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Monodromy of the hypergeometric differential equation of type (%¥,n)

HAK B 4K B (Takeshi sasaki), WLl EF, Nobuki Takayama)
ik B HH IEE (Masaaki Yoshida), MF FF] (Keiji Matsumoto)

Abstract

In this paper we present a set of generators of the monodromy group of the hypergeomet-
ric differential equation of type (k,n). Since fundamental solutions can be expressed by
integrals of products of complex powers of linear forms, it might not be impossible to find
the monodromy representation of the system by tracing the change of cycles of integration
([Aom]). But, if one wants to study properties of the monodromy group, it is essential to
know nice generators explicitly; this is the very thing we do in this paper.
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Introduction

Fix positive integers 7 and n (> r + 1), and complex numbers ay, ..., a, such that

Qy,yeeyOpn, a1+ -+ an & 7.
Let L;j (1 £j < n) be linear forms in t = ({p = 1,%;,...,t,) € C":
Lj= Zmijfz',
=0
where z = (x;;) are complex variables such that any (r + 1) x (r + 1)-minor of the matrix

1 Zo1 ot Ton
0 z11 -+ zZin

0 21 -+ Zrn
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does not vanish. The set of integfals
/HLj’i‘ldtl Ao A dty
b

over various cycles, as a set of functions of z, spans an

n—1
T
dimensional linear space, which is known to be the solution space of the hypergeometric
differential equation

Er+l,n+la)=E(r+1,n+1a0,01,...,00)
of type (r + 1,n + 1), where aq is determined by
ay+---tap=n-—r.

We regard z as a variable representing points of the configuration space X = X(r+1,n+1)
of n + 1 hyperplanes in the r-dimensional projective space:

X(r+1,n+1)=GL(r+1,C\M*(r+1,n+1)/H(n +1),

where the symbols used are defined in Section 1. We fix a base point z€ X and a basis
of solutions at the point; we continue analytically the solutions along possible paths in X,
which causes a linear change of the basis; the totality of such linear transformations forms
a group called the monodromy group with respect to the basis. Our goal is to find explicit
matrices corresponding to a set of generators of the fundamental group of X.

By the way, the hypergeometric differential equation of type (2,n + 1) is known by
the name of Appell-Lauricella’s hypergeometric equation in n — 2 variables; it is especially
simple since the integral representation above is of 1-dimensional. The monodromy of
this system is a representation of the colored braid group, which is well studied, while we
shall use for our purpose the 1-cocycle representation of the braid group associated to the
system. The key to relate this system to our system E(r +1,n+ 1; ) is the following fact
due to [Ter]: when = € X defines n + 1 hyperplanes in the r-dimensional projective space
such that the n + 1 points dual to the hyperplanes are on a nonsingular curve of degree r
in the dual projective space, then the system E(r + 1,n + 1; ) boils down to the r-wedge
product of the system E(2,n+1;0') = E(2,n+1;ay,...,c},) where a; — oy € Z and

ag+--+a,=n—1.

Let @ be the submanifold of X consisting of such z then the above fact can be symbolized’
as follows:
E(r+1,n+1a)lo=A"E@2,n+1;d"), a—d €Z™
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Let p(J1,-..,Jr+1) be aloop in X with base point z which is described by the following
move of hyperplanes H; (0 < 5 < n): let us choose one index among ji,...,jr+1 and call
it j'; all the hyperplanes but Hj do not move, the hyperplane approaches sufficiently
near to the intersection point of the r remaining hyperplanes among r 4+ 1 hyperplanes
Hj,,...,Hj, ., goes once around the point in the positive sense, and travels back to the
original position tracing back the previous route. The choice of the loop p(j1,...,7r+1)
is by no means unique but anyhow these generate the fundamental group of X.

We choose the base point z€ X so that the corresponding n hyperplanes are defined
over reals; the complement of the n hyperplanes has (":1) compact chambers; the integrals
of the r-form above on these chambers give a set of independent solutions, which we take as
a basis. We choose the base point carefully (Section 1) in @ C X so that the hyperplanes
Hi,...,H. 41 bound a simplex in real affine ¢-space, and choose the loop p(1,...,r+1) so
that during the journey of a hyperplane Hjs (j' = 1,...,r or r41), the simplex remains to
be a small simplex. It is to be noted that the homotopy class of the loop does not depend
on the choice of the index j’, and that this move of the point can not be done inside Q, it
must travel beyond @ in X. The linear change M(1,...,7 4 1;a) of the basis caused by
the loop p(1,...,7+1), which will be called the circuit matrix, is obtained in Section 3. In
order to describe the change of the basis caused by another loop p(1,...,r,7 +2), we first
exchange the two hyperplanes H,,; and Hri2, which can be done by a move of z in Q,
next apply M(1,...,r +1; ), of course a,4+; must be read ar42, and then exchange again
the two hyperplanes H,4; and H,4+3. Since the process of exchange can be done inside
@, by virtue of the relation between E(r + 1,n + 1) and E(2,n + 1), we can describe it in
terms of the change of 1-dimensional cycles. In the same way, by applying successively the
process to the standard generators of the braid group Bp41, we can find circuit matrices
M(j1,...,Jr+1; @) corresponding to the other loops p(j1,- .., Jr+1)-

In [MSY], a set of generators of E(3,6;1/2,...,1/2) is obtained by the use of periods
of a family of K3 surfaces; in this paper, we treat general k, general n and general a. Our
generators obtained in this paper have good properties (e.g. all but one eigenvalues are
1) which make closer studies of the monodromy group possible; see our forthcoming paper

[MSTY].

Acknowledgement. The authors are grateful to Professor Kita, who kindly imformed
them the result of [Kit], which guarantees the validity of the main theorem (Section 6)
under the weakest possible condition: ag,...,an ¢ Z.

1. The configuration space X, the submanifold @ and a base arrangement

In this section we introduce the configuration space X = X(r + 1,n+ 1) of the n +1
hyperplanes in general position in the r-dimensional complex projective space P", define
a submanifold ), and choose a point z in Q which shall be used as a base point.

Let tg : -+ : t, be a system of homogeneous coordinates of the projective space, and
consider n + 1 hyperplanes H;(z), called an arrangement, defined by linear equations

Li(z) = Z:Eijti =0, 0<j<n
=0
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These hyperplanes are said to be of general position if no r + 1 planes meet at a point, or
equivalently, if any (r + 1) x (r + 1)-minor of the matrix z = (z;;) does not vanish. Two
such arrangements are considered to be equivalent if one is sent to the other by a projective
transformation of P". Thus the space of (equivalence classes of) such arrangements are
given by the double quotient space

X=X(r+1,n+1)=GL(r+1,C\M*(r+1,n+1)/H(n + 1),

where M*(r + 1,n + 1) is the space of (r + 1) x (n + 1)-matrices z = (z;;) that any
(r+1) x (r+1)-minor does not vanish, and H(n+ 1) is the subgroup consisting of diagonal
matrices in GL(n+1,C). This space X, which has the natural structure of an r(n —r—1)-
dimensional affine manifold, is called the configuration space of n 4+ 1 hyperplanes (in
general position) in P".

Let @ be the (n—2)-dimensional submanifold of X consisting of the arrangements such
that there is a nonsingular curve of degree r along which the n + 1 hyperplanes osculate,
or equivalently, that there is a nonsingular curve of degree r in the dual projective space
on which the n 4 1 points dual to the n+ 1 hyperplanes are located. Since any nonsingular
curve of degree r is projectively equivalent to the following curve (the Veronese embedding
of P1): ,

to = (s0)", t1=(S0)" 81, tr—1 = 50(51)" Y, tr = (81)"

parametrized by so : s; € P!, the manifold Q can be parametrized by the configuration
space X(2,n + 1) of n + 1 points on the projective line as follows:

(—&o00)" e (—&on)"
¢ ¢ (—&o0) Y10 -+ (=on)n
(e (oo ... om . : A :
L.X(Z,n+1)9§—(€m ~-§1n> £ _ér—l E _§T—1 € Q.
—G00G10 e —C0nC1n

6{0 T ﬁfn
Without loss of generality, in what follows, we assume for z = (z;;) € X that
zgo = 1,%10 = - =250 = 0;

the 0-th hyperplane is given by to = 0, which we regard as a hyperplane at infinity Hy.
The remaining r hyperplanes H;j(1 < j < n) in the complex affine space T with coordinate
t = (t1,...,%r) is defined by

T
L; = Z:E,'jti, to=1, (1<j<n)
1=0

thus a point of X is now expressed by

z=(zi), 0<i1<r, 1<5<n.
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Similarly, we assume for £ € X(2,n + 1) that
500 = 1) 610 = 01
in other words, the 0-th point is given by so = 0, which we regard as a point at infinity and

think the remaining r points ¢; (1 £ 7 < n) be in the complex affine line S with coordinate
s = s1/s0; thus a point of X(2,n + 1) is now expressed by

§=(6,-.-:6n)-

Note that these conventions agree with the isomorphism ¢ : X(2,n 4+ 1) — @, i.e.

1 (=&a)y - (=6

0 (&)™ -+ (&)
(€0=OO:£1)"'7£n) =

0 & —én

0 1 1 1

Define Xg to be the real submanifold of X consisting of the points that can be
represented by real matrices z = (z;;), define Xp(2,n + 1) similarly and put

Qr=QNXgR.

Then the restriction of the above map ¢ gives the isomorphism between Xg(2,n + 1) and
@R- Similar convention will be applied also to the spaces T' and S in order to define T
and SR.

We choose a point z on @p as follows that will be fixed throughout the paper. Choose

real numbers ¢, ..., &, such that

* *

§1< .. <§G< o <

the point é= (¢1,...,¢,) lies in X(2,n + 1) and the point z= ¢(£) represents n + 1 hyper-
planes (cf. Picture 1): |
Hy = the hyperplane at infinity,

I.fj:Hj(i), 1<j<n.

Note that each }} ; is defined by the linear form

Li3) = tr 4 (= E)tror 4o+ (= &) M+ (= £,
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2. Twisted cycles and a basis of solutions

Let = € XR be a point near to z, and TR the real affine space with coordinates
t = (t1,...,t,); we fix an orientation of Ty once and for all. The complement of the

n hyperplanes U;H; in T has (":l) relatively compact components, which we label ag
follows: For
P=(p,...,pr), 1<p1<---<pr<n-—-1,

define .
Dp = Dp(z) = {t € Ty | (-1)"WL;j(z) > 0},

where P(j) is defined after [Ter] by
P(j) := Cardinality of {i | p; < j},

and

Li(z) = Z Zijts.
=0

N

D
D
12 13
——
H, + +/ |-
) H
. Hy Hy 3

Picture1: r=2, n=35

Consider the following multi-valued r-form  on T

Q=Q(z):=[[LF dts A+ Adt,.
J
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On the domain D', we assign arguments of L; as
argLj = —P(j)r, 1<j<m

the domain D5, with the induced orientation as a domain in T, together with the branch
of Q on it thus defined will be called the (twisted) cycle Dp. Put

up = up(z) =/ Q;
Dp

these define, by analytic continuation, holomorphic functions in z = (z;;) around z . It
is shown in [Kit] that they form a basis of solutions of the hypergeometric differential
equation E(r + 1,n+ 1; ) if ag,...,an ¢ Z.

3. Circuit matrix M(1,...,r + 1;«a)

The domain D(1 T)(:E) of Tg is a simplex bounded by r + 1 hyperplanes I.Il, oo, Hy

and Hr+1 . In this section, we study the circuit matrix M(1,...,7 + 1; @) of the system
(Dp)p or of the system (up)p relative to the loop p(1,...,7 +1). The loop is described
as follows: make a parallel displacement of the hyperplane Hry1(z) in Tp so that the
simplex becomes small let the hyperplane go once around in the complex space T the

intersection point H 1N---N H in the positive sense, and let it go back; during the whole

journey, we keep H 41 (:z) always parallel to H,41. A similar moving of another hyperplane
around the intersection point of the remaining r hyperplanes defines a loop homotopic to
p(l,...,7+1).

Proposition (cf. [Aom], [Pha].) The analytic continuation along the loop p(1,...,7 +1)
induces the transformation M(1,...,7 + 1;a) of the functions up as follows:

ug & ug + (1) Fe(ongr + -+ o)1 —elon + - +ap)urpn, 1<k,
Urgr P e(ar + -+ 01 )Urta,

where e(-) = exp(2xi-) and
Uk = UL, k=1 k41, r41) L S ES T+ L

The function up does not change for other P. The equivalent statements for cycles are as
follows:

Dy % D+ (=1) Fe(apsr + -+ arp1)(1 —e(ar + -+ ax))Dry1, 1< k<,
Dr-l-l G 6(0(1 + -+ ar+l)Dr+1)

where
Dy :=Dq,.. k=1,k+1,.,7+1), 1<Sk<r+1



128

Section by a generic hyperplane Py P, P3P,PsPs which we regard as Hs
is added in order to show the hyperplanes H,,...,H4 and the domains
D3,...,Dy: Di=(V1,P1,P2,Ps) a simplex, Dy=(V;,V2,P4,P3,P2,Ps) a polytope,
D3=(V1,V2,Va,Ps,P,,Ps) a polytope, D\=(V;,V>,V3,V,) a simplex.

Picture 3: r =3
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Proof. We apply the above convention also to the domains D%. The real domain D, ; =

L]

21 ...r) 18 a simplex bounded by r + 1 hyperplanes Hy,...,Hry;. We name its 7 +1
vertices:

Vk=H1ﬂ“'nHk_lnHk+ln"'nHr+1, 1Sk§7‘+1

There are exactly r domains D which touch the simplex D ;; in fact

! 1] 1
D,,....D},...,D

r

touch the simplex D/, along the following faces:
Vla"’)(.‘/l;"')Vk):"')(.{/l)"'avr):

respectively, where (Vi,..., Vi) denotes the (k — 1)-simplex with vertices Vi,...,Vi. It
is obvious that by the move of the arrangement along p(1,...,7 + 1) only Dy,..., Dryy
among the ("*) cycles Dp would change.

In order to study the change of Dy, we consider the complex line [ passing through
a point A in the simplex (V1,...,Vk) and a point B in the complementary simplex
(Vit1,- -+, Ve41) (see Picture 6). Picture 4 shows the line | as well as the points 4,B
and the two segments [N D, and I N Dj.

D D
" ™+l k
B
.-
Picture 4: Line [
Our assignment of arguments of L; says that

argLrt1= —kw on Dp,,, —(k—1)m on Dy,
argLyy; = —rm onD,,,, —(r—1)r on D).

Therefore, for each m (k+1 < m < r+1), the power function L%~ defined on D}, and
that defined on D) are analytic continuations of each other along a path p in the lower
half plane of the line [. According to the move along p(1,...,r+ 1), the point A goes once
around the point B in the positive direction (see the doted curve in Picture 4); this causes
such a change of the segment /N D}, as shown in Picture 5.
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Y

Picture 5: The transformed curve

Since the transformed curve of [ N D} passes above the point A and goes around the
point B, we have

lﬂDk‘HlﬂDk—}—e(ak_H+---+ar+1)(1—e(a1+-~+ak))lﬂDr+1 1<k

When the point A is fixed and the point B moves in (Vi41,..., Vrt+1), we consider
a map sending A to the point antipodal of A relative to B (see Picture 6); the map is
orientation preserving or reversing if the dimension of the simplex (Vi41, ..., Vr41), which
is equal to r — k, is even or odd, respectively. When the point B is fixed and the point
A moves in (V4,..., V) in some direction, then I N D, ., and I N D move in the same
direction. Since Dj, is the join of two simplices (V1,..., Vi) and (Viq1,...,Vig1), we
have

Di % Dr+ (1) Fe(ars1+ -+ orp1)(1 —e(ag + -+ ag))Dry1, 1<k

Picture 6
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In the course of this procedure the segment !N D;,; turns around the point B as well as
the point A. Thus we have

Dr+1 G C(CZ]_ +---+ a1‘+1)DT+1-
The proof is now complete.

4. Relation between E(r +1,n+ 1;a) and E(2,n + 1;¢') ([Ter]) 4

In this section, when z is on @, we show that the r-dimensional integral up(z) is an
r-determinant of 1-dimensional integrals. Let &;,...,¢, be real points on the line S suffi-

ciently near to §;,...,¢, so that

b1 <...<§ <. <Ln.

Let us define, for each ¢ (1 < ¢ < n—1), a 1-form

wg = wg(€) := [](s — €)% 57 ds,

J

which is single-valued in the lower half plane and continued analytically to the whole space
S, and, for p (1 < p < n—1), segments

I = {sESRpr<s<£p+1}.

I Ip I

& &2 —Ep G+l VEn-l &n

The form wy is defined in the lower half plane

Picture 7

On the segment I, we assign arguments of s — ¢; as follows

. N_ ) 0, #1<j5<p;
‘“g(s"g’)‘{—w, ifp+1<j<n;

the segment I, with the orientation indicated in Picture 7, together with the branch of
wq thus defined will be called the (twisted) cycle I,. Put

apq(€) 32/1_ Wq

P

and, for , :
P=(p,.-,pr), 1<m<...<pr<n-—1,
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put
Ap(€) = det(ap“,,)r y=1;

these deﬁne by a.nalytlc continuation, holomorphic functions of £ = (¢;,...,&r) € X(2,n+

1) around 6 (Ela ,€n)
Let = = (zi;) be a point on @ C X corresponding to the point £ € X(2,n 4+ 1), i,

z = (£).
Proposition ([Ter]). If z € Q C X is related with { € X(2,n + 1) as above, we have
up(z) = Ap(£), ie,

/ I]L(@%—wh Aﬁr—ﬁﬂ/ [ﬂs— N TN ds)T L

.P J_' Pp ]—-

where
Li(z) =tr + (=€i)tr—1 + -+ (=€) 1 + (=€)

Idea of the proof: Let S (i)(l <1 <r) with coordinates g(i) be r copies of the line S, a.nd ST
be the product of these. Define a map ¢ : ST — T, 6(s(?) = (¢;), by the following relation:

r

[I6® —2) =t + (=2)tra + ...+ (=2)".

=1

Then we have (o)
* o olr
" 0= > Wi A AWl
UGGr

() is the pull back of wy under the projection of C to c )

wgi) — H(S(i) — éj)a;—l(s(i))q—lds(i)’

J

where wy

and &, is the symmetric group in r letters. The cycles on S™ and on T are related as
follows:

1 T
SIS x -+ x I{N) = Dp,

where P = (p1,...,pr) and I,(,,c is a cycle on S(*) which is the copy of the cycle I, onS.
These two assertions can be checked by a direct computation. By virtue of these facts the
proposition can be readily proved.

5. Action of the braid group B,; on a collection of solutions of E(2,n + 1; a)

For notational symplicity, we use w and a, in place of w; and ap;:

ap(f)—_—/ (€) = /H(s—— )% Tlds, (1<p<n-—1),

PJ]
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which are functions of £ around £ . Recall that the arguments of s — {; were so assigned
that the form w is defined in the lower half s-plane (see Picture 8); keeping this assignment,
we write the above integrals as follows:

@)= [ ue)

P

To recover symmetry, we re-introduce the point {,= oo and a real point £, near £;, and
define ag and a,, as follows:

ao(f)-—-/&w(é), an(€)=/:w(£)~

o

Iy I In1 In
oo =f —>& O n e e e —- 00— [ -0
0 0

& 1 &2 T;n-l En

The form w is defined in the lower half plane

Picture 8

Lemma. Among these n + 1 functions a; = a;(€) defined around é, hold two linear

relations:
n

Za,-:o,

=0

n

Ze(—-ao — - —aj)a; =0,

‘ =0
where e(-) = exp(27i-).

Proof: One has only to integrate w along the curves shown in Picture 9.

NV ANTE e
Picture 9
Let G,41 be the permutation group in n + 1 letters 0,1,...,n. For 0 € Gpy1, we

define aZ(0 < j < n) by

€, =101
a?<€>=/ "), 0<ji<n,

Cam1(5)
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where, for each k, ,(x) is supposed to be near to {;; they are functions in (€oy---16x)
around (€5-1(0)s - - - »€a1(n))- Note that a7 = a; when o is the identity and that, when ¢
is not the identity, the domain of definition of {a;}; and of {a7}; are disjoint (see Picture
10). Let A° be the linear span of {a?};.

Picture 10

Let Bn+1 be the braid group generated by the exchange s, of the point near ¢, and
the point near £,,, (0 < p <n —1) as is indicated in Picture 11,

Picture 11

Let p : Byy1 — Gny1 be the natural homomorphism (of which kernel is the colored braid
group) defined by:

p:Brt13sp = 0p=(p,p+1) € Gy

Every element s € Bny1 causes, by the analytic continuation along the path shown in
Picture 11, a linear isomorphism N(s) = N(s;a) : A — AP(®). Generally, for any o €
Snt1, we have an isomorphism

N°(s)=N°(s;a): A7 — A°P),
Notice that, by definition, we have
N9 (ss') = N(s)NPL)(s');

this formula will be quoted by the name of I-cocycle property. Actual transformations
are given in the following proposition in terms of the generators of the braid group and
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the functions a7; although the spaces A” are (n — 1)-dimensional, we make use of n + 1
functions a?(0 < j < n) in order to make the following formulae simple and symmetric.
Let the group G,41 act on the parameter « as follows:

Proposition. For each generator s,(0 < p < n — 1) of Bnyy, the action of N?(sp; ) is
given as follows by the use of functions {a?} and {a;7?},0<k < n:

o oo oo
p—y Gyt a7,
(c )p+1
-1
ap v Ay,
(c )p+1

Gy ™ 4577 + 0,3,
af ~a;?, (G#p—1Lpp+1),

where aZ, should be read as a}, and
(¢”); = e((a®);) = exp{2mi(a”);}.

By virtue of Lemma, we get the matrix representation of N7(s,; @) by using the bases
{ag,...,a%} and {a]"?,...,an""}, also denoted by N7(s,;a):

sp:t{af,...,al} ~ N7 (sp; ) {a;"?,...,a5°%%}.

Remark. As matrices, we have
N(sp;a) = N(sp; 7).

Their determinants do not vanish for any a.

Now we can know how the (n:l) functions

AP(é) = det(appl/);,u=1
change: Since the forms w, have the same monodromy property as that of w = wj, the

change of {Ap}p can be expressed by the r-exterior product AN?(s,; ) of N%(sp; @);
arranging P in the lexicographic order, we denote by W9(sp; a) the corresponding matrix:

Wi(sp;a) = A"N(sp;a) : N"Ap — /\TA;p(sp).
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6. Generators

Let up(z) be the functions around z€ X defined in Section 2, and u%(z) the functions

around the point of X corresponding to €7 = ({50 - --»¢s(n+1)) € X(2,n + 1) defined
exactly the same way with the parameter a”; we arrange them in the lexicographic order
in columns and denote them by u and u°. For

Jz(jla"'7j7‘+1)a 1§j1<"'<jr+1§n+1

(n 4+ 1 should be interpreted as 0), let M(J;a) be the circuit matrix with respect to u
corresponding to the loop p(J):

p(J) v M(J;a)y;
similarly, let M?(J; «) be the matrix with respect to u?. Notice that as matrices we have
M°(J;a) = M(J;a%).

The matrix M(1,...,r + 1;a), which is holomorphic in a, is given in the proposition in
Section 3. Since

up(z) = Ap(£), z=1¢)

(Proposition in Section 4), by the argument in the preceding section, the other M(J;a)
can be obtained by the recurrence formula in the following theorem.

Theorem. Let aq,...,a, be complex numbers such that
a; €L, ag+---+a,=n-—r.

The generators M(J;«) of the monodromy group of the hypergeometric differential equa-
tion E(r + 1,n + 1;a) with respect to the fundamental solutions {up}p are given by the
following recurrence formula with initial datum M(1,...,7 + 1;a). If jr + 1 < jg41 or
jr+1 +1 S n + 1, then

M(J +ex; o) = W(sji; ) Mx (J; )W (sj,;0) 77,

k
where J = (j1,...,Jr+1) and & = (0,...,0,1,0,...,0). The matices M(J; ) are holo-

morphic and invertible for any value of .

Remark. Compatibility of this recurrence formula can be derived from the 1-cocycle
property of W9(s; ). Notice that if both J + ¢ and J + ¢; belong to the due range of
parameters, we must have |j; — 71| > 2 and so sj, and sj, are commutative. Then

M((J +ex) + e 0) = W(sjp; )Mt (J + e; )W (sj;)7 "
= W(sj; )Wt (55,5 0) M7t (J; )Wt (s55,50) " W (sj,50) 71
= W(sj $j.; )M (J; )W (s, 5505 0)77
= W(sj,85; )M %% (J; )W (s, s550) 7"
= M((J +e1) + ex; ).
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Remark. By virtue of the remark above, the actual computation can be done in an
economic way as follows: Let J' = (ji,...,j;4,) be the next one of J = (jy, ..., jr4+1) with
respect to the lexicographic order; there exists k (1 < k¥ < r + 1) such that

Jj’l =j17"‘1j;c—1 :jk—'l7 ];c =jk + 1
Then M(J'; @) is given by

W(Sjk 3 a)jwajk (jla L 1jk1j;c+1) e aj-:'+1; Ol)W(Sjk 3 a)_l~

Remark. The unique eigenvalue of the matrix M(j1, ..., jr+1; @) which is not 1 is e(a;, +
-+ aj,,,) of multiplicity 1. Each matrix M(j1,...,Jr+1; @) can be written by use of row

(n:l)-vectors . ‘
a(jl)"';]r-i—l) and b(]la"')j‘r-}-l)

in the form:

lVI(jI, - ;jr+1; Ot) = Identzty - ta(jl, ce ,jr+1)b(j1, . 1jr+1)-

Example. r =2, n =5. We have

e(ar + oz + az) 0 00 0 O
e(az)(1—elas+az)) 1 0 0 0 O
0 010 0O
M(1,2,3;0) = —e(az +a3)(l—e(ay)) 0 0 1 0 0}’
0 00010
0 0 00 01
1 e(—as) O 0 0 0
0 —e(—as) O 0 0 0
, 0 1 1 0 0 0
Wiss,a)= | 0 0 —e(—as) 0 0 ’
0 0 0 1 1 e(—ay)
0 0 0 0 0 —e(—au)

M(1,2,4;a) = W(ss,a)M(1,2,3; ap, 01, 02, a4, a3, as)W(33,a)"1

1—elon +ax)(l —e(aq)) —e(ar +az)(l—elay))
ela; +az)—1 e(ar + az)
elag)(l —e(ar +a2))  e(a)(l —e(ar + a2))
e(a2)(1 — e(a1)) e(az)(1 — e(a1))
—e(as + a43(1 —elar)) —elas+ a4g(1 —e(a1))

o OO = OO
OO = OO o
O = O OO O

In this way, we successively get the others as is indicated in Picture 12.



138

K56
B
A
B56
345 5 346
R
2 2 P56
245| 5
1
3/ 046
234 4 235 i 5 156
; 36 |
1
HSE= 2
1 1 3‘_-'115" (146
134 4 < s
i 136
3 4 5
123 124 125 126

Picture 12

The matrices M(j1, jz2,J3) are given by the following vectors a(j1,J2,73) and b(j1, j2,J3);
the index 6 should be read as 0, and '

cr = e(ax) = exp(2miax), 1 <k <6.

a(123) = (1-cicacs, —(1—ciea)es, 0, (1—c1)eacs, 0, 0 )
a(124) = ((1~cy)crcz, 1-crc2, —(1—cica)cs, —(1=c1)cz, (1—c1)cacs, O )
a(125) = (erea(1-cs), 0, 1-cics, 0, —(1=c1)ez, O )
a(126) = (1, 0, 0, 0, 0, 0 )
a(134) = (=(1—ca)er, (1—csca)er, —(1—ca)erca,1—ca, —(1-ci)es; (1—ci)eses)
a(135) = (=(1-cs)er, (1—cs)eres, (1—csder, O, - 1-cy, —(1=c1)cs )
a(136) = (——(1:;2), (1":':)03, 0, 0, 0, 0 )
a(145) = (o, —(1=cs)er, (1—cacs)er, O, 0, 1-c )
a(146) = (o, 1, ~cs, 0, 0, 0 )
a(156) = (o, 0, 1, 0, 0, 0 )
a(234) = (1-ca, —(1—cscs), (1—cs)ea,  1—czesca, —(1—cacs)eq,(1—ca)eacs )

a(235) = (1—c5, ~(1—cs)es, —(1=c3), (1—cs)c2c3,1—coc3, —(1=c2)cs )



a(236) = (1, .
a(243) = (o, 1—cs,

a(246) = (o, 1,

a(256) = (o, 0,

a(345) = (o, 0,

a(346) = (o, 0,

a(356) = (o, 0,

a(456) = (o, 0,

B128) = (. o

b(124) = (a, 1,

b(125) = (1, 1,

b(126) = (1-ciczcs, (1'_"'1;32&0_5_),
b134) = (0. 1,

B135) = (0. 1,

B136) = (1-es,  Umtamescs),
b(1435) = (o, 0,

b(146) = (1252 1 —creencs,
b(156) = (=322 1_cicqesce,
b(234)=(o, o

b(235) = (o, 0,

b(236) = (58,0,

b(245) = (o, 0,

b(246) = (—(1';‘51)7_(1:161),
b(256) = (—zm) ~(za),
H345)=(o. o

b(346) = (o, _.Q_Elﬁ.l.l,
b(356) = (o, _Ll_:_lfl_),
b(456) = (o, 0,

o, €2€3,
—(1=-c4cs), —(1=cs)c2,
—C4, —C2,
1 o0,

0 l—cs,
0, 1,

0, 0,

0, 0,

0, 0,

0, 0,

1, o,

—(1—c¢s)ere2¢6,0,
0, 1,

1, 1,

(1—C16203Ce)

—(1—cs)c1cacs, cs

1, a,

(1—cs)cics,

1—ciesce, —(1—c3)c1cqcscs,
0, 1,

0, 1,

0, —(1—cycs)cs,
0, 0,

0, (1—ca)cqcscs,
"Ll_:'lc;), (1—ca)eqcscs,
0, 0,

o, l—cgcqcsce,
- I;Ci) y l—cacqcscs,
_(Q=c1)

0,

[} )

b

—(1—c3)er1cqcscs,

0,
(1—cqcs)c2,
C2C4,

—C2,
~(1—cqcs),

—C4,

—(1—cs)ereacs,

1,

(1—cs)ercs,

~(1—c3zcq)erescs,

0,
1,

~(1—cs)cs,

1,

—(1—cs)cs,

(1—ca3cq)escs,

0,
0,

1—C304C5C6,

_!I—CICz)

Cci1C2

7
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1—cgcacs
C3C4q

—c3

0

1
(1—cs)crce

—(1—cq)crcs5¢c6

1]
0
0
1
=(1—cs)cs
{(1—c4)esce
1
—(1—cs)cs

(1~cq)escs

l—cqcscCs

N’ N v N N e e N S S N Nl N N e e N N N N e’ N’ N e’ N N e N
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