Fermion Fock space on S^3

Tosiaki KORI

1. Preliminaries

a Here we give a brief résume of [K1] to fix the notations. Let $M=C^2 \bigsqcup_v \widehat{C}^2 \simeq S^4$; $w=v(z)=-\frac{\overline{z}}{|z|^2}$, and $E\simeq S^3$ be the equator. Let S (resp. S^+ and S^-) be the spinor bundle (resp. of positive chirality and of negative chirality) on M. The inner product of two spinors $\phi, \varphi \in \Gamma(S^\pm)$ is defined by $\langle \phi(z), \varphi(z) \rangle = \phi_1(z)\overline{\varphi}_1(z) + \phi_2(z)\overline{\varphi}_2(z)$. We denote by γ_0 Clifford mutiplication of the radial vector field \mathbf{n} on M. γ_0 switches S^+ and S^- . Transition for spinors is given by $\widehat{\varphi}(v(z)) = -\overline{(\gamma_0 \varphi)}(z)$. Let H (resp. H^*) be the space of square integrable spinors on E of positive (resp. negative) chirality. From the definition $\langle \phi, \psi \rangle = 0$ for all $\phi \in H$ and $\psi \in H^*$.

The Dirac operator is of the form $\mathcal{D} = \begin{pmatrix} 0 & D^{\dagger} \\ D & 0 \end{pmatrix}$; $D : \Gamma(S^{+}) \to \Gamma(S^{-})$. Let \mathcal{P} be Hamiltonian on E. We have the radial decomposition of Dirac operator:

$$D = \gamma_0(\mathbf{n} - \mathcal{P}), \quad D^{\dagger} = (\mathbf{n} + \mathcal{P})\gamma_0.$$

The eigenvalues of \mathcal{P} are $\pm(r+\frac{3}{2})$, $r=0,1,2,\cdots$ with multiplicity (r+1)(r+2). A complete orthonormal system of eigenspinors in H; $\{\phi_{k,r-k}^q, \pi_q^{r-k,k}\}_{r,q,k}$ was given explicit forms in [K1];

$$\mathcal{P} \phi_{k,r-k}^q = (r + \frac{3}{2}) \phi_{k,r-k}^q \qquad \mathcal{P} \pi_q^{r-k,k} = -(r + \frac{3}{2}) \pi_q^{r-k,k}.$$

Typeet by AM S-TEX

$$\phi_{k,r-k}^{q} = \left(\frac{q!k!(r-k)!}{(r+1-q)!}\right)^{-\frac{1}{2}} \begin{pmatrix} q2^{-q+1}h_{k,r-k}^{q-1} \\ -2^{-q}h_{k,r-k}^{q} \end{pmatrix}$$

$$\pi_q^{r-k,k} = \left(\frac{q!k!(r-k)!}{(r+1-q)!}\right)^{-\frac{1}{2}} \begin{pmatrix} 2^{-q} \widehat{h}_q^{r-k+1,k} \\ 2^{-q} \widehat{h}_q^{r-k,k+1} \end{pmatrix},$$

where

$$2^{-q}h_{k,r-k}^{q}(z_1,z_2) = (-\overline{z}_2 \frac{\partial}{\partial z_1} + \overline{z}_1 \frac{\partial}{\partial z_2})^q (z_1^k z_2^{r-k}),$$

$$2^{-q}\hat{h}_q^{r-k,k}(z_1,z_2) = (\overline{z}_2 \frac{\partial}{\partial \overline{z}_1} - z_1 \frac{\partial}{\partial z_2})^q (\overline{z}_1^k z_2^{r-k}).$$

Let H_+ (resp. H_-) be the subspace of H spanned by $\phi_{k,r-k}^q$'s (resp. $\pi_q^{r-k,k}$). We put $H_{\pm}^* = \gamma_0 H_{\pm}$.

b For a triplet $\lambda = \{\pm r; k, p\}$, $0 \le r, 0 \le k \le r, 0 \le p \le r+1$, we put $-\lambda = \{\mp r, r-k, r+1-p\}$. Lexicographic order for the triplets $\lambda = \{s, p, k\}$ is defined by $\lambda \ge \lambda'$ if either (i) $s \ge s'$, or (ii) $s = s', k \ge k'$, or (iii) s = s', k = k' and $p \ge p'$. Hence $\lambda \ge \lambda'$ implies $-\lambda \le -\lambda'$. The smallest positive is $o_+ = (\frac{3}{2}, 0, 0)$ while the largest negative is $o_- = (-\frac{3}{2}, 0, 1)$. Let $\alpha(p)$ denote the triplet at the p-th place after o_+ if p is non-negative (resp. at the p-th place before o_- if p is negative).

We denote by \mathcal{Z} (resp. $\mathcal{Z}_{\geq 0}$ and $\mathcal{Z}_{<0}$) the set of all triplets λ (resp. $\lambda \geq o_+$ and $\lambda \leq o_-$). We put also $\mathcal{Z}_{\leq \alpha} = \{\beta \in \mathcal{Z}; \beta \leq \alpha\}$ for $\alpha \in \mathcal{Z}$.

A subset S of \mathcal{Z} is called Maya diagram if both $S \cap \mathcal{Z}_{\geq 0}$ and $S^c \cap \mathcal{Z}_{<0}$ are finite set. The integer $\chi(S) = \#(\mathcal{Z}_{\geq 0} \cap S) - \#(\mathcal{Z}_{<0} \cap S^c)$ is called *charge* of S. For each Maya diagram S with $\chi(S) = p$ there corresponds a unique increasing function $s: \mathcal{Z}_{\leq \alpha(p)} \to \mathcal{Z}$ such that $(1) \ s(\nu) = \nu$ for sufficiently small ν and $(2) \ \operatorname{Image}(s) = S$. The degree of a Maya diagram S is the number $d(S) = \sum_{\nu} (s(\nu) - \nu)$.

2 Extensions and duality

a Let $R = \{z \in \mathbb{C}^2; |z| < 1\}$ and $\hat{R} = \{w \in \widehat{\mathbb{C}}^2; |w| < 1\}$. Let

 $\mathcal{N}(R) = \{ \phi \in \Gamma(R, S^+); \ \phi \text{ has } L^2 - \text{boundary value on } |z| = 1, D\phi = 0 \},$

 $\mathcal{N}^{\dagger}(R) = \{ \psi \in \Gamma(R, S^{-}), \ \phi \text{ has } L^{2} - \text{boundary value on } |z| = 1, D^{\dagger}\psi = 0 \}.$

 $\mathcal{N}(\hat{R})$ and $\mathcal{N}^{\dagger}(\hat{R})$ are defined similarly.

We have proved in [K1]:

Theorem 1.

(1) $H_{+} \cong \mathcal{N}(R)$, $H_{-} \cong \mathcal{N}(\hat{R})$, (2) $H_{-}^{*} \cong \mathcal{N}^{\dagger}(R)_{0}$ $H_{+}^{*} \cong \mathcal{N}^{\dagger}(\hat{R})_{0}$,

where 0 indicates that the spinors in brace are 0 at $0 \in \mathbb{C}^2$ or at $\hat{0} \in \widehat{\mathbb{C}}^2$.

For instance, the isomorphism $H_+^* \to \mathcal{N}^{\dagger}(\widehat{\mathbb{C}}^2)_0$ is given as follows:

Let $\psi = \gamma_0 \phi \in H_+^*$. We shall show that there is a $\widehat{\Psi} \in \mathcal{N}^{\dagger}(\widehat{R})_0$ such that $\widehat{\Psi}(w) = \widehat{\psi}(w)$ for |w| = 1, where $\widehat{\psi}(v(z)) = -\overline{\gamma_0 \psi}(z)$. Let $\phi = \sum_{\lambda > 0} a_{\lambda} \phi_{\lambda} \in \mathbb{R}$ H_{+} be the eigenfunction expansion.

Put $\Phi(z) = \sum a_{\lambda} |z|^{-(\lambda - \frac{3}{2})} (\frac{2}{1 + |z|^2})^{\frac{3}{2}} \phi_{\lambda}(\frac{z}{|z|})$. The expression on $\widehat{\mathbb{C}}^2$ becomes

$$\widehat{\Phi}(w) = \sum a_{\lambda} |w|^{(\lambda + \frac{3}{2})} \left(\frac{2}{1 + |w|^2}\right)^{\frac{3}{2}} \widehat{\phi}_{\lambda} \left(\frac{w}{|w|}\right),$$

 $\widehat{\Phi}(v(z)) = -\overline{\gamma_0\Phi(z)}$. $\widehat{\Phi}$ is valued in Δ^- . We can verify that $\widehat{\Psi} = \overline{\gamma}_0\widehat{\Phi} \in$ $\mathcal{N}^{\dagger}(\hat{R})_0$ and $\widehat{\Psi}(w) = \widehat{\psi}(w)$ for |w| = 1.

We define a pairing of H and H^* by

$$(\psi|\phi) = \int_E <\phi, \gamma_0 \psi > \sigma(dz) \quad \text{ for } \phi \in H \text{ and } \psi \in H^*.$$

Theorem 1 and Stokes' theorem yield that H_{\pm} and H_{\pm}^* are annihilated mutually by this pairing. On the other hand, H_{\pm} and H_{\pm}^* are respectively in duality. This is proved by Hahn-Banach's extension theorem.

A coupling between $\mathcal{N}(R)$ and $\mathcal{N}^{\dagger}(R)_0$ is defined by

$$-\int_{E} \Phi(z) \cdot \widehat{\Psi}(\nu(z)) \sigma(dz) = \int_{E} \langle \Phi, \gamma_{0} \Psi \rangle \sigma(dz),$$

for $\Phi \in \mathcal{N}(R)$ and $\widehat{\Psi} \in \mathcal{N}^{\dagger}(\widehat{R})_{0}$. Also the coupling of $\Psi \in \mathcal{N}(\widehat{R})$ and $\Phi \in \mathcal{N}^{\dagger}(R)_0$ is defined by the same integral.

The duality between H_{\pm} and H_{\pm}^{*} in the above and Theorem 1 prove the following:

Theorem 2.

- (1) The dual of $\mathcal{N}(R)$ is isomorphic to $\mathcal{N}^{\dagger}(\hat{R})_0$.
- (2) The dual of $\mathcal{N}(\hat{R})$ is isomorphic to $\mathcal{N}^{\dagger}(R)_0$.

3 Fockspace on E

a Let

$$e_{\lambda} = \begin{cases} \phi_{k,r-k}^{p} \in H_{+} & \text{if } \lambda \geq o_{+} \\ \pi_{p}^{r-k,k} \in H_{-} & \text{if } \lambda \leq o_{-} \end{cases}.$$

We define the conjugation by $e^{*\lambda} = \gamma_0 e_{-\lambda}$. It follows that $e^{*\lambda} \in H_-^*$ if $\lambda \geq 0$ and $e^{*\lambda} \in H_+^*$ if $\lambda < 0$. We have $(e^{*\lambda}|e_{\mu}) = \delta_{-\lambda,\mu}$. In particular $(e^{*o_+}|e_{o_-}) = 1$.

For a Maya-diagram S we put $e_S = \wedge e_{\lambda} = e_{\max S} \wedge \cdots$, the wedge being taken on decreasing order. We denote in prticular $|\alpha> = e_{\mathcal{Z}_{\alpha-}} = e_{\alpha} \wedge \cdots$.

The $Fock\ space\$ of charge p and total Fock space are introduced as follows:

$$\mathcal{F}_p = \prod_{\{S; \, \chi(S) = p\}} \mathcal{C} \, e_S \qquad \mathcal{F} = \bigoplus_p \mathcal{F}_p.$$

 \mathcal{F}_p is given a filtration by the degree of Maya-diagramm introduced in setion 1 and this filtration endows \mathcal{F}_p with a complete vector space topology.

For a Maya-diagram S we put $e_S^* = \wedge_{-\mu \in S} e^{*\mu} = \cdots \wedge e^{*-\max S}$, the wedge being taken on decreasing order. We denote $<\alpha|=e_{\mathcal{Z}_{\alpha}}^*=\cdots \wedge e^{*-\alpha}$.

The dual Fock space is defined as a direct sum with discrete topology:

$$\mathcal{F}^* = \bigoplus_S \mathcal{C} e_S^*.$$

The coupling (|) of H_{\pm} and H_{\pm}^* extends to give a coupling between \mathcal{F} and \mathcal{F}^* . We have $(e_S^*|e_{S'}) = \delta_{S,S'}$. In particular we have $\langle \alpha | \beta \rangle = \delta_{\alpha,\beta}$.

Differentiation D_{α} by $\alpha \in H$ is defined on H by

$$D_{\alpha}\phi = (e^{*-\alpha}|\phi) = \int_{E} \langle \phi, \alpha \rangle d\sigma \text{ for } \phi \in H.$$

It is extended to \mathcal{F} by the rule

$$D_{\alpha}(\phi \wedge \psi) = D_{\alpha}\phi \wedge \psi + (-1)^{\deg \phi}\phi \wedge D_{\alpha}\psi$$

for $\phi, \psi \in \mathcal{F}$. D_{α} acts on \mathcal{F} from the left as an inner derivation.

We also define the differentiation on H^* by

$$D^*_{\alpha}\phi^* = (\phi^*|e_{\alpha}), \quad \text{for } \phi^* \in H^*.$$

It is extended to \mathcal{F}^* by $D^*_{\alpha}(\phi^* \wedge \phi^*) = \phi^* \wedge D^*_{\alpha}\psi^* + (-1)^{\deg \psi^*} D^*_{\alpha}\phi^* \wedge \psi^*$ for $\phi^*, \psi^* \in \mathcal{F}^*$. D^*_{α} acts on \mathcal{F}^* from the right.

b We define the following actions a_{ν} , a_{ν}^{\dagger} on \mathcal{F} and \mathcal{F}^* :

$$a_{\nu} = D_{\nu}, \quad a_{\nu}^{\dagger} = e_{\nu} \wedge \quad \text{left action on } \mathcal{F},$$
 $a_{\nu} = \wedge e^{* - \nu}, \quad a_{\nu}^{\dagger} = D_{\nu}^{*} \quad \text{right action on } \mathcal{F}^{*},$

where exterior multiplications should be arranged in order. We have then the relations

$$\{a_{\lambda}, a_{\nu}\} = 0, \quad \{a_{\lambda}^{\dagger}, a_{\nu}^{\dagger}\} = 0$$

 $\{a_{\lambda}^{\dagger}, a_{\nu}\} = \{a_{\lambda}, a_{\nu}^{\dagger}\} = \delta_{\lambda, \nu}.$

Hence $\{a_{\nu}, a_{\nu}^{\dagger}\}$ generate a Clifford algebra \mathcal{A} , which is called fermion operator algebra . \mathcal{A} acts on \mathcal{F} and \mathcal{F}^* .

Proposition 3.

(1)
$$a_{\nu}|\alpha\rangle = 0 \quad \text{for } \nu > \alpha \qquad a_{\nu}^{\dagger}|\alpha\rangle = 0 \quad \text{for } \nu \leq \alpha$$

$$<\alpha|a_{\nu}|=0 \quad \text{for } \nu \leq \alpha \qquad <\alpha|a_{\nu}^{\dagger}|=0 \quad \text{for } \nu > \alpha.$$
(2)
$$(e_{S}^{*}a_{\alpha}|e_{S'}) = (e_{S}^{*}|a_{\alpha}e_{S'})$$

$$(e_{S}^{*}|a_{\alpha}^{\dagger}e_{S'}) = (e_{S}^{*}a_{\alpha}^{\dagger}|e_{S'})$$

c We shall introduce the following field operators of fermion:

$$\varphi_{+}(z) = \sum_{\nu \geq o_{+}} \phi_{\nu}(z) a_{\nu} \qquad \varphi_{-}^{\dagger}(z) = \sum_{\nu \geq o_{+}} {}^{t} \overline{\phi_{\nu}(z)} a_{\nu}^{\dagger}$$

$$\varphi_{-}(w) = \sum_{\nu < o_{-}} \widehat{\pi}_{\nu}(w) a_{\nu} \qquad \varphi_{+}^{\dagger}(w) = \sum_{\nu < o_{-}} {}^{t} \overline{\widehat{\pi}_{\nu}(w)} a_{\nu}^{\dagger}.$$

From the above proposition we have;

$$\varphi_{+}(z)|o_{-}> = 0, \qquad \varphi_{+}^{\dagger}(z)|o_{-}> = 0$$
 $< o_{-}|\varphi_{-}(z) = 0, \qquad < o_{-}|\varphi_{-}^{\dagger}(z) = 0.$

Proposition 4.

$$\langle \varphi^{\dagger}(x)\varphi(y) \rangle = \langle o_{-}|\varphi^{\dagger}(x) \cdot \varphi(y)|o_{-} \rangle = \sum_{r} \sum_{q=0}^{r+1} \frac{r+1}{q!} h_{r+1-q,q}^{q}(A,B)$$

$$\langle \varphi(x)\varphi^{\dagger}(y) \rangle = \langle o_{-}|\varphi(x) \cdot \varphi^{\dagger}(y)|o_{-} \rangle = \sum_{r} \sum_{q=0}^{r+1} \frac{r+2}{q!} h_{r-q,q}^{q}(C,D)$$

$$\langle \varphi(x)\varphi(y) \rangle = \langle \varphi^{\dagger}(x)\varphi^{\dagger}(y) \rangle = 0$$

where

$$A = \overline{x}_1 y_1 + x_2 \overline{y}_2$$
 $B = \overline{x}_1 y_2 - x_2 \overline{y}_1$
 $C = x_1 \overline{y}_1 + x_2 \overline{y}_2$ $D = x_1 y_2 - x_2 y_1$.

References

[K] Kori, T., Dirac operators on S⁴ and on S³. In nite dimensional Grassmanian on S³.
 [K] Kori, T., Extension problems for spinors on S⁴..