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A relatilon between the conformal factor in the Einstein’s vacuum
equations and the central extension of a formal loop group

Ryuichi SAWAE

In this notes we shall briefly show that the space of all the solutions of the
Einstein’s vacuum equations in 2-dimensional reduction has an infinite dimen--
sional homogeneous space structure of the centrally extended Hauser group by
the usage of the formal loop group techniques. Moreover the conformal factor
coming from metrics on our space-time manifolds is related to a central extension
of the formal loop group, into which the potential space being all of the solutions
of our linearized equation is naturally embedded. For more details discussion,

see [1)[3][4][5]-

0. Preliminaries

Let G be PSL(2,R) = SL(2,R)/{xI,} and 6 be the Cartan involution defined
by 6 (g) =tg~! for g € G. Let G= KAN be an Iwasawa decomposition, where
a maximal compact subgroup K of G is given by K = {g € G; 8 (g) = g}

Let F = R[[z, p]] be an associative filtered algebra over R with a filtration
{Fi hiez = {P"R[[z, P]]}zez'
And let FG be the formal loop group as follows:

{g—Zg;t 1€Q[2F1) detg:l}/{:*:lz}.

leZ
G is naturally embedded into FG.

We introduce an involutive automorphism 6(*) of FG, which is also called
the Cartan involution, by

1
() : FG 5 g(t) — 6 (g(-—?)) €FG.
By use of the Cartan involution we define the subgroup of G such that
FK={keFg; 6 ) (k)= k)

Let AN(R][[z, p]]) be the set of the formal power series with valuesin AN of the
Iwasawa decomposition and let

FP = {'p(t) = iPItI €FG; Pye AN(R[[é’P]]) } .

1=0

Then from the theory of Takasaki’s formal loop group it is easily obtained that
the following proposition holds.



PrOPOSITION. The formal loop group FG is uniquely decomposed as

FG=FKFP.

Let o be the map : G — FP through the above decomposition. We
denote by @ the map from FX\FG to FP induced from «a.

Then for any g € FG we define an action on FP such that the following
diagram is commutative:

FK\FG —1— FK\FG

SN

FP —— FP.

1. Basic equations in 2-dimensional reduction

Let ds? = guvdz” @ dz¥ be a space-time metric on R!*3. Then the Einstein’s
vacuum equations are given by

1
Rl‘V_EgMVRZO (l‘»V=0,1,2;3);

where R, is the Ricci tensor and R is the scalar curvature given by:

1
I‘uﬁy = -gﬂn(allgl/n + 81/9;110 - 6&9[“/) ’

2
Ry = aﬂrfu - 5,,I‘fﬂ + Ffu :ﬂ - F:ﬁrfﬂ )
R = g’“’R‘“, .

As for 2-dimensional reduction, we assume that the stationary and axially sym-
metric space-times have the following metric form in cylindrical polar coordinates

1
ds? = by dz? ®@ dz? — \2(dz @ dz + dp ® dp)
Pq

r,¢=0

where A is a positive function, h = (hy,) is symmetric, and h and A depend only

on the variables z, p, and det h = —p?.

Then the Einstein’s vacuum equations become as follows:

(1.a) d(p~the*dh) =0,
_ o.f »p _
19 - _ P 1
(1.b) 70, 7= of + 4tr(azh O,h),
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Hodge operator for the metric dz? +dp?. 7 is called the conformal factor in this
notes. v

where f(> 0) = the (1,1) component of h, 7 = 1/\/?—/\, €= ( 0 1), and * =

We parametrize h by introducing a new function v as

- (f72—p2/f fv) .

fvy f
Introducing the Ernst potential ¢ defined by
dp = p' 2 wdy,

we have the following equations equivalent to the equations (1.a).
(2.0)  d(pf™?*dy) =0,
(20)  d(pf~' *df +pf P *dy) =0.
Let M(R[[z, p]]) be as follows:
{m € gl(2,R[[z,0]]); “m =m, detm =1, the (2,2) component of m >0} .
Then, we fix the parametrization of m € M(R[[z, p]]) by

5
A |
f f

DEFINITION.  Let M(R[[z, p]]) be as above.

Then we define SM 1o be the set of all elements m € M(R|[z, p]]) satisfying the
equation d (pm~1 xdm) =0.

For the conformal factor defined by the equations (1.b) and (1.c), using the
matrix m, we have a more elegant expression as follows:

(3&) T—laz'r = %tr(azm—lapm‘) ’
(3.b) 19,7 = -g-tr(a,,m—la,,m — 8,;m™19,m) .

LEMMA. For any element m of the solution space SM there exists a unique
conformal factor 7 up to a multiplicative positive constant, which satisfies the
equations (3.a) and (3.0).

From the lemma we define the mapping
n:SM — F,

where for any given m € SM 7 = n(m) is given by solving the equations (3.a)
and (3.b), and by adjusting a multiplicative positive constant so that 7(0,0) = 1.



REMARK. The Minkowski space-time, which has the metric in the cylindrical
polar coordinate

ds’ =dt®dt — p’dp@dp —dz®dz—dp® dp
is explicitly expressed by
0

)ess

O = O =
- O

) esn,

Te’=n(m)=1 €F.

2. Linearization and Total space construction

Let notations be as in Section 0. Let G = KAN be an Iwasawa decompo-
sition, where we employ the following parametrization

Az{(g 13a) ;“>°}’
e oo}

Corresponding to the above parametrization we parametrize the element

P in AN(R[[z, p]]) as follows:

vi 0
(4) p={¥ 1.
i
Fix the above parametrization of AN (R[[z, p]]). Then we define the solution
space S P, which is equivalent to SM, by

5P ={P e ANRIz,l)); d(p P60 (P)xd(8 (P7") P)) =0 }-

The map _
:SP — SM.

is defined by defining §(P~!)P for P € SP.

Next we introduce a 1-form with the spectral parameter, the exterior deriva-
tive on which is defined as follows:

t

dt = ——
p(1+1?)

((1-—t2)dp-+-2tdz).
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DEFINITION.  For P € AN(R[[z,p]]), let A and T be the sl(2,R][z, p]])-valued
1-forms defined by

A= -;—(dPP‘l +8(dPPY)),
I= —;—(dPP‘l —8(dPP™1)).

A sl(2,R[[z, p]])-valued 1-form Qp for P is defined by

1—1¢2 2t
Qp=A+ A

Tl T Trert

The map proj is defined on SP as follows:

proj : SP > P(t) = iPztl — Py € AN(R[[z, p]])-

=0

DEFINITION. Let FP be the formal loop group defined in Section 0. We
define SP to be the set of all elemenis P(t) = Z P,t™ of FP satisfying the
m=0

equation dP(t) = QpP(t), where we put P = proj(P(1)).

ProPoOSITION.  Let P(t) be any element of the potential space SP. Then
proj(P(t)) is an element of SP.

That is to say, the map
proj : SP — SP

1s well-defined.

In summary, from the proposition and the discussions so far we have the
following well-defined diagram:

proj

sp 22, sp X osum

Now we consider the following total solution space E(SP):

E(SP) = {(P(t),e*) € SP x Ft;
P(t) € SP, ( put m = 0(proj(P(t)))
Op = —gtr(azm‘lﬁpm),

Do = ~£—tr(6pm_16,,m — 8,m"19,m) }



and denote by 7 : E(SP) — SP the surjecti\}e map defined by
7((P(t),e*)) = P(t) for (P(t),e*) € E(SP).

Then a triplet (E(SP), n, SP) is considered to be a fiber space with fiber Rt,
in fact a principal bundle.

By the lemma in Section 1, we can define the following global section sect
of the fiber space

sect: SP € P() — (PQ),7(P())) 3 E(SP),

where 77 : SP — F' is given by the following diagram:

proj 9

SP —— SP — SM

n
F.

We put T'(SP) = Im(sect). The map sect is a global section of the fiber space,
the fiber space is trivial.

REMARK. The Minkowski space-time has in the potential space SP is

Pe =1 €SP and
(PeaTe) = (I2, 1) € F(SP) .
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3. Central extensions and transformations
Let G(=) = PSL(2,R][[s]]) be an infinite dimensional group

{g(s) € gl(2,R[[s]]) ; det g(s) =1}/{£L},

where R|[[s]] is the associative algebra of formal power series in s over R. We call
G(*) the Hauser group.

Let FG be the formal loop group with values in PSL(2,R). Then we define
an injective homomorphism j such that

561 5 g(s) > glo(3 1) +22) € FG

Im(j) is denoted by FH.

First we define the central extension of Hauser group by the additive group
R (& RY) as follows.

DEFINITION.  Let G{&) = G(®) x R* with the group multiplication such that
(gl, ev) ’ (92) eu) = (9192, ev+u) for (glsev)’ (g2a eu) € g(OO) x RY .

Next we consider the central extension of the formal loop group G by the
additive formal group F' = R][[z, p]], which is diagramatically expressed as

00— F —FG.. —FG—0.

Since the cohomology group H2(FG, F) is not trivial, we take the nontrivial cen-
tral extension by the choice of the representative Z in the nontrivial cohomology
class ( see [1][5] for the definition of =).

DEFINITION. We define the centrally extended formal loop group FG.. 1o be
the direct product FG x F* with the group multiplication:

(gl) el.‘)(g2’el/) = (glg2’6u+l/+3(g1,y2)) f0’f‘ (gl’ e”)) (92, el/) € fGCe .

&

Define a map j. from Gee ’ to FG . by the mapping product j x i, where
i is the inclusion map into F. Then j.. i1s an injective homomorphism. And the
images of j.. is denoted by FH...

We introduce an involutive automorphism 9£§°) of FG.. defined by

9«(;20) : fgce =/ (g’ eﬂ) — (0(00)(9)’6—“) € fGCe )



which is also called the Cartan involution. Then we define the subgroup of G ..
by
FKee = {k € FGuos 6% (koo) = kee b

which turns out to be

FK.=FK x {1} .

Let FP denote the subgroup of FG defined in Preliminaries. We define the
subgroup of FG.. as follows:

FPee = {Pee(t) = ('P(t),e“) € FGee; P(t) € FP, p€ F}.
Then the following Proposition holds.

PRroOPOSITION. Let FG.. be the centrally exiended formal loop group of FG.
Then FG.. is uniquely decomposed as

fgce = ]:ICce fpce-

Let a. be the map : G, — FP.. through the decomposition (5.11).
We denote by @.. the map from FK \FG. to FP.. induced from a... Then
for any g.. € FG.. we define the action on FP,, such that the following diagram
is commutative:

FKe\FGoe ———s FKee\FGee

ECCJ' lalit

fpce — f’})ce .

For the action of gee € FGee on FP,.. we use g.. as a notation, that is,
Gee - FPee — FPee-

It is noticed that I'(SP) C E(SP) C FP..

Then we have the main theorem below.

THEOREM.

Let FH.e and E(SP) be the Hauser group and the tolal space defined in
Section 2.

For any gce € FHee, the following diagram is well-defined:

FRe\FKee B(SP) —= FKe\FKce E(SP)

El Jee la

E(SP) —_— E(SP).
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The centrally extended Hauser group FH.. (= G(°)) acts transitively on the
potential space E(SP); E(SP) is an infinite dimensional homogeneous space.
Let g.. = (g,€e®) be any element of FH,..

Then for g in g.. we have the following commutative diagram:

FK\FKSP —— FK\FKSP

SP —_— SP.
Furthermore we can prove that the Hauser group FH(2 G(*)) acts transitively

on the potential space SP; SP is an infinite dimensional homogeneous space.

Since g in (g, €*) is an element of FH ( C FG), we have the decomposition
of g such that g=* = kP(t) ( P(t) € SP, k € FK ). Let P denote proj(P(t)),
that is, P(0). We parametrize P as in Section 2.

Then for the derivative of the group 2-cocycle = with respect to z and p we have
0.5(P(t),9) = ~ 55 (0: 10, f +0:40,9),

9,E(P(t), g) = —4% ((8,)2 = (8. 1) + (9,9)? — (8:9)2)

where f, 1 are given by the parametrization (4) of P. So we can complete the
proof. For the details of the proof of the theorem, we refer to [5].

As for the conformal factor 7 we have the following relation.

COROLLARY 5.12.  For any element P (t) = (P(t),7) € I'(SP), we have the
following relation:

T = exp {——%E (0(00) (’p(t)-l) ,’P(t))} .

Let E(SP) and E(SM) be subspaées of SP x F and SM x F and defined
by the same way in E(SP). And, let i : F — F be the identity map. Then
from the discussions so far we have the following diagram for g.. € FH..:

projxi 0xi

E(SP) ——— E(SP) —— E(SM)

EsP) 22, psp) 2. B(smM).




- diagram for g.. = (g,e%) €G

Therefore for the fiber space description we have the following commutative
(00).
ce .

E(SP) - E(SP)

| |

g

SP —— SP.

It is clear that the center R* of G{S°) corresponds to the fiber Rt of E(SP).
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