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Zygmund Type Estimates and Mapping Properties of
Operators with Power-Logarithmic Kernels
in Generalized Holder Spaces
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Abstract

Zygmund type estimates for the integral with power-logarithmic kernel with a vari-
able upper limit and for its inversion are obtained. The results are applied to study
mapping properties of operators with power-logarithmic kernels in generalized Holder
spaces H§ ([a,b]) with any modulus of continuity w and to prove an isomorphism be-
tween these spaces realized by the above operators.

1. Introduction

Let Hj([a,b]) be the space H*([a,b]) of Holderean functions f on a finite interval [a, b] of
the real axis such that f(a) = 0. It is well known by a classical Hardy-Littlewood theorem
[3] thatif 0 < A <1, 0 < @ < 1 and A+ & < 1, the Riemann-Liouville fractional integration
operator

(1) (1249)@) = 75 [ @ -0 90t

maps the Holder space Hg([a,b]) boundedly into H)**([a,b]). This statement was gen-
eralized in various directions (see [12, §§3,4,13,17] for historical notes and the review of
such results). In particular, in [11] and [9] the Hardy-Littlewood theorem was extended to
the weighted Holder spaces HQ([a,b];0) = {9 : pg € Hy([a,b])} with the power weights
p(z)= (z — a)*(b— z)* and

(2) p(z) =[]z —al*, a <21 S ... Sz, b,
k=1
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concentrated at the end and inner points of [a, b], respectively. Moreover, in [9] it was shown
that I%, implements an isomorphism between the spaces HJ ([a b]; p) and Hyt*([a, b]; p).
We also note that such an isomorphism between the spaces H)([a,b]) and H}**([a, b]) was
contained in embryo in [3].

Under certain conditions on the characteristic w in [7] (see also [12, §13.6] and [14]) it was
proved that the operator I, of fractional integration implements an isomorphism between
the generalized Holder spaces H¢([a,b]) and Hg*([a,b]) with wa(h) = h*w(h). This result
was extended in [8], [13] and [14] to the weighted generalized Hélder spaces Hg ([a, b]; p)
with p(z) = (z — a)*(b — z)”, in [4] to the generalized Holder spaces HY with the integral
modulus of continuity and in [15] to the convolution operators (see also [12, §§13,17] in this
connection). It should be noted that the central point of the investigations in [7], [8], [13]-[15]
was the determination of estimates of Zygmund type for the fractional integrals I, ¢ and
the fractional derivative D,

An analogue of Hardy-thtlewood’s theorem for the so-called operators with power—loganth—
mic kernels

Q) (12£9)(@) = 5oy [ (e = 0°1ow? (1) ott)e

for —oo < a < b < o0, >0, y> b~ a and a natural number 3, in the spaces H)([a,b])
and H}([a, b]; p) with the weight (2) were obtained in [5] and [6], respectively. In [6] it was
also shown that the operator :f with natural # implements an isomorphism between the
spaces H}([a, b]; p) and H, Maf ([a,b]; p). In [12, §21] the former results were extended to the
operator (3) with a non-negative .

This paper is devoted to obtain the Zygmund type estimates for the integral (3) and for its
inversion, and to apply such results to the investigation of mapping properties of the operator
I%F in the generalized Holder spaces H¢([a,b]). Section 2 contains prehmmary mforma,tlon
Section 3 deals with the proving the Zygmund type estimate for the integral I qS given in
(3). Section 4 is devoted to obtain such an estimate for the integral (Ig3)~f, Where (IhH1
is the operator inverse to I, ;’_f In Section 5 we apply these results to give conditions for the
operator I} to map from the space HY into Hy**, w, s(h) = w(h)t*log?(y/h), and to be
an 1somorphlsm of these spaces. ' ‘

2. Preliminaries

Let [a,b] be a finite interval of the real axis, a function f be given on [a,b], and

(4) w(f,h) = sup  sup |f(z+1)— f(2)]

0<t<h z,z+t€[a,b]

be the modulus of continuity of f. Let w(h) be a continuous and almost increasing function
n [0,b — a] such that w(0) = 0. We denote by H* = H“([a,b]) the space of functions f(z)
with the finite norm

w(f,h
Q 11z = Wl + 50 5
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We also denote by HY = H([a,b]) a subspace of H* = H“([a, b]):
(6) Hy = Hy([a,b]) = {f € H* : f(a) =0},

and define the norm by
”f”H{;’ = Ifll ge -

In particular, if w(‘h) = h*, then H* = H* and H® = H} are the spaces of usual Holderian -
functions (see, e.g. [12, §1.1]).

For 6 2 0,v = 0, we say that
(7) w €,

if the function w(t) satisfy the conditions

(8) [ (é)aw(a Txw .
and
) [7(3) w0 € s w0

with a constant ¢ > 0. ® is the subspace of the Bari-Stechkin class ®, (see [2]). Note that
the class ®¢ is empty if § = v. Therefore we assume that 0 < § < v.
Let D"‘+d> be the Riemann-Liouville fractional derivative of order & with 0 < o < 1:

(10) (D, 4)(z) = F(ll = d”i [(@-9sd, o<a<1

The following assertions are true:

Theorem A. [12, Theorem 13.15] Let ¢(z) be a continuous function on [a, b] and ¢(a) = 0.
If0 < a < 1, then the Zygmund type estimate

(11) w(I%,6,h) < h/b_ ‘”(jfa dt, ¢>0,

holds for the fractional integral I3, ¢.

Theorem B. [12, Theorem 13.16] Let ¢(z) be a continuous function on [a, b] and ¢(a) = 0.
If0 < a < 1, then the Zygmund type estimate

(12) Dz h) sc [ D804, o>,

holds for the fractional derivative DJ, ¢.
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Theorem C. [12, Theorem 13.17] Let 0 < a < 1 and w(t) € ®%_,. Then the operator
I2, maps H§ isomorphically onto Hg®, w,(t) = t*w(t). '

It is known [10] (see also [12, §34.2]) that the following characterization and inversion of
the operator Ig® given in (3) for § = 1 hold valid in terms of the different construction of
Marchaud type via the special Volterra function

(13) (z) = _/°° ——z—:‘f—-—e“”(‘)dt
HalZ) =", I't—a+1) ’
where « is any complex number and ¥(z) = I'(z)/I'(2).

Theorem D. [12, Theorem 34. 1] For a function f € Ly(a,b) (—o0 < a < b < o0), to

be representable in the form f = (15 (0 < o < 1) with ¢ € Ly(a,b), it is necessary when
1 < p < oo and sufficient when 1 < p < oo that the limit
(14) (Bf)(z) =lim [~ [£(2) - FO)lu(z - t)et

exists in Ly(a,b) (we suppose that f(z) = 0 outside of the interval [a, b]). If this condition
is satisfied, then the function ¢(z) is given by

(15) $(z) T talz — @) f(z) — (Bf)(2).

From the properties of the Volterra function (13) we obtain the behaviour of y,(z) and
its derivative p! (z), as |z| — 0 (see [1, §18.3] and [12, §32.1]),

m—ﬂ'

(16) pa(z) = m[l +0(1)],
(1) ) = ~ 1 +0(0)]

In what follows, we shall denote by c, ¢y, ¢y, etc. the different positive constants, which do
not depend on z, and suppose that all integrals will be convergent.
3. Zygmund type estimate for the integral with power-logarithmic kernel

Let a function ¢ be given on a finite interval [a,b], w(¢, k) be the modulus of continuity
of ¢ defined in (4) and I2;?¢ be the integral (3). The following analogy of Theorem A is true:

Theorem 1. Let ¢(z) be a continuous function on [a,b] with ¢(a) = 0 and v > b — a.
Then the Zygmund type estimate

(18) w(I&F ¢, h) < clog? (%) {h"w((ﬁ, h) + h/ h wt(f’:) dt
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holds with 0 < a < 1 and 8 > 0 for the integral I? 4.
Proof. By (3) and the hypothesis of the theorem we have

(2£9)(e) = g5 [ (@ = )" 10g” (725) [6(0) - e

We denote

(19) o(z) = ¢(z) - #(a), ¥(e) = [ (=~ )" log? () g(0)a
and note that

(20) 19(2) - 9(0)] S w(4, Iz~ ).

Let A > 0. For any z,z + h € [a,b] we have

@D Wl t+h) =) = /_h_ (tg f h)lt-)a log (t + h) dt - /OM g%‘—_a_t)l"gﬂ (%) at

= / g(z—:;—i(x 8" (t 1 h) at

z—a [Jog? og”
o PR - et

st [

EIl+Iz+Ig.

Using (20) and making the change of variable ¢t = h7, we estimate I;:

h_w(ét) Y
(22) II]I g b WIOgﬂ (—];,—:Z) dt

= | e (s (7) +1os (£25)) o

< ch®log? ( ) w(¢, h7) dr + ch® ' (¢, hr) logﬂ( 1 )d’r

(1-r1)t-e 0 (1—7)l-a 1—71

< ¢1h®log? (71-) w(@, h) + cah®w(¢, h)

< ¢sh®log? (%) (@, h).
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For I, we have
< Fa a—1 ﬁ( Y )__ a—1 B (1)'
|I2| =/0 w(¢,t)|(t+h) log Tt h t*"'log ; dt

a-1 B 2 — a1 ﬂ(l)
(r+1)* " log ((7"+ l)h) 7" log e dr.

(a=a)/h
= h /0 (4, h7)

If 2 —a £ h, then

1og5 (%:) l] dr

e’ ()

< cyh®log? (1}:—) w(¢, B) + csh®w(d, h)

(23 bl <A [ wlghr) [(H et

< ch®log? (%) w(d, h).

If z — a = h, then by applying the mean value theorem, we obtain

(24) |L| < h° ( [+] (H)/h) w(@, hr) |(r + 1) log? ( - :1) h) —rtog? (1)

T . (z—a)/h .
< 1 [erlog?® (L) w(g,h)+esh [ (s, hr)r 10" () df]
1

dr

%)
h
< A -C7 log? (%) w(¢, h) + cgh®>™* jhl)_aw(¢,t)t""'2 log? (—}) dt}
< ke :c7 log? (%) w(g, h) + cslog” (%) w(d,h)(b—a— h)]

< coh®log? (%) w(g, h).

Finally we estimate I5:

|I3] £ w(¢,z — a)

z—a+h z—a
/ t* ! log? (1) dt — / t*log? (j—) dtl .
0 t 0 i

If z — a £ h, then we have

25)  |Is] € w(é,z —a) [(:c —a+h)e /0 | pan1]ogf (m) dr

+(z — a)® /0 * ranl]ogf ( - _"’a)T) df]
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< w(é,z — a) [clo(x — a+ h)*log? (#ﬁ) + cii(z — a + h)®

+cia(z — a)* log? (;z—a) + c13(z — a)"‘]

é W(¢, h)[CMha IOgB (%) + Cl5ha]

< c16h® log? (%) w(g, h).

If z—a = h, then

1] £ w(¢,z—a)

z—a+h
/ * t*og? (%) dtl
< w(d,2-a)log® (=) e —a+h)* = (s — o)

< ch(z —a)*tlog? (-7—;) w(p,z — a).

From this, applying the estimate

b—a
(¢ —a)fu(ga—a)Sc [ w(e T,

(see [7] and [12, §13.6]), we obtain

b—a
(26) |I5| £ chlog? (%) /h w(¢, t)t*~2dt.

Substituting these estimates (22)-(26) into (21) and taking (19) and (4) into account, we
arrive at the estimate (18) which completes the proof of the theorem.

Remark 1. In [15] for the convolution integral

(K9)(e) = [ k(a—t)p()dt
with a positive kernel k(u) the estimate

w(pK¢,h) £ c/hb_a Eu-(;:f’ﬂdt

was proved under the assumption that t=®p(¢) (0 < a < 1) is a non-decreasing function
almost everywhere on [0, b — a].
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4. Zygmund type estimate for the integral inverse to the integral with power-
logarithmic kernel

Let (I2°)~" be the operator inverse to the operator I given in (3). It is known (see
[10], [12, §34.2] and Theorem 2.4) that, when 8 = 1, (J&#)~'f has the form

(27) (I (@) = talz = a)f(2) = [ Tf(e) = SO Ha(e ~ B)at,

where u,(z) is the special Volterra function given in (13) and p! (z) is its derivative. The
following analogy of Theorem B is true.

Theorem 2. Let f(z) be a continuous function on [a,b] and f(a) = 0. Then the Zygmund
type estimate

h b—a .‘
() WD) S @ [ W)l +w(f, b [chua(h)|+c3 / lu;(mdt]

holds for the function (I3})~1f(z) given in (27).
Proof. Let h >0, z, z+ h € [a, b],

(29) $(z) = (L) £(2) = pale = O)f(2) = [ [£(0) = FOs(e — )t = F(a) - B(a).

At first we estimate w(B, h). We have

+h—a

(30)  Ba+h)-Bl)= [ [fla+h) - flo+h= )

- [T 1@ - S - ol
='/0H[f(z +h) ~ f(z+h—1t) = f(z)+ f(z — t)]uh(t)dt
z+h~a '
+ [ U+ B = S+ h =l ()it

= Bl+B2.

We first estimate B;. If z — a £ h, then

(31) 1Bl 52 [ el Olulds < 2 [ ()l 0)lde

When z — a 2 h, we have

(32) 1Bl <2 [ o, Ol o)l + 205, ) [ )1



95

<2 [ Wl OOl + 205, ) [ I (0l

As far as B; is concerned, for z — a £ h by using the propérties of the moduli of co:ntinuity
(see, e.g. [2, Chapter II, §1]), we obtain

z—a+h
(33) Bal s [ wlf 0l

< [P ot 0l S o [ ol 00l

If z — a 2 h, then making the change of variable ¢ = 7 + z — a and applying the properties
of the moduli of continuity again, we find

(34 Bal < [ w(f,o—at (e —at nldr

. ,
<o [ wf, Ol
Substituting (31)-(34) into (30) and taking (4) into account we obtain the estimate
h b—a
(35) W(B,R) S ca [l Ol (@)ldt + () [ (0]
Now we estimate w(F, h). We have
(36) F(z+h)—F(z) = f(z)[pa(z+h—a)—pia(z—a)]+pa(z+h—a)[f(z+h)—f(z)] = F1+F>.

For F; we have

z—a+h | z—a+h z—a+h
IRl = 1) [ u;(t)dt|gw(f,x—a) [l s [ w ol

From this by arguments similar to the above for (33), we obtain

h
(37) IRl S e [ wlf, )lua(t)ldt
Finally we estimate F5:

(38) |F| £ w(f,h)llbalz + b — a) = pa(h)| + |a(h)]]

S ol [ [ I 01+ o)

< ol | [ B0k + ]
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Substituting (37), (38) into (36) and taking (4) into account we arrive at the estimate

h b—a
69 wB S [ OO+ o) | [T Ok o]

According to (29) from (35) and (39) (after re-denoting the constants) we obtain the esti-
mate (28), which completes the proof of the theorem.

5. Mapping properties and an isomorphism implemented by operators with
power-logarithmic kernels

Let % be the operator (3) and HY be the generalized Hélder space (6). Mapping prop-
erty of I%f in HY is characterized by the following statement.

Theorem 3. Let0 < a <1, B =0, afunction w(t) be continuous and almost ihcreasing
on [0,b — a] with w(0) =0 and

(40) /;. relt) y < e

{2—a hl-a :

Then the operator If_’f maps the generalized Holder space Hf boundedly into the space
Hg*? with the characteristic w, g(t) = w(t)t*log? (v/t).

Proof. When # = 0, this theorem was proved in [7] (see also [12, §13.6]). We consider
the case § > 0. Let

(41) ¥(2) = (12{'9)(2),

where ¢(z) € HY = HY([a,b]). Then according to Theorem 1 the Zygmund type estimate
(18) holds for the integral (41). Applying this estimate and the condition (40) we have

w(¥, h) @@ h) | ae e w(4t)
U S W log? (/) éc[ oy T A “t—g;Tdt] < cl|ll g -

The equality ¢(a) = 0 follows from the definition (3) of the operator I’ with power-
logarithmic kernel. Further, we have

_ 1 e a=11,.8 [ 7
(43)  loqus = Jpax, F(—a—)/a (z —1)*" log (;—_7) o(t)dt| < c1l|dlle sy -

From (41)-(43) and the definition (6) of the space Hy we obtain

e

HYeB = ”"/J"H“l"a,ﬂ = ”¢”H{;’ .

The theorem is proved.
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Corollary 1. Let0<a<1, 820, A>0and A+ a <1, then the operator I,,+ maps
H) boundedly into Hy***,

Remark 2. Corollary 1 was obtained by direct estimates in [5] (see also [12, §21]).

War,l

Now we consider the mapping property of the operator (IZ)~! given in (27) on Hg
with w, 1(t) = w(?)t*]log(t)|.

Theorem 4. Let 0 < a < 1, a function w(t) be continuous and almost increasing on
[0, b — a] with w(0) = 0 and

(44) /0 “) i < cw(h).

Wa,1

Then the operator (I3)~ maps the generalized Holder space Hy™' with the characteristic

Wa,1(t) = w(t)t*|log(t)| boundedly into the space H§.
Proof. Let f(z) € Hy™' = Hy*'([a,b]), then in view of (27) we have

5 9(0) = (@) = pale - )f(@) — [ [fle) - FOlkh(a — et

We show that

w(g, h)
46 ———=L < c<oo.
(16) 0<§;I;I§-a w(h) = €S

Applying the Zygmund type estimate (28), the relations (16) and (17) for the special Volterra
function (13) and its derivative, and also the condition (44), we have

w(g,h)< 1
w(h) = w(h)

= ”f”}];"“l

o [ OO+ () (el e [ il

Zu%ﬁ /Ohw(t)m1og<t>nu;(t>|dt

+h°'n_og(h)| (02Iua(h)| va [ lok)]

dt
+ cs + ceh®|log(h)| / -———————]

= ”f”H ol t°‘+1|10g(t)|

(h)

( dr
cr + cg| log(h)| /1 W]

< e [l e

From here we obtain the estimate of the form (46):

< (£l e

(47) sup 2&R) oy Fllgees -

o<h<b—a w(h)
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Now we estimate [|g|[(q,y)- We have

lollogesp S sup [Inale = etz = a)+ [ (Ol s, 0
< cfllgges [(o - )°]log(e — @z — a)|ale = a)]

+ [T og®le @)l Ol

IIA

v z=e (i
”f.”H:"'l [cmw(m —a)+cn /0 —%dt]

IIA

o1z || fll gan w(z — a).

From here we have :
”g”C([a,b]) < o “f”H;”a»l )

and taking (46) and (47) into account, we finally arrive at the estimate

”9”11;; < c”f”H:o:l .

The condition g(a) = 0 follows directly from (45) if we take the relations (16), (17) and (44)
into account. This completes the proof of this theorem.

If X and Y are Banach spaces and T is an operator, we denote by T': X +— Y the
imbedding with the properties

(i) f feX,then Tf €Y,
@) ITAlly = cllfllx-

Thus, in Theorems 3 and 4 we have proved the following imbeddings:

(48) @b HY — HZ**, 0<a<1, 820,
and
(49) . (I3 HYY — HE, 0<a< 1.

Thus we obtain the analogy of Theorem C about an isomorphism of the generalized Hélder
spaces H¢ and Hg*' implemented by the operator I2} with the power-logarithmic kernel.

Theorem 5. Let 0 < a <1, § 20 and w(t) € ®)_,, where ®_, is the space defined

1-a
in (7). Then the operator I2{ maps the space HY isomorphically onto the space Hy*" with
the characteristic w,1(t) = w(t)t*|log(t)|.
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Proof. To show that the assertion of this theorem follows from (48) and (49) we have
to prove that any function f € Hg*' is representable by the integral (3) f = I} ¢ with
a function ¢ € HY. For this we use the criterion of representability of a function f via
the power-logarithmic integral f = IZ{'¢ of a function ¢ € L,(a,b) given in Theorem D.
We verify that the conditions of Theorem D hold for a function f € Hy*'. The condition
f € L,(a,b) is valid because

17(@)] £ w(z = a)(z — a)*|log(z — a)| [|fl| goar = c.

We verify the convergence in L,(a, b) of the functions as ¢ — 0

[ U@ - O -0t ita+e<a<y,
(5()) 1/)e(:l:) = ‘

0 ifa<z<a+e,

It is sufficient to show that the sequence ¥(z) is fundamental in the space L,(a,b). We
suppose that €; < e; and put ¢ > a+ €,

T—€] T—€2

Ya(e) = Ya(@) = [ )~ SO =0t = [ [f() - FOla(e — D)t

= [71£() - f(e ~ (0.

Since w(f,t) £ cw(t)t*|log(t)| and by (17) |, ()] £ ct=*"log(t)|?, then

€ w(t
a(@) - @l s e ["Ba—0 (@ -0)
: e
The cases < a+¢€; and a + €; < z < a + €, are considered similarly. Thus, the sequence
¥e(z) in (50) is fundamental in the norm of the space C([a,b]), and hence also in the norm
of L,(a,b). According to (45) and (49) the function ¢ in the repesentation

f=1%6, ¢ €Lyab), 1<p< oo,
belongs to HY. This completes the proof of the theorem.

Corollary 2. If0<a <1, A> 0 and A+ « < 1, then the operator I maps the space

H) isomorphically onto the space Hyt*?.

Remark 3. In [6] the statement more general than Corollary 2 was proved giving the

conditions for the operator :.;_B , B=1,2,..., to be an isomorphism between the generalized

weighted Holder spaces H2 ([a, b]; p) and H)**?([a, b]; p), where p is the weight (2).
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