AP’
Mm1,4+8/0bi1, ..., Mpp a4 + 8/8by,,
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we get a C* diffeomorphic germ
Hi': (R? x RS x M,(R), (0,0, E,)) — (RE x R x M,(R), (0,0, E,)).
We consider the map germ
ém, : (R} x M,(R),(0, E,)) — (R?,0)
associated with H4 and its restriction

br., vz x (B}
for B sufficiently near the zero matrix.

Let  ©; 4(t;y) (resp. Ojx,4(t;y)) Dbe the integral curve of 7; 4 (resp.
Njk,4) starting from y and of time ¢ for any 4,5,k (1 < i,5,k < p). Then
S (A1y-- 329, b11,...,b5p) =y, where y is the unique solution of the following
integral equation

@1,A(A1;. . .;OP'A(AP;@11,A(IJ11; . ..(G)pp,A(bpp;y(/\l, e ,611, .o -,bpp)) .o .) = 0.

We differentiate this equation with respect to A;. Then we have

(5.2) 7,4(Qi41,4(Ai+15- -5 Opp,4(bpp3¥)) - - )
+(d®1,4)y cen (dG)pp,A)yﬁy(/\l, ey Ap,b11 cee ,bp,,)/c‘))\,- =0

for any ¢ (1 <i< p).
Taking values at A =0 and B = E, in (5.2), we get

0% , _ Y
(5.3) o, (0 Ep) = 53-(0, Bp)
= _ni,A(O) OaEP)
0®4
= —K(O, 0, Ep) - d(QA)z(gi(Ov 0: Ep))
0P,

= —-—5-)—“—(0,0, E,) — dfo(£(0,0, E,))
= a; +m;(0) — dfo(&(0,0, E,))

for any ¢ (1 < ¢ < p). From (5.3) and since &; is C™ with respect to B = [b;;],
we have

LEMMA (5.4). There exists an open dense subset U of M,(R) such that for any
A of U there exists a neighborhood V4 of E, in M,(R) such that the germ of
the restriction

¢’;IAIIR§X{B} : (R};‘ x {B},(O, B)) - (Rg’o)
is C*® diffeomorphic for any B of V4.

Therefore, by lemmata (2.6) and (5.4), we have
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LeMMA (5.5). If we choose (p x p) matrix A of U sufficiently near the zero
matrix, then f(z) and ga,58(z) = (A + M(z)B)~1f(z) are right-left equivalent
for any B of V4.

Next, we take a matrix Ag of U/ sufficiently near the zero matrix and fix it.
We set :
M(z) YA = N4, (2) = (n1(2),...,n,(2)). -

For any fixed B of V,,, we define the C*® map germ
540,3 : (-X x Riv (Oa 0)) - (R:v 0)
as B
®40,8(7,2) = (Nao(2) + B)(940,8(2) — A).
Then, since
(g0 s)(z) = M(z) " (Ao + M(2)B)(4o + M(2)B) ™" f(2)

= M(z) (Ao + M(2)B)ga,,5(z)
= (Na,(2) + B)ga,,5(2);

we see 540,3(2, A)=(gos)(z)— (Ngy(2)+ B)Ais a C*™ deformation of (g o s).
Since (g 0 8) is C* stable, for any ¢ (1 <i < p) and B = E, we see

0% ~ ~
ot € U&ao,5,)a(E20) + (B aoBp m2)(E] )-

Since _ _
t(®4,8,)s = t(®4,8)-

and - ~
w(§A,E,’ ‘KA)(£:,A) = ‘B’(QA,B, Wl)(‘g:,k)

for any A € i{ and B € V4, we can choose germs of C* vector fields
& €&2s and B € S;A

such that

0% 73 7ip o (3
_ a‘;:'B = §i(®40,8) — 7.8 © (20,8, ™)

forany ¢ (1 <i< p).

By integrating
m,B+0/0A1,..., 7.8+ 8/8),,
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we get a C* diffeomorphic germ
H;lp: (R? x R§,(0,0)) — (R} x R}, (0,0)).
We consider the map germ
Biray s : (R2,0) — (R, 0)

associated with Hy, 5. We see

a 1
(5:6) Wtaas 0) = 75(0,0)
- “’“" 92405 (0)  d(% 44,5)s(:(0,0))
5‘1’40,

= ——222(0) — d(g 0 8)o(£:(0,0))
= n-‘(U) + b,- — d(g 0 8)o(£&(0,0))

for any i (1 < i < p). By (5.6), we can choose a matrix B of V4, with the
property that ¢ 4o B is C* diffeomorphic. Thus, by lemma (2.6), we have

LeMMA (5.7). We can choose a matrix B of V4, with the property that (go s)
and g4, p are right-left equivalent.

Lemmata (5.5) and (5.7) concludes that f and g are isomorphic. I

§6.AN ALTERNATIVE PROOF
oF FukupA-FUKUDA’S THEOREM

In this chapter, we give a proof of the following theorem.
TueoreM E ([FF]). Let f,g:(R™,0) — (R?,0) be two MT-stable map germs.

Suppose there exists a C*™° diffeomorphic germ s : (R®,0) — (X,0) and a C*
map germ

M(z) = (my(z),...,my(2)) : (R",0) — (GL(p,R), M(0))

such that f(z) = M(z)(go s)(z). Then f and g are topologically isomorphic.

For the definition of MT-stable map germs, refer to [M3] or [GWdL]. For
our proof of theorem E, we use only the following fact on MT-stable map germs.
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Facr (6.1). Let f : (R*,0) — (R?,0) be an MT-stable map germ. Then for
any C* deformation ® : (R x R",(0,0)) — (RP,0) of f there exist Whitney
stratifications S of R® x R" and 7 of R? x R" such that the germ of the sequence

(R x R, (0,0)) 2 (Re x R, (0,0)) —— (R",0)

is a Thom sequence with respect to S,7 and {R"}.

ProoF OoF THEOREM E: As in §5, for any fixed matrix 4 = (a;,...,a,) €
M,(R), define a map germ

Wy (X xRy x Mp(R), (0,0, By)) — (RF, 0)

as

¥ ,4(2,A,B) = f(z) — (A+ M(z)B)A.

Then ¥4 is a C™ deformation of f. Since f is MT-stable, by (6.1), there exist
Whitney stratifications S of R* x R} x M,(R) and 7 of R? x R} x M, (R) such
that the germ of the sequence

- (R* xRY x M, (R), (0,0, E,))
(®o,xa, B)l
(R? x RE x M(R), (0,0, E,))

TX,Bl

(R x Mp(R), (0, Ey))

is a Thom sequence with respect to S,7 and {R} x M,(R)}.

For any stratum T of 7 and any A of M,(R), we set
T4 ={(y, 2, B) — (4), ), B) € R} x Rfambda x M,(R)|(y,A, B) € T}

and

Ty = {T4).

Then, since

¥ ,4(z, A, B) = ¥o(z, A, B) — A\
= ¥o(z, 2, B) + (family of parallel translation of R})

we see .



- LEMMA (6.2). For any matrix A of M,(R), the germ of the sequence

(Rn x RI;\ X MP(R)i(Oa O’Ep))
(‘I’A,T,\,B)l
(R x RS x M(R),(0,0, E,))

TA,Bl

(RX x My(R), (0, E;))
is a Thom sequence with respect to S,74 and {R} x M,(R)}.
By (6.2) we see
LEMMA (6.3). There exists an open dense subset U of M,(R) such that for any
A of U there exists a neighborhood V4 of E, in M,(R) such that the subset

{0} xR} x {BH(C R x R} x M,(R)) is transversal to the intersection T4 N
(R2 x R} x {B}) mnear {0} x {0} x {0} for any B of V4 and any T4 of T4.

By lifting vector fields 8/9A,,...,0/8),,8/8b11,...,8/8b,,, we get germs of
vector fields

Mm,A + 0/8A1v ey Tp, A + a/a)‘p:
M1,4+ 0/0b11,... Ny, 4 + 8/0byy,

which are stratified with respect to the stratification 7, and satisfy the control

conditions. By integrating these stratified vector fields, we get a homeomorphic
germ

Hy': (RY xR} x My(R), (0,0, E,)) — (RS x R} x M,(R), (0,0, E,)).
We consider the map germ
bu, * (R x My(R), (0, E,)) — (R, 0)
associated with H4 and its restriction
b1, |2 < (B}

for B sufficiently near the zero matrix.

Let  ©; 4(t;y) (resp. Oji 4(t;y)) be the integral curve of 7; 4 (resp.
Njk,4) starting from y and of time ¢ for any 4,5,k (1 < 4,5,k < p). Then

19
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A5, (A1y-- o3 Apy by, ybpp) can be given as the unique solution of the following
integral equation '

OI,A(AI; ooy ep,A(Ap;Oll,A(bll; cos (Opp,A(bpp; ¢IIIA(A1’ e ,bpp)) N ) =0.

Since the germs of vector fields
m,a+0/0A1,. .. ,0p,4+ 8/8X,,
M1,4 +0/0b11,...,Npp,a + 0/0bpp,
are controlled, by lemma (6.3), we see
LeMMA (6.4). For any A of U and any B of V4, the germ of the restriction
¢§7A|m§x{1a} : (R x {B},(0,B)) — (R’;,O)
is injective.

Since ¢} 4|R§X{ B} s continuous, injectivity means being homeomor-
phic. Therefore, by lemma (2.6) we have

LEMMA (6.5). If we choose (p x p) matrix A of U sufficiently near the zero
matrix, then f(z) and g4 5(z) = (A + M(z)B)~1f(z) are topologically right-
left equivalent for any B of V4.

Next, we take a matrix Ay of U/ sufficiently near the zero matrix and fix it.
We set

M(2)"'Ag = N4, (2) = (n1(2),...,n,(2)).
For any fixed B of V4,, we define the C'* map germ
4,5 : (R xRS, (0,0)) — (R}, 0)

as

¥ 4,,8(2,2) = (Nay(2) + B)(g40,8(2) — ).
Then, since
(gos)(z) = M(z)"*(Ao + M(2)B)(Ao + M(z)B) "' f(z)
= M(z)" (Ao + M(z)B)ga,,5(z)
= (Nao(2) + B)ga,,5(2);

we see ¥4, p(2,A) = (g0 s)(z) — (Na,(z) + B)X is a C* deformation of (g o
8). Since g : (R*,0) — (R?,0) is MT-stable and s : (R*,0) — (R",0) is C*
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diffeomorphic, (g o s)(z) = A{(z)'lf(z) is MT-stable. Thus, by (6.1), there
exist Whitney stratifications § of R* x R}, 7 of R? x R} such that the germ of
the sequence

(‘I’Ao,oﬂrl)

(R™ x RZ,(0,0)) ——— (R? x RZ,(0,0)) —— (RZ,0)

is a Thom sequence with respect to S,7 and {R}}.

For any stratum T of 7 and any B of M,(R), we set
Tp ={(3 ) - (BA\,2) € RE x R}|(y,\) € T}

and _ N
T = {TB}
Then, since '

9,4,.8(2,2) = ¥y, o(z,A) — BA

we see

LEMMA (6.6). For any matrix B of M,(R), the germ of the sequence

(EAO,BF‘,\)

(R™ x RZ,(0,0)) ——— (RE x RE,(0,0)) —— (RZ,0)
is a Thom sequence with respect to S,Ts and {R%}.

By lemma (6.6) and by using the same argument as before, we can choose
a matrix B of V4, with the property that ¢'HA0 5 is homeomorphic. Thus, by

lemma (2.6), we have

LEMMA (6.7). We can choose a matrix B of V4, with the property that (go s)
and g4,,p are topologically right-left equivalent.

Lemmata (6.6) and (6.7) concludes that f and g are topologically isomor-
phic. 1
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