A LINEAR OPERATOR AND ITS APPLICATIONS TO CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS

HITOSHI SAITOH (群馬高専 斎藤 斉)

I. INTRODUCTION

Let $\boldsymbol{A}_{\!\scriptscriptstyle D}$ denote the class of functions of the form

$$f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k}$$
 (p $\epsilon N = \{1, 2, 3, ...\}$) (1.1)

which are analytic in the open unit disk $U = \{z: |z| < 1\}$. A function f(z) belonging to the class A_p is said to be in the class $R_p(\alpha)$ if it satisfies

$$Re\{f^{(p)}(z)\} > \alpha \tag{1.2}$$

for some α (α < p!) and for all z ϵ U. A function f(z) belonging to the class A_p is said to be p-valently starlike of order α if and only if it satisfies

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \tag{1.3}$$

for some α (0 \leq α < p) and for all z ϵ U. We denote by $S_p^{\bigstar}(\alpha)$ the class of all functions in A_p which are p-valently starlike of order α in U.

A function f(z) belonging to the class A_p is said to be p-valently convex of order α if and only if it satisfies

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha \tag{1.4}$$

for some α (0 \leq α < p) and for all z ϵ U. Denoting by $C_p(\alpha)$ the class of all functions in A_p which are p-valently convex of order α in U, it is easily seen that

$$f(z) \in \mathcal{C}_{p}(\alpha) \iff zf'(z) \in \mathcal{S}_{p}^{*}(\alpha) \qquad (0 \leq \alpha < p) \qquad (1.5)$$

Further, a function f(z) belonging to A_p is said to be p-valently close-to-convex of order α if and only if there exists a p-valently starlike function g(z) such that

$$\operatorname{Re}\left\{\frac{zf'(z)}{g(z)}\right\} > \alpha \tag{1.6}$$

for some α (0 $\leq \alpha$ < p) and for all $z \in U$.

For the functions $f_{i}(z)$ (j = 1,2) defined by

$$f_{j}(z) = \sum_{n=0}^{\infty} a_{j,n+p} z^{n+p} \qquad (p \in \mathbb{N}), \qquad (1.7)$$

we denote the Hadamard product (or convolution) of $f_1(z)$ and $f_2(z)$ by

$$f_1 * f_2(z) = \sum_{n=0}^{\infty} a_{1,n+p} a_{2,n+p} z^{n+p}$$
 (1.8)

For a function f(z) belonging to the class A_p , we define the generalized Libera integral operator $J_{c,p}$ by

$$J_{c,p}(f(z)) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt, \qquad c > -p.$$
 (1.9)

For p = 1 and c ε N, the operator $J_{c,1}$ was introduced by Bernardi [1]. In particular, the operator $J_{1,1}$ was studied earlier by Libera [4] and Livingston [5]. Some interesting results for the operator $J_{c,p}$ was proved by Saitoh [11] and Saitoh et al. [12].

Now, let the function $\phi_p(a,c)$ be defined by

$$\phi_{p}(a,c;z) = \sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+p} \qquad (z \in U), \qquad (1.10)$$

for c \neq 0, -1, -2, ..., where (a) $_{n}$ is the Pochhammer symbol given by

$$(a)_{n} = \frac{\Gamma(a+n)}{\Gamma(a)} = \begin{cases} 1, & \text{if } n=0 \\ & (1.11) \\ a(a+1)\cdots(a+n-1), & \text{if } n \in \mathbb{N}. \end{cases}$$

Also, we define a linear operator $L_p(a,c)$ on A_p by

$$L_{p}(a,c;z)f(z) = \left(\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+p}\right) *f(z)$$
 (1.12)

for $f(z) \in A_D$ and $c \neq 0, -1, -2, \ldots$

The operator $L_1(a,c)$ was introduced by Carlson and Shaffer [2] in their systematic investigation of certain interesting classes of starlike, convex, and prestarlike hypergeometric functions.

 $L_{\rm p}({\rm a,c})$ has the integral representation

$$L_p(a,c;z)f(z) = \int_0^1 u^{-p}f(uz)d\mu(u),$$
 (1.13)

where µ satisfies

$$d\mu(u) = \frac{u^{a-1}(1-u)^{c-a-1}}{B(a,c-a)} du$$
,

and

$$\int_0^1 d\mu(u) = 1.$$

REMARKS. (1) For $f(z) \in A_1 = A$,

$$L_1(n+1,1;z)f(z) = D^n f(z) = \frac{z}{(1-z)^{n+1}} *f(z)$$

is Ruscheweyh derivative of f(z) ([8]).

(2) For $f(z) \in A_p$,

$$L_p(n+p,1;z)f(z) = D^{n+p-1}f(z) = \frac{z^p}{(1-z)^{n+p}} *f(z)$$

is Ruscheweyh derivative introduced by Goel and Sohi [3].

(3) For $f(z) \in A_p$

$$L_{p}(c+p,c+p+1;z)f(z) = J_{c,p}(f(z))$$

is the generalized Libera integral operator ([11], [12]).

(4) $\phi_1(a,c;z)$ is an incomplete beta function, related to the Gauss hypergeometric functions by

$$\phi_1(a,c;z) = z_2 F_1(1,a;c;z)$$
.

2. Some results

We shall now prove the following results.

THEOREM I. Let f(z) ϵ Ap and c > a > 0. If f(z) ϵ Rp(α) (z ϵ U , α < p!), then we have

$$L_{p}(a,c;z)f(z) \in R_{p}(\alpha)$$
.

PROOF. It is sufficient to show that

$$\operatorname{Re}\left\{\frac{d^{p}}{dz^{p}}L_{p}(a,c;z)f(z)\right\} > \alpha \quad (z \in U).$$

Using the integral representation, we have

$$Re\left\{\frac{d^{p}}{dz^{p}}L_{p}(a,c;z)f(z)\right\} = \frac{1}{B(a,c-a)} \int_{0}^{1} u^{a-1}(1-u)^{c-a-1}Re\{f^{(p)}(uz)\}du$$

$$> \frac{\alpha}{B(a,c-a)} \int_{0}^{1} u^{a-1}(1-u)^{c-a-1}du$$

$$= \frac{\alpha}{B(a,c-a)} B(a,c-a)$$

$$= \alpha,$$

which evidently completes the proof of Theorem 1.

COROLLARY I. Let f(z) ϵ A_p and c > -p. If f(z) ϵ $R_p(\alpha)$ (z ϵ U, α < p!), then we have

$$J_{c,p}(f(z)) \in R_p(\alpha)$$
.

In order to prove our main results depicting properties of the function $L_p(a,c;z)f(z)$, we shall need the following lemma.

LEMMA. Let $\psi(z)$ and g(z) be analytic in \bigcup and satisfy

$$\psi(0) = \psi'(0) = \dots = \psi^{(p-1)}(0) = 0, \ \psi^{(p)}(0) \neq 0,$$

$$g(0) = g'(0) = \dots = g^{(p-1)}(0) = 0, \ g^{(p)}(0) \neq 0.$$

Suppose that for each σ ($|\sigma|$ = 1) and ρ ($|\rho|$ = 1) we have

$$\psi(z) * \frac{1 + \rho \sigma z}{1 - \sigma z} g(z) \neq 0 \qquad (z \in [-\{0\}]). \tag{2.1}$$

Then for each function F(z) analytic in U and satisfying

$$Re{F(z)} > 0$$
 $(z \in \bigcup),$ (2.2)

we have

$$\operatorname{Re}\left\{ \frac{(\psi^*\operatorname{Fg})(z)}{(\psi^*\operatorname{g})(z)} \right\} > 0 \qquad (z \in U). \tag{2.3}$$

REMARK. In the case p = 1, this lemma was given by Ruscheweyh and Small [9]. The proof of this lemma is similar to their proof.

Applying the above lemma, we now have

THEOREM 2. Let
$$f(z) \in S_p^*(\alpha)$$
 $(0 \le \alpha < p)$ and let
$$L_p(a,c;z) \left(\frac{1 + \rho \sigma z}{1 - \rho \sigma z} \right) f(z) \ne 0 \qquad (z \in U-\{0\})$$
 (2.4)

for each σ ($|\sigma|$ = 1) and ρ ($|\rho|$ = 1), and for c \neq 0, -1, -2, Then we have

$$L_p(a,c;z)f(z) \in S_p^*(\alpha)$$
.

PROOF. It is sufficient to show that

$$\operatorname{Re}\left\{\frac{z[L_{p}(a,c;z)f(z)]'}{L_{p}(a,c;z)f(z)}\right\} > \alpha$$
 (2.5)

for $z \in U$. Since

$$\operatorname{Re}\left\{ \begin{array}{c} \frac{z[L_{p}(a,c;z)f(z)]'}{L_{p}(a,c;z)f(z)} \end{array} \right\} = \operatorname{Re}\left\{ \begin{array}{c} \frac{L_{p}(a,c;z)zf'(z)}{L_{p}(a,c;z)f(z)} \end{array} \right\}$$

$$= \text{Re} \left\{ \frac{\phi_{p}(a,c;z)*(zf'(z))}{\phi_{p}(a,c;z)*f(z)} \right\}, \qquad (2.6)$$

putting

$$\psi(z) = \phi_{p}(a,c;z), F(z) = \frac{zf'(z)}{f(z)} - \alpha, \text{ and } g(z) = f(z)$$

in Lemma, we can see that

$$Re\left\{ \begin{array}{c} \frac{(\psi * Fg)(z)}{(\psi * g)(z)} \end{array} \right\} = Re\left\{ \begin{array}{c} \frac{\phi_{p}(a,c;z) * \{zf'(z) - \alpha f(z)\}}{\phi_{p}(a,c;z) * f(z)} \end{array} \right\}$$

$$= Re\left\{ \begin{array}{c} \frac{z[L_{p}(a,c;z)f(z)]'}{L_{p}(a,c;z)f(z)} \right\} - \alpha > 0, \quad (2.7) \end{array}$$

which completes the proof of Theorem 2.

COROLLARY 2. Let $f(z) \in S_p^*(\alpha)$ (0 \leq \alpha < p) and let

$$L_{p}(c+p,c+p+1;z)\left(\frac{1+\rho\sigma z}{1-\sigma z}\right)f(z) \neq 0 \quad (z \in U-\{0\})$$
 (2.8)

for each σ ($|\sigma|$ = 1) and ρ ($|\rho|$ = 1), and for c \neq -p-1, -p-2, -p-3, Then we have

$$J_{c,p}(f(z)) \in S_p^*(\alpha).$$

Setting p = 1 in Theorem 2, we have

COROLLARY 3 (Owa et al. [7]). Let $f(z) \in S_1^*(\alpha)$ (0 $\leq \alpha < 1$) and let

$$L_{1}(a,c;z)\left(\begin{array}{c} \frac{1+\rho\sigma z}{1-\sigma z} \end{array}\right)f(z) \neq 0 \qquad (z \in U-\{0\})$$

for each σ ($|\sigma|$ = 1) and ρ ($|\rho|$ = 1), and for $c \neq 0$, -1, -2, Then we have

$$L_1(a,c;z) f(z) \in S_1^*(\alpha)$$
.

Next, we prove

THEOREM 3. Let f(z) ϵ $C_p(\alpha)$ $(0 \le \alpha < p)$ and let

$$L_{p}(a,c;z)\left(\frac{1+\rho\sigma z}{1-\sigma z}\right)zf'(z)\neq 0 \qquad (z \in U-\{0\}) \qquad (2.9)$$

for each σ ($|\sigma|$ = 1) and ρ ($|\rho|$ = 1), and for c ≠ 0, -1, -2, Then we have

$$L_{p}(a,c;z)f(z) \in C_{p}(\alpha)$$
.

PROOF. Note that f(z) ϵ $C_p(\alpha)$ if and only if zf'(z) ϵ $S_p^*(\alpha)$. By using Theorem 2, we know that

$$f(z) \in C_{p}(\alpha) \iff zf'(z) \in S_{p}^{*}(\alpha)$$

$$\implies L_{p}(a,c;z)zf'(z) \in S_{p}^{*}(\alpha)$$

$$\implies z[L_{p}(a,c;z)f(z)]' \in S_{p}^{*}(\alpha)$$

$$\iff L_{p}(a,c;z)f(z) \in C_{p}(\alpha), \qquad (2.10)$$

which completes the proof of Theorem 3.

COROLLARY 4. Let $f(z) \in C_p(\alpha)$ $(0 \le \alpha < p)$ and let $L_p(c+p,c+p+1;z) \left(\begin{array}{c} 1 + \rho \sigma z \\ \hline 1 - \sigma z \end{array} \right) z f'(z) \ne 0 \qquad (z \in U-\{0\}) \tag{2.11}$

for each σ ($|\sigma|$ = 1) and ρ ($|\rho|$ = 1), and for c \neq -p-1, -p-2, -p-3, Then we have

$$J_{c,p}(f(z)) \in C_p(\alpha)$$
.

Finally, we prove

THEOREM 4. Let f(z) $\in K_p(\alpha)$, i.e., there exists g(z) $\in S_p^*(0)$ such that

$$\operatorname{Re}\left\{\begin{array}{c} zf'(z) \\ \hline g(z) \end{array}\right\} > \alpha \qquad (0 \leq \alpha < p; \ z \in \bigcup).$$

Further, let

$$L_{p}(a,c;z)\left(\frac{1+\rho\sigma z}{1-\sigma z}\right)g(z)\neq 0 \qquad (z \in U-\{0\})$$
 (2.12)

for each σ ($|\sigma|$ = 1) and ρ ($|\rho|$ = 1), and for c \neq 0, -1, -2, ...

Then we have

$$L_{p}(a,c;z)f(z) \in K_{p}(\alpha).$$
 (2.13)

PROOF. By Theorem 2, if g(z) ϵ $S_p^*(0)$, then $L_p(a,c;z)g(z)$ ϵ $S_p^*(0)$. It is sufficient to show that

$$\operatorname{Re}\left\{\frac{z[L_{p}(a,c;z)f(z)]'}{L_{p}(a,c;z)g(z)}\right\} > \alpha \tag{2.14}$$

for z ε U. Since

$$Re\left\{\frac{z[L_{p}(a,c;z)f(z)]'}{L_{p}(a,c;z)g(z)}\right\} = Re\left\{\frac{L_{p}(a,c;z)zf'(z)}{L_{p}(a,c;z)g(z)}\right\}$$

$$= Re\left\{\frac{\phi_{p}(a,c;z)*(zf'(z))}{\phi_{p}(a,c;z)g(z)}\right\}, \qquad (2.15)$$

setting

$$\psi(z) = \phi_p(a,c;z), F(z) = \frac{zf'(z)}{g(z)} - \alpha, \text{ and } g(z) = g(z)$$

in Lemma, we observe that

$$Re\left\{\frac{(\psi^* Fg)(z)}{(\psi^* g)(z)}\right\} = Re\left\{\frac{\phi_p(a,c;z)^* \{zf'(z) - \alpha g(z)\}}{\phi_p(a,c;z)^* g(z)}\right\}$$

$$= Re\left\{\frac{z[L_p(a,c;z)f(z)]'}{L_p(a,c;z)g(z)}\right\} - \alpha > 0, \qquad (2.16)$$

which completes the proof of Theorem 4.

COROLLARY 5. Let f(z) ϵ $K_p(\alpha)$, i.e., there exists g(z) ϵ $S_p^*(0)$ such that

$$\operatorname{Re}\left\{ \begin{array}{c} \frac{zf'(z)}{g(z)} \end{array} \right\} > \alpha \qquad (0 \leq \alpha < p; \ z \in U).$$

Further, let

$$L_{p}(c+p,c+p+1;z)\left(-\frac{1+\rho\sigma z}{1-\sigma z}\right)g(z) \neq 0 \qquad (z \in J-\{0\})$$
 (2.17)

for each σ ($|\sigma|$ = 1) and ρ ($|\rho|$ = 1), and for $c \neq -p-1$, -p-2, -p-3, Then we have

$$J_{c,p}(f(z)) \in K_p(\alpha).$$

REFERENCES

- [1] S. D. Bernardi: Convex and starlike univalent functions, Trans.

 Amer. Math. Soc. 135(1969), 429 446.
- [2] B. C. Carlson and D. B. Shaffer: Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15(1984), 737 - 745.
- [3] R. M. Goel and N. S. Sohi: A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78(1980), 353 357.
- [4] R. J. Libera: Some classes of regular univalent functions, ibid. 16(1965), 755 758.
- [5] A. E. Livingston: On the radius of univalence of certain analytic functions, ibid. 17(1966), 352 357.
- [6] M. Nunokawa: On the theory of multivalent functions, Tsukuba J. Math. 11(1987), 273 286.
- [7] S. Owa, H. M. Srivastava and C. Y. Shen: Application of a certain linear operator defined by a Hadamard product or convolution, Utilitas Math. 33(1988), 173 181.
- [8] S. Ruscheweyh: New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1975), 109 115.
- [9] S. Ruscheweyh and T. S. Small: Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48(1973), 119 - 135.
- [10] H. Saitoh: Some properties of certain multivalent functions, Tsukuba J. Math. 15(1991), 105 - 111.
- [11] H. Saitoh: On certain class of multivalent functions, Math. Japon. 37(1992), 871 875.

[12] H. Saitoh, S. Owa, T. Sekine, M. Nunokawa and R. Yamakawa: An application of a certain integral operator, Appl. Math. Lett. 5(1992), 21 - 24.

Department of Mathematics Gunma College of Technology Toriba, Maebashi, Gunma 371 Japan