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1.Introduction.

We first define a new game played on graphs. Let G be a finite
graph without loops or multiple edges, and ¥ a set of graphs. This
game is played by two players on the graph G. Each player in turn
removes a set of edges which induces a graph isomorphic to a graph
in #. The winner is a player who removes edges such that the
resulting graph contains no graph of ¥, that is, the player whov
cannot move loses. We call this game an edge-removing game of
normal ¥ type. If we change the rule to one where the player who
removes the last edges loses, then the game is called an edge-removing
game of misere ¥ type. In this paper, we shall discuss only games
of normal type.

We call the complete bipartite graph K = K(1,n) the star of

1,n
order n+1, and denote by P'n the path of order n. If ¥ is the set
of all stars, then we call this game the edge-removing game of normal
star type, or simply ER-game of star type. If we play ER-game of
star type on a graph consisting of some stars, then this game is
nothing but the game of Nim. Similarly ER—game of star type played

on a graph consisting of some paths is equivalent to the game

called Kayles. So ER-game of star type is a generalization of these
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two games. In this paper we give some results on ER-game of star

type played on double stars, forks and trees.

2. ER-game of star type played on doubles stars

In order to solve ER-game of normal ¥ type played on a graph
G, it suffices to determine the Sprague-—Grundy'nﬁmber g(G) of G,
which is often called the Grundy number [1,2,3]. The Grundy number

is defined inductively as follows: If a graph G, contains no graph

1
of #, then g(Gl) = 0. Let Hl’HZ’ e s Hm be the set of all graphs
which can be obtained from a graph G by one move. Then

9(G) = min{{0,1,2,3,...} - {g(Hi) 1 =1 sm}}
By this definiton, we can easily show that g(G¢) < | £(G) | by induction

on |E(G)|. It is well-known that if a graph G consists of the

components Dl’ cen s Dr’ then
g(G) = the nim-sum of g(Dl), g(Dz), g(Dr).
=g(D1) + g(Dz) + ...+ g(DT).
Namely if
_ ol .
g(Dk) - .Z xk("‘) 2 ) xk(?’)e{oyl}
120
then
i r
9(6) = Y y() 2", y(i)= 2 (i) (mod 2) and y(i)€{0,1}.
120 k=1

Moreover, it is easy to see that the player going second can win
if and only if g(G) =0.
We denote by (...) an order set, that is, (xl,xz, ...,xk)=(y1,y2

y vee ,yk) means that x =Y, for all 1, 1<i<k,

Theorem A. [1,2,3] The Grundy numbers of stars K1 n and paths

*

Pn of ER-game of star type are given by the following statements.
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(1) o(Ky )=n.
(i) 9(P | 1
(9(P) | 72 <k < 84) = (7,4,1,2,8,1,4,7,2,1,8,4).

) = g(Pn) if n =72, and

For convenience, we denote by KlO a graph with one vertex
and no edge. The double star DS(n,m) is a graph obtained from two
stars K1 n and Klm by joining their two centers by a new edge.

Then the order of DS(n,m) is n+m+ 2 and its size is n+m + 1. We

now give a conjecture on the grundy numbers of double stars.

Con jecture B. Suppose that ER-game of star type is played
on a double star DS(n,m)). Then

(i) For every positive odd integer n, there exists an integer
M =M(n) for which g(DS(n,m))=n+m+1 if m =2 M.

(ii) For every positive even integer n, there exists integers
p=p(n) and M = M(n) for which g(DS(n,m+p))=9(DS(n,,m)) + p if m = M.

We shall show that the conjecture is true if n = 2k— i, n= Zk or
1 <£n < 10. Moreover, by making use of computer, we observe that
if n < 50 and m < 5000 then the conjecture holds and that M(n) < 800
except n =33 (M(n) =1953), n =34 (M(n) =2141) and n =48 (M(n) = 2157),

furthermore, we may give a conjecture on p(n) that ;;9(71):2’“’1 if

Zk =n < 2k+1 except n =24 (p(n) = 64).

Theorem 1. Suppose that ER-game of star type is played on

a double star. Then

(i) For every integers k21 and m =2 0, we have



a(0s2* - 1,m)) = 2F + m.
(ii) For every integers k=1 and h =2 0, we have
gps@fn o sy =noftt Lok i s i,

where -1 gsgzk—l and

g(Ds@X R 2K 12k Loy =n ot L o4,

where 0 £s < Zk - 2. In particular,

9(DS(2Fm + 25ty = o(Ds(2%,m)) + 25t for all m = 0.

Proof We first prove Statement (i). For convenience, let
'n='2k—1. We shall prove that g(DS(n,m))=n+m+1 by induction on

m. Since a double. star DS(n,0) is a star K g(DS(n,0))=n+1

1,n+1’
by Theorem A.

Suppose that 1 €m < n. For every integer j,0<j<n, let r=m
+j. Then 0 <»<n and rim= j..We can remove a star from the double

star DS(n,m) such that the resulting graph is K whose

1,1‘UK

grundy number is 7r+m =j. By the induction hypothesis, we have

1i,m

that g(DS(n,*))=n+r+1 for every 0 £ r < m. Therefore g(DS(n,m)) =
n +m + 1. Since g(DS(n,m)) < | E(DS(n,m))| =n +m + 1, we can conclude
that g(DS(n,m))=n+m + 1.

Next assume that n < m. For every integer j,0<j<n, let r=n
+j. Then 0 < r <n and n+r =j. We can remove a star from the double

star DS(n,m) such that the resulting graph is Kl UK whose

Ko i,
grundy number is n+r =j. By the same argument as above, we can

also show that g{(DS(nm))=n+m+1.

For convenience, we denote the star Kll by K(1,1). In order to
y

prove Statement (ii) we need to show that the following equation

holds.
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- - 1,m) such that the resulting graphs are K(1,t2

o(DS(h 28t 1 )y = n 2P 4o

for every integers 0 < m < Zk and h 2 1. We prove the above equation

by induction on m. Let 0<j<2% and 0<t<h-1. If m < 25, then

7'=ji- < 2k, and we can remove stars from DS(h 2k+

k+1

1. 1,m) such that

+ T)UK(1,m) and K(1,t 251 4+ 2% 4 1y

UK(1,,m), whose grundy numbers are t2k+1+j and t2k+1 +2k+j,

k+1

the resulting graphs are K(1,t2

respectively. If m=2’c then we can remove stars from DS(h 2

k+1 L Uk ,2¥) and

&1t 281 4 2F 4 5)UK(1,25), whose grundy numbers are t 25*1 + 2% 45 and

t2k+1 + j, respectively. By the induction hypothesis, we have that

g(ds(h 25 —14)) =n2¥1 1y for every 0=y <m. Thus g(DS(h 25

k+l o, and so g(DS(h 251 - 1,m)) = n 25 4 .

We now prove Statement (ii) by induction on h2k+1 +s or h 2k+1

+ 2k +s. By Theorem A and the above statement, g(DS(Zk,O)) = Zk +1

k+1 +

-1m)) 2 h2

and g(0s(2Xn 2% Z1))=h2 2¥ Consider a double star DS(2Xh

2k+1—1),0§h,0§s§2k—1. For every integers 0<t<7r-1, and O

sz <2k, we have that

o(8(1,25n g, 28 w2k s o)y =12k 4 o
and
o(K1,250 gkt 28 1 2)) = ¢ 2P L 2R h s
Moreover,
g(K(L,2)+gE(L,h 2" =2 1 2 for 02 <2,

and for every integer yY,0=<1y <s, it follows from the induction

hypothesis that

k+ k+1

g(Ds@* R 2K )y = 2Pt 2R by v 1,

k+1 k+1

Therefore g(DS(E R 25 +s)) 2n2¥+2¥ 4541, and thus g(D(@*n 2
+s))=nh 2k + zk +s+1.



We next consider a dout;le star DS(Zk,h 2k+1 + 2k +s),0<s < 2’c - 2.
By the same argument as above, we can easily show that
(9(K(1,2) gLy 10 sy s h 2 1284 g

k+ k

=0,1,2, .., h 2Ty qquin 28t w2k L (h w128 C 1y,

Thus g(DS(zk,h 2k+1 + 2k +s))=h 2k+1 +s+1, It is obvious that for
every 0<t <2, Ds(th 2?1 125 4s) contains K(1,HUK( R 25 4 1),
r=t+(s+1), whose grundy number is & 2k+1 +s+1. Therefore

g(DS(t,h 2k+1 + Zk +s8))#h 2k+1 +s+1. Consequently we can conclude

that o(DS@Fn 28t 1 2F o)y =nof*l 4541,

Theorem 2. The Grundy numbers of double stars DS(n,m), n <
10, of ER-game of star type are given by the following statemtents.
(i) If n=0, n=1, n=3, n=5 and m=215, n =7 or n=9 and
m = 95 then
g( DS(n;m) )=n+m + 1.
(ii) Let p=4,8 or 16 according as n=2, n=4,6, or n =28,10.,
Suppose that m =215 if n=6, and m = 110 if n =10. Then

g( DS(n,m + p) ) = g( DS(n,m) ) + p.

Note that Theorem 2 holds for n=0,1,2,3,4,7,8 by Theorem A and
Theorem 1. We shall prove the following proposition instead of

remaining Statement (ii) of of Theorem 2.

Proposition 3. Consider g(DS(n,m)) with n=2,4,6,8 or 10. Let
t and s be integers such that 0 <, and 0 £s< 4, 0=s<8, or 0
s < 16 according as n=2, n=4,6 or n=8,10. Then the following

statements hold.
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(i) g( DS(2,4t+s) ) = 41+3, 4t+4, 4i+1, 4i+6 if s=0, 1, 2, 3,
respectively.

(ii) g( DS(4,8t+s) ) = 8t+5, 8t+6, 8i+7, 8t+8, 8t+1, 8t+2, 8t+3, 8t+12 if
s=0, 1, 2, ..., 7, respectively.

(iii) 9( DS(6,15+8t+s) ) = 81+22, 8t+23, 8t+24, 8t+21, 8{+26, 8f+25, 8t+28,
8t+27 if s=0,1, 2, ..., 7, respectively.

(iv) g( DS(8,16t+s) ) = 8t+s+9, 8l+s-7 or 8t+24 if 0=sz7, 8<s=<14 or
s =15, respectively.

(v) 9(DS(10,110+8t+s) ) = 8t+117, 8t+122, 8¢+123, 8t+124, 8t+121, 8t+126,
8t+127, 8t+128, 8t+125, 8t+130, 8t+119, 8¢+132, 8t+129 if s=0, 1, ..., 15,

respectivley.

2. Grundy Numbers of Forks and trees
A fork F(n,m) is defined to be a graph which is obtained from a
star Kl,'n and a path P_m by joining the center of the star to one
of the end vertices of the path by a new edge. Then the order of
F(nom) is n+m+1 and its size is n+m. Note that F(Om)=P

m+1’°

Flm) =P 1o 1,n

numbers are given by Theorem A.

F(n0)=K and F(n,1)=K and these Grundy

1,n+1

Theorem 2. The Grundy numbers of forks F(n,m) with n £10
or m =10 of ER-game of star type are given by the following
statements.,

(i) If n=2 and m 2152, n=3 and m =141, n=4 and m = 142,
n=5 and m =286, n=6 and m 2286, n=7 and m =215, n=8 and m
=112, n=9 and m 2141, or n=10 and m =190 then

g( F(n,m+12) ) = g( F(n,m) ).

(ii) If m=2, m=3 and n=22, m=4 and n=25, m=6 and n = 15,



or m=10 and n = 30 then
g( F(n,m) ) =n + m,
(iii) Let p=4, 16 or 8 according as m=5, m=7,8 or m=09,
Suppose that n =8, 9, 10or 15 if m=5, 7, 8 or 9, respectively.

Then

g( F(n+p,m) ) = g( F(n,m) ) + p.

Conjecture C. (i) For every positive integer n, there exists an
integer M = M(n) for which g(F(n,m+12)) = g(F(n,m)) if m = M.
(ii) For every positive even integer m, there exists integers

p=p(m) and M = M(m) for which g(F(n+p,m))=g{(F(nm))+p if n = M.

We finally give some remarks on ER-game of star type on trees
and propose a related problem. The Gruhdy number of every tree
with order léss than 10 is non-zero, and there exist 16 trees of
order 10 and seven trees of order 11 whose Grundy numbers are
equal to 0. These trees are given below. Let T'i. denote a tree of
order 10 or 11 whose Grundy number is 0, and let V(T'i,) ={1,2,...,9, a}
or {1,2,...,9,a,b}. If the order of T'i, is 10, then T’i, contains a set
of edge F = {12, 23, 34, 45, 56}, and so we dnote only Fi=E‘(T) - F.

F1 = {67,78,89,2a}, F2 = {67,78,89,3a}, F3 = {67,78,79,4a}, }7‘4 = {67,568,89,2a},
F5 = {67,78,79,6a}, FB = {67,78,69,4a}, F7 = {67,58,89,3a}, FS = {37,78,89,1a},
F9 = {37,78,89,2a}, F10 = {67,48,29,3a}, F11 = {37,78,29,7a}, F12 = {47,78,29,3a},

F13 = {47,78,79,6a}, F, =1{67,78,79,7a},

14 = {67,68,69,4a} and F

Fis 16

= {47,78,29,2a}.
If the order of Ti is 11, then the edge set E'i, of Ti are given as

follows:
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E, = {12,23,34,45,56,67,58,89,4a,ab}, E, = {12,23,34,45,56,37,78,29,4a,4b},

E, = {12,23,34,45,56,67,78,59,4a,4b), E, = {12,23,34,45,46,67,48,89,3a,3b),

Eg = {12,23,34,45,56,57,58,69,4a,4b}, Eg = (12,13,14,16,16,67,68,89,7a,7b} and
E., = {12,23,35,56,34,37,78,29,2a,2b).

Problem Characterize trees whose Grundy numbers are equal

to O.

ER-game of path type (i.e. # is the set of all paths ) will be
deal with other paper. Is it possible to solve ER-games of the
following # type on certain class of graphs: ¥ is the set of all
cycles, # is the set of ali trees, X is the set of all matchings,

X is the set of all forests, and so on.
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