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A generalization class of certain subclasses
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Abstract

Recently we [5] have discussed a new generalization class A(n, a, §)
of certain subclasses of analytic functions with negative coefficients
in the unit disk and have proved some properties of functions belong-
ing to the class A(n,a, (). In the present paper we introduce a new
generalization class A,(n,a, ) of certain subclasses of p-valently an-
alytic functions with negative coeflicients in the unit disk and discuss
some properties of functions belonging to the class A,(n,a,f).

1. Introduction
Let p be a positive integer, and let A,(n) denote the class of fuctions
of the form

(1.1) f(2) =2 - Z apz®  (ax 20, ne N={1,2,3,---}),
h=n+p

which are analytic in the unit disk U = {2z : |z] < 1}.
A function f(z) in the class A,(n) is said to be a member of the
class R,(n,a) if it satisfies

(1.2) Re{z_w%z)}>a (z€U)
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for some (0 £ a < p). Further, a function f(z) in the class Ay(n) is
said to be in the class Pp(n,a) if it satisfies

(1.3) | Re {’;(_"1)} >a (z€U)

for some a(0 < a < p).
By generalization of some results due to Sarangi and Uralegaddi
[2], we see that

LEMMA A. A function f(z) € Ap(n) is in the class Ry(n,a) if and
only if .

(1'4) Z P ap é 1.

—Qa
h=n+p P

LEMMA B. A function f(2) € A,(n) is in the class Py(n,a) if and
only if

(1.5) Y * st

Now, we define

DEFINITION. Suppose that f(z) € Ap(n),0 S a <pandB 2 0. Then
the function f(z) is said to be a member of “the class Ay(n, e, B) if it
satisfies

(1.6) Re{(l ,a)"f(’) f( )} >a (z€U).

We note that A,(n,a,0) = Ry(n,a) and A,;(n,a,l) = Pp(n,a).
We haye
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LEMMA 1. Suppose that f(z) € Ap(n),0 S a < p and 8 2 0. Then
the function f(z) is in the class A,(n,a,pB) if and only if

(1.7) i {(l"ﬂ)”J“ﬂk}a,.gl.

h=n+p P—«

Proor: Let f(z) € A,(n,a,B). Then we have ,by (1.6),

Re{(l ﬁ)pf( z) J;p(_zl)}
(1.8) = Re {p - f: {(1-B)p+ ﬂk}ahzk""}
h=n+p

>a (z€U).

Letting z — 1 through real values, we obtain (1.7). Conversely, let
f(z) € Ay(n) satisfy inequality (1.7). Then we have

.{(1 ﬂ)pf(z) fp(fl)}_pl

Z {(1 - B)p + Pk}anz**

(1.9) h=n
fj {(1 - B)p + Pk}as|z|*?
< p—a (z €0).

This proves that inequality (1.6) holds true. |
The class A;(n, a,B) is a special case (Bj. = li_g'%Lﬂ_) of the class
A(n, By) introduced by Sekine [3].

2. Distortion Theorem
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THEOREM 1. If f(z) € Ay(n,0,8) for 0 S a < p and § 2 0, then

(21) |eP = 2= S ) S P+l (V)
for 8 2 0, and
@ Splept+ T2 ED et (e
(2.2) > |
PNz plep - EEEEDppt e

for B = 1. The equalities in (2.1) and (2.2) are attained for the
function

(2.3) f(z) = 2% — :;:"ﬂ Pl

ProoF: Note that

3 a < 2—<% >
(2.4) | :.:Xn;,p vSooE (20
and
25) X" S hay s 3 {(1-Bp+Bklas Sp-a (B2 1)
ntp h=n+p k=n+p

for f(z) € A,(n,a,p). Therefore, we have (2.1) and (2.2).

Remark. Putting p = 1 in Theorem 1, we have the corresponding
result due to Yaguchi, Sekine, Saitoh, Owa, Nunokawa and Fukui

[5].
3. Inclusion Relations
THEOREM 2. If
0Sa;<p, 0Sas<p,
(3.1) 0561, 05P2, p(B1—B2) < aafr — asfs,
plar — az + (B1 — Pa)n} £ n(azfr — a1fa),
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then we have

(32) Ap(n:az,ﬁz) C;'t-: Ap(nralvﬂl)-

PRrROOF: Suppose f(z) € A,(n,az,0;). Since by Lemma 1

(3.3) f: (U=Polp+ ks <,

p_az = "

h=n+p

we have only to prove the inequality

(1—B1)p+ kps < (1= Ba)p+ kB,

34
(34) p—o - p— a3

(k gn+p),

which is equivalent to the inequality

> P{(Bz — B1)p+ a1 — az + afy — a1} >
(3:5) k2 (B2 — B1)p + 2281 — a1, (k2 n+p).

But conditions (3.1) lead to the inequality

P{(B2 — B1)p + oy — a3 + aafi — a1 B3}
(B2 — B1)p + a2f1 — a1 32

which proves (3.5). The function fo(z) defined by

(3.6) S n+p,

| =P — P T X pint1
(3‘7) fﬂ( ) z? p+(n+1),31 P

belongs to the class A,(n,a1,01) — Ap(n, a2,B2), which proves

(38) Ap(n’altﬁl) 7é Ap‘(nvahﬂZ)- |
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COROLLARY 1. If

(39) 0S a1 Saz<p, 02P1SP (B2—p1)+(az—a1)>0,

then we have

(3-10) Ap(n»az,ﬂz) % Ap(nvahﬂl)
ProoF: By Theorem 2, we have

Ap(n’ahﬂl) g Ap('"'a alyﬂl) (0 é a; <oz < P):

(3.11) Ay(n,02,02) G Ap(n,02,81) (0 S 61 <fa),

which prove Corollary 1. I

COROLLARY 2. If0 < 31 <1< 3;, then
(3.12) Ap(n,,83) G Pp(n,a) & Ap(n,@,01) G Ry(n, ).

4. Starlikeness
A function f(z) in the class A,(n) is said to be p-valently starlike
of order a if it satisfies

2'(2)
()

for some a(0 £ a < p). We need the following lemma which is a
generalization of a result due to Chatterjea [1] (also Srivastava, Owa

and Chatterjea [4]).

LEMMA C. A function f(z) € A,,(n) is p-valently starlike of order v
if and only if

(4.2) f: k — T,

k=n+p 7

(4.1) Re >a (zGU)

A

1

-]

for some y(0 £ v < p).

Lemma C is proved by using the similar method as in Chatterjea
[1). Using Lemma C, we have



THEOREM 3. If f(z) € Ay(n,a,B) for 0 £ a < p and § 2 1, then

f(z) is starlike of order (1 — -1—)p
ProoF: It follows from f(z) € Ay(n,a,B) that

(4.3) Z {k—(1- —)p}a:. <? T sp-(1- —)p-

h=n+p

Therefore, by Lemma C, we have the assertion of Theorem 3. §

5. Quadi-Hadamard product
For functions fi(z) and fj(z) defined by

(5.1) fi(z) =27 - Z a;pz" (s 20, n€N, j=1,2)

k=n+p

in the class A,(n), we denote by f * f(z) the quasi-Hadamard prod-
uct of functions f1(z) and fi(z), that is,

(5.2) f1* fa(z) = 2% — Z al,,.ag'hz".

h=n+p

THEOREM 4. If f;(z) € Ap(n,a;,0) for 0 £ a; < p,f 2 0 and
i =1,2, then f, * f3(z) € Ay(n,a,B), where

(p—a1)(p — @2)
p+pn

The result is sharp for functions f,(z) and f3(z) defined by

(5.3) a=p-—

(5.4) file) =" - gt (i=1,2).

ProoF: We have to find the largest a such that

(5.5) i (1 —ﬂ)p+ﬁk

p - al'kaz'k § 1'

k=n+p

107
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For functions f;(z) € 4,(n,a;,), we have

(5.6) > {(1 —-ﬁ)p+ﬂk}%‘,h <1 (i=12).

k=n+p p—a

By the Cauchy-Schwarz inequality, inequality (5.6) lead tothe inequal-
ity
o~ _ (1-P)p+pk
h=n+4p \/(p - al)(p - az)
Therefore, it is sufficient to prove that
(1-B)p+ B
P—a
< (1 — ﬂ)p + ﬂk
V- a)(p - @)
that is, that
(5.9)  /@rsdas S P2 (k2 n+p).
V(P —a1)(p — a3)

From (5.7), we need to show that

(57) ,/al,ha”, é 1.

ai,ka2k

(5.8)

Varrazx (k2 n+p),

V(p—a1)(p— az) p—a
G0 T +pk = Jooadeoay TP

or

(p—o1)(p — o)
(5.11) aSp- u~5w+ﬂk (k2 n+p).

Noting that the function

(5.12) (k) =p- BT ) s

(1-B)p+ Pk
is increasing on k, we have

p+POn

Finally, we derive
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THEOREM 5. Let f;(2)(j = 1,2) define by (5.1). If f;(z) € A,(n, a,,ﬁ)(] =
1,2), then the function

(14)  fe)=#" = 3 {(@1s) + (e2n)’}
h=n+p

is in the class Ay (n,a, ), where

2(1’ - 010)2

Py (oo = min{ay, az}).‘

(5.15) a=p-—
The result is sharp for the function f(z) defined by

(5.16) fi@) =2 = ot (i=1,9),

when ag = a1 = ay.

PROOF: Since

(5.17) :
(1-Bp+pk ' _ (1-B)p + Bk
-zn;p{ Py 'k} ) {";n;r P9 M}
é 1 (.7 = 112)’

we obtaiﬁ that

(5.18) z
5 (25 et s

h=n-+p
oo 2 oo 2

<y {(1—ﬂ)1’+ﬁka1'h} + ¥ {(1"[3)P+ﬂka2'k}
. P—: k=n+p p—az ,

k=n+p
s 2
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where ag is defined by (5.15). This implies that weonly find the
largest a such that

2
(5.19) (l_f_)_p:ﬂk é%{(l_pé_)’;:ﬁk} (k2 n+p)
(5.20) a < 2(p — ao)” (k2 n+p).

P 1= p)p +pr
Since the function

2(p — o0)?

5.21 k)=p— kZ2n+p).
(5.21) ¢(k) =p - f)p+ Bk (k2 n+p)
is increasing on k, we have

2(p — a0)?
< —p_ AP %)

(5.22) R
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