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Fermion Fock space on S3
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1. Preliminaries

a Here we give a brief résume of [ K1 ] to fix the notations. Let M =
C? 1, C2 ~ §% w = v(z) = ———lzz—l,, and E ~ S* be the equator . Let S (
resp. ST and S~ ) be the spinor bundle ( resp. of positive chirality and of
negative chirality ) on M. The inner product of two spinors ¢, € I'(S*)
is defined by < #(2), ¢(2) >= $1(2)74(2) + $a(2)By(2). We denote by 7o
Clifford mutiplication of the radial vector field n on M . 7, switches ST and
S~. Transition for spinors is given by @(v(z)) = —(y0¢)(2). Let H ( resp.
H* ) be the space of square integrable spinors on E of positive ( resp. negative
) chirality. From the definition < ¢,1 >=0for all ¢ € H and ¢ € H*.

: 1(7)1); D : T(5+) — T(57).

Let P be Hamiltonian on £. We have the radial decomposition of Dirac
operator:

The Dirac operator is of the form D = |

D = y9(n - P), Dt = (n+ P)yo.

The eigenvalues of P are £(r+32), r = 0,1,2, - - with multiplicity (r+1)(r+2)

. A complete orthonormal system of eigenspinors in H ; {¢] _,, W;_k’k }rak

was given explicit forms in [ K1 |;

3 r— 3,
P¢Z,T~k = (T + §)¢Z,r—k Pﬂq kil —(7‘ + 5)7rq k,k.
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1 +1
. ( gkl (r — k)v -3 (@2 TR,
kr—k — (1‘ +1- (I)l _o- qh?c L

__;_ b th—k+1k
ek = (L1 'k'(r—k)' )

1 (7‘+1—q)' 2 th—k k+1
where
_ _ 0
2 qhz,r—k(zhz?) = (_z2az +z16 )q(zl k)7
—air— _ 0 0 k r—
271hy k’k(217z2)=(z2b§1‘—zla—zz)q(zf 2 ).

Let Hy ( resp. H_ ) be the subspace of H spanned by ¢Z’r_k’s ( resp.
W;“k’k ). Weput HY = voHx .

b For a triplet A = {xr; k,p} ,0<r,0<k<r,0<p<r+1, weput
—X = {Fr, r—k, r+1—p}. Lexicographic order for the triplets A = {s, p, k}
is defined by A 2 A" if either (i)s > &' , or (ii)s = s', k > k', or (iii) s = ¢,
k=Fk"and p > p’. Hence A > )\ implies —\ < —=)'. The smallest positive is
oy = (3,0,0) while the largest negative is o = (—2,0,1). Let a(p) denote
the triplet at the p-th place after oy if p is non—negatlve (resp. at the p-th
place before o_ if p is negative ).

We denote by Z ( resp. Z>¢ and Z.g ) the set of all triplets A ( resp.
A>oyand A <o_ ). Weput also Zeq={f€Z;8<a}forac Z.

A subset S of Z is called Maya diagram if both $ N Z5¢ and S°N Z are
finite set. The integer x(S) = #(Z>0 N §) — #(Z<0 N S°) is called charge
of S. For each Maya diagram S with x(S) = p there corresponds a unique
increasing function s : Z<4(p) — Z such that (1) s(v) = v for sufficiently
small v and (2) Image(s) = S. The degree of a Maya diagram S is the
number d(S) = >, (s(v) — v).
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2 Extensions and duality
a Let R={ze€ C?% |z| <1} and R = {w € C?; |w| < 1}. Let
N(R) = {¢ € T(R,S"); ¢ has L?*~boundary value on |z| = 1, D¢ = 0},
NT(R) = {y e T(R,S™), ¢ has L?—boundary value on |z| =1,D%y) =0}.
N(R) and N'1(R) are defined similarly.
We have proved in [ K1 ] :
Theorem 1.
(1) B 2N(R), H-=N(R),
(2) H* = NY(R),  H: =2 NY(R),,
where 0 indicates that the spinors in brace are 0 at 0 € C2 or at 0 € c2.
For instance, the isomorphism H} — N "(62)0 is given as follows:
Let ¢ = y9¢ € H} . We shall show that there is a T € M(R)o such that
U(w) = (w) for |w| = 1, where (v(z)) = —yo9(z). Let ¢ = Y ,,axPx €
H_, be the eigenfunction expansion.
Put &(2) = Y a,\lzl_(’\_%)(ﬁg)%¢,\(-‘%). The expression on C? becomes

~ 3 2 3 ~
B(w) = 3~ ale MDA,

"I;(v(z)) = —y®(2) . & is valued in A~ . We can verify that ¥ = 7,® €
N1(R)o and ¥(w) = ¢(w) for |w| = 1.
We define a pairing of H and H* by

(¢|¢)=L < ¢,v% > o(dz) for ¢ € H and o € H*.

Theorem 1 and Stokes’ theorem yield that Hy and HZ are annihilated mu-
tually by this pairing. On the other hand, H; and H} are respectively in
duality . This is proved by Hahn-Banach’s extension theorem.

A coupling between N(R) and N't(R), is defined by

—/ &(z) - U(v(2))o(dz) = / < ®,vV¥ > o(dz),
E E

for ® € N(R) and ¥ € N1(R)y . Also the coupling of ¥ € N(R) and
® € N1(R), is defined by the same integral.

The duality between Hy and H} in the above and Theorem 1 prove the
following;:
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Theorem 2.
(1) The dual of N(R) is isomorphic to N'T(R),.
(2) The dual of N(R) is isomorphic to NT(R), .

3 Fockspace on E
a Let
gb’,;’r_k eH, ifX>o4
ex = .
kb e H if A<o-

We define the conjugation by e*? = Yo e—x. It follows that e*r € H* if
A > 0 and e** € H} if A < 0. We have (e*’\|eﬂ) = 6_x,,. In particular
(e*°*]e,_) = 1.

For a Maya-diagram S we put es = Aex = €maxs A -+ -, the wedge being
taken on decreasing order. We denote in prticular |a >= ez, =€, A---

The Fock space of charge p and total Fock space are introduced as follows:

Fp =1Il{s;x(5)=p}Ces F = DpFp.

Fp is given a filtration by the degree of Maya-diagramm introduced in setion
1 and this filtration endows F, with a complete vector space topology.

For a Maya-diagram S we put €5 = A_,cse* = ---Ae* —max S the wedge
being taken on decreasing order. We denote < a| = €3 _=---Ae* 77

The dual Fock space is defined as a direct sum with discrete topology:

Fr=@PCes.

S

The coupling (|) of Hy and HX extends to give a coupling between F and
F*. We have (e%|es ) = bs,s . In particular we have < a|8 >= 84 5.

Differentiation D, by a € H is defined on H by

Da¢=(e*_a|¢)=/;j<¢,a>da for ¢ € H.

It is extended to F by the rule

Do(¢pAh) = Dad A+ (—=1)38%H A Dyt
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for ¢, € F. D, acts on F from the left as an inner derivation.
We also define the differentiation on H* by

D} ¢* = (¢%| ea), for ¢* € H*.
It is extended to F* by D%(¢* A ¢*) = ¢* A Dxp* + (—1)38 %" D* ¢* A op* for
¢*,p* € F*. D} acts on F* from the right.
b We define the following actions a,,, af, on F and F*:

a,=D,, az =e, A left action on F,

a, = ANe* 7Y, a}: = D; right action on F*,

where exterior multiplications should be arranged in order. We have then the
relations

{ax,a,} =0, {al,al} =0
{af\,a,,} = {a,\,al} = 0x .

Hence {a,, al} generate a Clifford algebra A , which is called fermion operator
algebra . A acts on F and F*.

Proposition 3.
(1)

aJa>=0 forv>a alla>=0 forv<a

<alag,=0 forv<a <alal =0 forv>a.

(2)

(e5aales) = (es]|aqes)
(e5]ales) = (ekal|es)

¢ We shall introduce the following field operators of fermion:

er(2)= Y du()ar  oL(2)= ) “Gu(2)al

v>oy v>o4

p(w)= Y Rw)a, i)=Y F(w)al

v<o_ v<o_
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From the above proposition we have;

pi(2) o= >=0,  pl(z)]o- >=0

<o_|p(2)=0, <o_|pl(z)=0.

Proposition 4.
, , B r+1 - + 1
<l (@)p(y) > =< o_|¢'(2) - p(y)lo- >= ZZ hiy1-g,4(4,B)
] t _ o r + 2
<p(z)p'(y) > =< o_|p(z) - ¢'(y)lo- >= ZZ hi_4,4(C, D)

< @(@)p(y) > =< ! ()pl(y) >=0

where _ _ — —
A=Ty, + T2Yq B = T1Y2 — T2y,

C = 21y, + 227, D = z,y; — T2y1.
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