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Extension problems for spinors on §*

Tosiaki KORI

1. The space of spinors on S3

Here we shall explain the complex analytic point of view of Dirac operator
on S* and discuss the eigenvalues of Hamiltonian acting on spinors on the
equator~ $3. These were obtained in [ K ].

a. Let us consider two copies of complex planes C2 and af,,_and a smooth
bijection v : C2\ {0} — C2 \ {0} given by w = v(2) = —lz%. We patch
C2 and C2 by v to obtain a differentiable manifold M = C?| | 62, which is

homeomorphic to S*.
We endow M with a riemannian metric defined by

)@+ 1) S22 dz;®dZ;  on C?
(1+[w|?) 232 . dw; @ dw; on C2, .

The Levi-Civita connection on M is given by gauge potentials

EdN

I'(z) = 1+ |22

o(z)"!-(ds), forze C2

~ Ww 2 . ~
I'w) = 1—[}——||w_|5 o(w)™!-(do)y forwe Cl,
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where o(z) = |2|2(v.): , v« being the differential of v , and o(2)~!(do), is
a one-form valued in G = {X € gl(4,C): *XK + KX =0} ~ 0(4,C), K =
(5 o)

I, 0)

On M there are a unique spin-structure Spin(M) and the associated spinor
bundle S = Spin(M) X spin(4) A. A is a basic representation space of Spin(4)
which is the direct sum of two irreducible representations of A™ and A~ each
of dimension 2. Let St and S~ be the corresponding bundles whose cross

sections are spinors of positive ( respectively negative ) chirality . We shall
choose a frame of S* and denote the spinors in matrix form

(§)erer o= (G )eren, v=(5)eres

where I' signifies the sections of a bundle. The inner product of two spinors
¢, € T(S*) is defined by < ¢(2),¢(2) >= ¢1(2)B1(2) + $2(2)P2(2)-

b The Dirac operator acting on the spinors is defined as the composition
D = p -V where V is the covariant derivative induced by the Levi-Civita
connection and p is Clifford multiplication . The Dirac operator switches S+

1.
and S~ and is of the form D = g 13 ) where D : T'(St) — I'(S™).

We gave in [ K ] the following matrix representation of the Dirac 'operator.

(1+]2) 5% - 2= —(1+|2[*) 52 + 32
D= .
(1+ 235 — 372 (1+ 2?32 — 32
T (1+|2]*)52 — 22 (1+[2?) 5% — 32
DV =
—(1+ 21" 3% + 37 (1+ [2)3% - 3=

We have a decomposition of D and D1 to their longitudinal parts and radial
parts;

D=y(n-P) D'=m+7P)y.

Here 7, signifies Clifford multiplication of the radial vector n . We shall
explain P soon after. First we introduce an orthonormal frame on M, but
here we shall write down it only on the local coordinate C2 C M, the formulas
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on C? C M are easily obtained by the transition relation . This frame is
important not only as it gives a neat expression of Dirac operators on M and
on the equator ~ S® but also as is associated to the Lie group structure of

S3 ~ SU(2) ( see c). Let

1P 00 L+l 8 0
V= (zl 62’1 + %2 022 ) €= (—22 621 + 1 322

E E

The radial vector field is given by

1
n= E(V_}_—V—)

Put

6y = -271;=1=(V—7) 6, = %(G—I-E) 6, = 5—%_=1(€-—E).
Then \/§n, \/500, \/591, v/26, form an orthonormal frame on M and 0o, 61, 6,

are tangent to the constant altitude {|z| = const}.

P: St - St is given by P = —(70]S7) Y7, 6; Vs, with 4o coming from
Clifford multiplication of n .

The matrix representation of P is written as

—v—164 € 3 1 0
—€ \/—190 0 1

Let E = {|z| = 1} be the equator of M; E ~ S*. E is endowed with the
riemannian metric g|E . Since Spin(3) has the spinor representation on A*
the restrictions on E of bundle S is the spinor bundle corresponding to the
spin structure Spin(E). <, gives the isomorphism between S%. The Dirac
operator on E acting on spinors of positive chirality is given by —y,P|E .
The restriction P on E is called Hamiltonian on E .

¢ Here we shall discuss a little about infinitesimal representations of SU(2)
given by the vector fields /—16;, : = 0,1,2. First we note the commutation
relations same as those of sl(2);

[V—=160,€] = —2¢, [V—160,d =2, [e, €] = 4v/—160.

We now follow the isomorphism B ~ $® ~ SU(2) and look the point 2z € B
21 —22

as Z = ( Z ) € SU(2) . We shall then define the right action on E

Z9 21
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of g € SU(2) by z- g = the first column of 2-¢g . Put R;f(z) = f(z-g)
for a continupus function f on E. Then the differentials become dR(ex) =
-0k, k=0,1,2, where

= (5 0) am(83) e (& )

are the basis of su(2).
A polynomials that satisfies

P(azl,bzg,bfl.aiz) = akblp(21,22,51,32)

is called of class (k,!). The set of polynomials of class (&, 1) is denoted by Sk ;.
Let H be the set of harmonic polynomials on C? and put Hg.; = HN Sk, We
have Sk; = Hi,i @ |2|*Sk—1,1-1, hence dimHg; = k+ 1+ 1 . It foollws also
that , on E, every polynomial is a sum of harmonic polynomials in Hy ;’s.
This ensures the fact that our family of eigenspinors of Hamiltonian on E

obtained later is a complete system.
Put,forr > 0and 0 < k,¢ < r,

hi . _x(2) = l(zr257F).

For each pair r and k < r the set {h] __;; ¢ =0,---,r} forms a basis of
Hk,r—k-
Proposit ion.

(1) v- 9thr k _(T_2q)hkr k

(2) eh}'” k= h%tl k

(3) ehkr ET —4q(r_Q+1)hkr k

Hence the space of harmonic polynomials H ( restricted on B ) is decom-
posed by the right action R of SU(2) into H = 3, Y _, Hk,r—&- Each in-

duced representation R ,—x = (R, Hg r—k ) is an irrreducible representation
with the highest weight £

d Put,forr<0,0<k<r,and0<q¢<r+1,

q2~ q+1hk r—k

d)q _
k,r—k T q
99
2 hk,r——k
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Then we have from the matrix representation of the Hamiltonian and the
Proposition in c;

’qu?c,'r— (T‘ +3 )¢Ic ,r—k

Thus the positive eigenvalues and eigenfunctions of P are obtained . In par-
ticular the multiplicity of the eigenvalue r is (r + 1)(r + 2).

The investigation of negative eigenspinors is related to the left action of
SU(2) on the harmonic polynomials. The left action of a ¢ € SU(2) on E
is defined by ¢ - z = the first column of g - 7. Let Lyf(2) = f(¢7' - 2) for a
continuous function on E.

We introduce the following vector fields on M — {0, 0}, that have the fol-
lowing local expressions on C? — {0}:

TN ) 1422 _ 8 9

O CEn TR TR B e

1 -
7'1=§(5+5), T =

To = 2\/1__—1(/‘ — ), \/—(6 5)

We have dL(e;) = —m;i|E; 1=0,1,2.
Let
hi=8k(z) = 89(z5 25 75).

{leq’k; q=20,---,r} give a basis of HU*: the space of harmonic polynomials
that satisfy the condition P(az,az,,b%;.b73) = a'b*P(21,29,%1,72). Put,
forr>0,0<k<r,and0<q¢<r+1,

2—qﬁr—k+1,k

r—kk _ 1

™ =

q ~

9—qpr—k,k+1
q

By an easy calculus we have

PryoF = —(r+ 2 )nf—k’“.

Thus we have
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Theorem1[ K ]. The eigenvalues of P are + (% +r); r=0,1,2,--- with
multiplicity (r + 1)(r + 2) , in particular, there is no zero mode spinor of P
and the spectrum are symmetric relative to 0.

e Here we note corresponding subjects on the other coordinate neigh-
borhood C%. The transition function to describe the bundle Spin(M) is
—*v) = —%, and a spinor on M is a pair of p(z) € T'(C2 x A) and
p(w) € 1“(62 x A) that are patched by @(v(z)) = —(709)(2)). The matrix
representations of the Dirac operator on C2? C M has the same form as those
in ( 1-5 ) but the first and the second are changed since a section on C? of

the bundle ST ( resp. S~ ) is valued in A~ ( resp. AT ). This is "CPT”-
theorem . The counterpart of P is defined as P = (70|S1) Y. 61V, acting on

Y € 1“(63,, X A7) . For a ¢ € I(C2 x AT), we have D@ = Dy and Py = Py .

2 Extension of spinors from the equator

a Let H be the space of square integrable spinors of positive chirality on
E. Let Hi be the closed subspace of H spanned by the eigenvectors ¢y
corresponding to the positive ( resp. negative ) eigenvalues A of P.

Put ¢(r,q,k) = (M)ni. Then a complete orthonormal system of

eigenspinors of P is given by
{c(ra%k)‘ﬁ?c,r_ka c(r,q’k)ﬂ;_k’k; r 2 0> 0 S k S r, 0 S q S T+ 1} .

Take an eigenspinor ¢y and extend it by ®,(z) = rx({zl)go,\(-lfl) to C?,where
ra(t) = t*"g'(ljé—ti)%. Then ®,(z) is a zero-mode spinor of D on C?. This is
proved by the following calculus:

D®x(z) = vo(n — P)(2x(2))

=0 (@) - 0 - DR

E

2
2
rall) = 3tz ) a(E)
But r(t) satisfies the equation

1+ 20 - (- 22

Therefore D®, = 0.
Let N(U) ( resp. NT(U) ) be the space of zero-mode spinors of Dirac
operator D ( resp. D' ) on U that have L?—boundary values .

ra(t) — 3tra(t) = 0.
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Theorem?2[K]. Let R={z€ C? |2/ <1} and R= {w € C?;, lw| < 1}
(1) H, is isomorphic to N'(R),
(2) H_ is isomorphic to N'(R),
(3) Every spinor in H is equal to the difference of the restrictions of zero
mode spinors on R and on R.

Proof: Let ¢ € H, and expand it in ¢ = Y x>0 @xpx . The spinor on R
s D(2) = Y as002Pa(2) is well defined. In fact , consider the finite sum;

3
" = Z:i;ﬂ_g ax®x. Then < &% &" > (z) is subharmonic on R and is
- 2

dominated by some constant multiple of its L2—norm on E, hence converges
there to 0 compact uniformly as m,n tend to infinity. If we note the fact that
each component of ® is harmonic we see that it has L2—boundary value .
Conversely let & € A(R) and let ¢ be its restriction to E. We can show that
the eigenfunction expansion of ¢ by {¢x} can not contain the term with A < 0
and ¢ € Hy. As for (2) consider the function r_,(t) = t“—%(%ﬁ)%, t >0,
where —p = —r — 2,7 = 0,1,--- and do the same argument as in (1) .
Relations in e transform the result to that on R.

b Let H* be the space of square integrable spinors of negative chirality
on E. o switches H and H*; (7|ST)H = H* , (70|S™)H* = H . We shall
define H} = (y0|ST)H4 and H* = (y|St)H-_.

Let ¢* € H* and suppose that 1 = (70|57 )y* is an eigenspinor belonging

to a negative eigenvalue A = —(r + 2). Let ¥(z) = 3;(|z|)¢(|—§|), where
sa(t) = t_(’\—%)(lftz)%. Then as before we can verify that ¥(z) extend 1 to

C?, ¥(0) =0 and D'y* = (n + P)yoy* = (n+ Py = 0.

Thus in the same manner as in Theorem 2 we have the following;

Theorem 3.
(1) H* is isomorphic to {¢ € NT(R); $(0) = 0},
(2) H* is isomorphic to {yp € N'T(R); %(0) = 0},
(3) Every spinor in H* is equal to the difference of the restrictions of zero
mode spinors on R and on R.

¢ From the definition < ¢,1 >= 0 for all ¢ € H and ¢ € H*.
Let ¢ and 9 be spinors on R = {|z| < 1}, Stokes’ theorem statts;

__1— t _l
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Theorems 2,3 and Stokes’ theorem yield immediately that

/<¢,70¢>da=0 foroe Hy,y € H*.
E

Similarly
/ < ¢,vyY >do=0 forpe H_,y € HJ.
E

The coupling betweeen H} and H4 does not vanish and is important to
construct the geometric model of conformal field theory on S$* which will be
treated in the next paper.

d Actually eigenspinors ¢y ;A > 0 are extended to A (C?) and those for

A < 0 are extended to M(C2). We list here a table of expansion formula for
éx, O3 = Yo¢x for A > 0 and 7y 7} = v for A< 0.
(1) ®a(2) = lz]’\_%(%i)%q’h(ﬁ—l) € N(C?), A > 0 and ®,(2) = éa(2)
for |z| = 1.
(2) 3(w) = |w|A+5(ﬁr§)5¢§(ﬁl) € NT(C%)y, A > 0 and ®3(-%) =
—Yo 93 (2) for |z| = 1.
(3) Ta(w) = [w| 3 (L) 2R, (1) € M(C?), A < 0 and TIx(-7) =
—Fo7a(2) for |z| = 1.
() T2 — o () a3 € TG, A < 0 and () = w42

for |z] = 1.
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