Extension problems for spinors on S^4

Tosiaki KORI

1. The space of spinors on S^3

Here we shall explain the complex analytic point of view of Dirac operator on S^4 and discuss the eigenvalues of Hamiltonian acting on spinors on the equator $\simeq S^3$. These were obtained in [K].

a. Let us consider two copies of complex planes C_z^2 and \widehat{C}_w^2 and a smooth bijection $v: C_z^2 \setminus \{0\} \to \widehat{C}_w^2 \setminus \{0\}$ given by $w = v(z) = -\frac{\overline{z}}{|z|^2}$. We patch C_z^2 and C_w^2 by v to obtain a differentiable manifold $M = C^2 \coprod_v \widehat{C}^2$, which is homeomorphic to S^4 .

We endow M with a riemannian metric defined by

$$g = \begin{cases} (1+|z|^2)^{-2} \sum_{i=1}^2 dz_i \otimes d\overline{z}_i & \text{on } \mathbb{C}_z^2 \\ (1+|w|^2)^{-2} \sum_{i=1}^2 dw_i \otimes d\overline{w}_i & \text{on } \widehat{\mathbb{C}}_w^2 \end{cases}.$$

The Levi-Civita connection on M is given by gauge potentials

$$\Gamma(z) = \frac{|z|^2}{1 + |z|^2} \sigma(z)^{-1} \cdot (d\sigma)_z \quad \text{for } z \in \mathcal{C}_z^2$$

$$\widehat{\Gamma}(w) = \frac{|w|^2}{1 + |w|^2} \sigma(w)^{-1} \cdot (d\sigma)_w \quad \text{for } w \in \widehat{\mathcal{C}}_w^2,$$

where $\sigma(z) = |z|^2 (v_*)_z$, v_* being the differential of v, and $\sigma(z)^{-1} (d\sigma)_z$ is a one-form valued in $\mathcal{G} = \{X \in gl(4, \mathbb{C}) : {}^tXK + KX = 0\} \simeq o(4, \mathbb{C}), K = \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix}$.

On M there are a unique spin-structure Spin(M) and the associated spinor bundle $S = Spin(M) \times_{Spin(4)} \Delta$. Δ is a basic representation space of Spin(4) which is the direct sum of two irreducible representations of Δ^+ and Δ^- each of dimension 2. Let S^+ and S^- be the corresponding bundles whose cross sections are spinors of positive (respectively negative) chirality. We shall choose a frame of S^{\pm} and denote the spinors in matrix form

$$\begin{pmatrix} \phi \\ \psi \end{pmatrix} \in \Gamma(S), \quad \phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix} \in \Gamma(S^+), \quad \psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \in \Gamma(S^-),$$

where Γ signifies the sections of a bundle. The inner product of two spinors $\phi, \varphi \in \Gamma(S^{\pm})$ is defined by $\langle \phi(z), \varphi(z) \rangle = \phi_1(z)\overline{\varphi}_1(z) + \phi_2(z)\overline{\varphi}_2(z)$.

b The Dirac operator acting on the spinors is defined as the composition $\mathcal{D} = \mu \cdot \nabla$ where ∇ is the covariant derivative induced by the Levi-Civita connection and μ is Clifford multiplication . The Dirac operator switches S^+ and S^- and is of the form $\mathcal{D} = \begin{pmatrix} 0 & D^{\dagger} \\ D & 0 \end{pmatrix}$ where $D : \Gamma(S^+) \to \Gamma(S^-)$.

We gave in [K] the following matrix representation of the Dirac operator.

$$D = \begin{pmatrix} (1+|z|^2)\frac{\partial}{\partial z_1} - \frac{3}{2}\overline{z}_1 & -(1+|z|^2)\frac{\partial}{\partial \overline{z}_2} + \frac{3}{2}z_2 \\ (1+|z|^2)\frac{\partial}{\partial z_2} - \frac{3}{2}\overline{z}_2 & (1+|z|^2)\frac{\partial}{\partial \overline{z}_1} - \frac{3}{2}z_1 \end{pmatrix}$$

$$D^{\dagger} = \begin{pmatrix} (1+|z|^2)\frac{\partial}{\partial \overline{z}_1} - \frac{3}{2}z_1 & (1+|z|^2)\frac{\partial}{\partial \overline{z}_2} - \frac{3}{2}z_2 \\ -(1+|z|^2)\frac{\partial}{\partial z_2} + \frac{3}{2}\overline{z}_2 & (1+|z|^2)\frac{\partial}{\partial z_1} - \frac{3}{2}\overline{z}_1 \end{pmatrix}$$

We have a decomposition of D and D^{\dagger} to their longitudinal parts and radial parts;

$$D = \gamma_0 (\mathbf{n} - \mathcal{P})$$
 $D^{\dagger} = (\mathbf{n} + \mathcal{P})\gamma_0.$

Here γ_0 signifies Clifford multiplication of the radial vector \mathbf{n} . We shall explain \mathcal{P} soon after. First we introduce an orthonormal frame on M, but here we shall write down it only on the local coordinate $\mathbf{C}^2 \subset M$, the formulas

on $\widehat{\mathbf{C}}^2 \subset M$ are easily obtained by the transition relation. This frame is important not only as it gives a neat expression of Dirac operators on M and on the equator $\simeq S^3$ but also as is associated to the Lie group structure of $S^3 \simeq SU(2)$ (see c). Let

$$\nu = \frac{1 + |z|^2}{|z|} \left(z_1 \frac{\partial}{\partial z_1} + z_2 \frac{\partial}{\partial z_2} \right) \qquad \epsilon = \frac{1 + |z|^2}{|z|} \left(-\overline{z}_2 \frac{\partial}{\partial z_1} + \overline{z}_1 \frac{\partial}{\partial z_2} \right)$$

The radial vector field is given by

$$\mathbf{n} = \frac{1}{2}(\nu + \overline{\nu}).$$

Put

$$\theta_0 = \frac{1}{2\sqrt{-1}}(\nu - \overline{\nu}) \quad \theta_1 = \frac{1}{2}(\epsilon + \overline{\epsilon}) \quad \theta_2 = \frac{1}{2\sqrt{-1}}(\epsilon - \overline{\epsilon}).$$

Then $\sqrt{2}\mathbf{n}$, $\sqrt{2}\theta_0$, $\sqrt{2}\theta_1$, $\sqrt{2}\theta_2$ form an orthonormal frame on M and θ_0 , θ_1 , θ_2 are tangent to the constant altitude $\{|z| = const\}$.

 $\mathcal{P}: S^+ \to S^+$ is given by $\mathcal{P} = -(\gamma_0|S^-) \sum_{i=0}^2 \theta_i \nabla_{\theta_i}$ with γ_0 coming from Clifford multiplication of \mathbf{n} .

The matrix representation of \mathcal{P} is written as

$$\mathcal{P} = \begin{pmatrix} -\sqrt{-1}\theta_0 & \overline{\epsilon} \\ & & \\ -\epsilon & \sqrt{-1}\theta_0 \end{pmatrix} + \frac{3}{2}|z| \begin{pmatrix} 1 & 0 \\ & \\ 0 & 1 \end{pmatrix},$$

Let $E = \{|z| = 1\}$ be the equator of M; $E \simeq S^3$. E is endowed with the riemannian metric g|E. Since Spin(3) has the spinor representation on Δ^{\pm} the restrictions on E of bundle S^{\pm} is the spinor bundle corresponding to the spin structure Spin(E). γ_0 gives the isomorphism between S^{\pm} . The Dirac operator on E acting on spinors of positive chirality is given by $-\gamma_0 \mathcal{P}|E$. The restriction \mathcal{P} on E is called Hamiltonian on E.

c Here we shall discuss a little about infinitesimal representations of SU(2) given by the vector fields $\sqrt{-1}\theta_i$, i=0,1,2. First we note the commutation relations same as those of sl(2);

$$[\sqrt{-1}\theta_0, \epsilon] = -2\epsilon, \quad [\sqrt{-1}\theta_0, \overline{\epsilon}] = 2\overline{\epsilon}, \quad [\epsilon, \overline{\epsilon}] = 4\sqrt{-1}\theta_0.$$

We now follow the isomorphism $B \simeq S^3 \simeq SU(2)$ and look the point $z \in B$ as $\ddot{z} = \begin{pmatrix} z_1 & -\overline{z}_2 \\ z_2 & \overline{z}_1 \end{pmatrix} \in SU(2)$. We shall then define the right action on E

of $g \in SU(2)$ by $z \cdot g =$ the first column of $\ddot{z} \cdot g$. Put $R_q f(z) = f(z \cdot g)$ for a continuous function f on E. Then the differentials become $dR(e_k) =$ $-\theta_{k}, \quad k = 0, 1, 2, \text{ where }$

$$e_0 = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad e_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}$$

are the basis of su(2).

A polynomials that satisfies

$$P(az_1, bz_2, b\overline{z}_1.a\overline{z}_2) = a^k b^l P(z_1, z_2, \overline{z}_1, \overline{z}_2)$$

is called of class (k, l). The set of polynomials of class (k, l) is denoted by $S_{k, l}$. Let \mathcal{H} be the set of harmonic polynomials on \mathbb{C}^2 and put $\mathcal{H}_{k,l} = \mathcal{H} \cap S_{k,l}$. We have $S_{k,l} = \mathcal{H}_{k,l} \oplus |z|^2 S_{k-1,l-1}$, hence dim $\mathcal{H}_{k,l} = k+l+1$. It foollws also that, on E, every polynomial is a sum of harmonic polynomials in $\mathcal{H}_{k,l}$'s. This ensures the fact that our family of eigenspinors of Hamiltonian on E obtained later is a complete system.

Put, for $r \geq 0$ and $0 \leq k, q \leq r$,

$$h_{k,r-k}^q(z) = \epsilon^q(z_1^k z_2^{r-k}).$$

For each pair r and $k \leq r$ the set $\{h_{k,r-k}^q; q = 0, \dots, r\}$ forms a basis of $\mathcal{H}_{k,r-k}$.

Proposition.

- (1) $\sqrt{-1}\theta_0 h_{k,r-k}^q = (r 2q)h_{k,r-k}^q$ (2) $\epsilon h_{k,r-k}^q = h_{k,r-k}^{q+1}$
- (3) $\bar{\epsilon} h_{k,r-k}^q = -4q(r-q+1)h_{k,r-k}^{q-1}$

Hence the space of harmonic polynomials \mathcal{H} (restricted on B) is decomposed by the right action R of SU(2) into $\mathcal{H} = \sum_{r} \sum_{k=0}^{r} \mathcal{H}_{k,r-k}$. Each induced representation $R_{k,r-k} = (R, \mathcal{H}_{k,r-k})$ is an irreducible representation with the highest weight $\frac{r}{2}$.

d Put, for $r \leq 0$, $0 \leq k \leq r$, and $0 \leq q \leq r + 1$,

$$\phi_{k,r-k}^{q} = \begin{pmatrix} q2^{-q+1}h_{k,r-k}^{q-1} \\ -2^{-q}h_{k,r-k}^{q} \end{pmatrix}.$$

Then we have from the matrix representation of the Hamiltonian and the Proposition in c;

$$\mathcal{P}\phi_{k,r-k}^q = (r + \frac{3}{2})\phi_{k,r-k}^q.$$

Thus the positive eigenvalues and eigenfunctions of \mathcal{P} are obtained. In particular the multiplicity of the eigenvalue r is (r+1)(r+2).

The investigation of negative eigenspinors is related to the left action of SU(2) on the harmonic polynomials. The left action of a $g \in SU(2)$ on E is defined by $g \cdot z =$ the first column of $g \cdot \ddot{z}$. Let $L_g f(z) = f(g^{-1} \cdot z)$ for a continuous function on E.

We introduce the following vector fields on $M - \{0, \hat{0}\}$, that have the following local expressions on $\mathbb{C}^2 - \{0\}$:

$$\mu = \frac{1 + |z|^2}{|z|} \left(z_2 \frac{\partial}{\partial z_2} + \overline{z}_1 \frac{\partial}{\partial \overline{z}_1} \right), \qquad \delta = \frac{1 + |z|^2}{|z|} \left(\overline{z}_2 \frac{\partial}{\partial \overline{z}_1} - z_1 \frac{\partial}{\partial z_2} \right).$$

$$\tau_0 = \frac{1}{2\sqrt{-1}}(\mu - \overline{\mu}), \quad \tau_1 = \frac{1}{2}(\delta + \overline{\delta}), \quad \tau_2 = \frac{1}{2\sqrt{-1}}(\delta - \overline{\delta}).$$

We have $dL(e_i) = -\tau_i | E; \quad i = 0, 1, 2.$ Let

$$\hat{h}_q^{r-k,k}(z) = \delta^q(\overline{z}_1^k z_2^{r-k}).$$

 $\{\hat{h}_q^{l,k}; q=0,\cdots,r\}$ give a basis of $\widehat{\mathcal{H}}^{l,k}$: the space of harmonic polynomials that satisfy the condition $P(az_1,az_2,b\overline{z}_1.b\overline{z}_2)=a^lb^kP(z_1,z_2,\overline{z}_1,\overline{z}_2)$. Put, for $r\geq 0, 0\leq k\leq r$, and $0\leq q\leq r+1$,

$$\pi_q^{r-k,k} = \begin{pmatrix} 2^{-q} \hat{h}_q^{r-k+1,k} \\ 2^{-q} \hat{h}_q^{r-k,k+1} \end{pmatrix}.$$

By an easy calculus we have

$$\mathcal{P}\pi_q^{r-k,k} = -(r+\frac{3}{2})\pi_q^{r-k,k}.$$

Thus we have

Theorem 1 [K]. The eigenvalues of \mathcal{P} are $\pm \left(\frac{3}{2}+r\right)$; $r=0,1,2,\cdots$ with multiplicity (r+1)(r+2), in particular, there is no zero mode spinor of \mathcal{P} and the spectrum are symmetric relative to 0.

e Here we note corresponding subjects on the other coordinate neighborhood $\widehat{\mathbf{C}}_w^2$. The transition function to describe the bundle Spin(M) is $-{}^t(\gamma_0) = -\overline{\gamma}_0$ and a spinor on M is a pair of $\varphi(z) \in \Gamma(\mathbf{C}_z^2 \times \Delta)$ and $\widehat{\varphi}(w) \in \Gamma(\widehat{\mathbf{C}}^2 \times \Delta)$ that are patched by $\widehat{\varphi}(v(z)) = -\overline{(\gamma_0 \varphi)}(z)$. The matrix representations of the Dirac operator on $\widehat{\mathbf{C}}^2 \subset M$ has the same form as those in (1-5) but the first and the second are changed since a section on $\widehat{\mathbf{C}}^2$ of the bundle S^+ (resp. S^-) is valued in Δ^- (resp. Δ^+). This is "CPT"-theorem. The counterpart of $\mathcal P$ is defined as $\mathcal P = (\gamma_0|S^+)\sum_{} \theta_1 \nabla_{\theta_i}$ acting on $\widehat{\varphi} \in \Gamma(\widehat{\mathbf{C}}_w^2 \times \Delta^-)$. For a $\varphi \in \Gamma(\mathbf{C}_z^2 \times \Delta^+)$, we have $D\widehat{\varphi} = \widehat{D\varphi}$ and $\widehat{\mathcal P}\varphi = \mathcal P\widehat{\varphi}$.

2 Extension of spinors from the equator

a Let H be the space of square integrable spinors of positive chirality on E. Let H_{\pm} be the closed subspace of H spanned by the eigenvectors ϕ_{λ} corresponding to the positive (resp. negative) eigenvalues λ of \mathcal{P} .

Put $c(r, q, k) = \left(\frac{q!k!(r-k)!}{(r+1-q)!}\right)^{-\frac{1}{2}}$. Then a complete orthonormal system of eigenspinors of \mathcal{P} is given by

$$\left\{\,c(r,q,k)\phi_{k,r-k}^{\,q},\,c(r,q,k)\pi_q^{\,r-k,k};\,r\geq 0,\,0\leq k\leq r,\,0\leq q\leq r+1\right\}.$$

Take an eigenspinor φ_{λ} and extend it by $\Phi_{\lambda}(z) = r_{\lambda}(|z|)\varphi_{\lambda}(\frac{z}{|z|})$ to \mathbb{C}^{2} , where $r_{\lambda}(t) = t^{\lambda - \frac{3}{2}}(\frac{1+t^{2}}{2})^{\frac{3}{2}}$. Then $\Phi_{\lambda}(z)$ is a zero-mode spinor of D on \mathbb{C}^{2} . This is proved by the following calculus:

$$\begin{split} D\Phi_{\lambda}(z) &= \gamma_0(\mathbf{n} - \mathcal{P})(\Phi_{\lambda}(z)) \\ &= \gamma_0 \left((1 + |z|^2) r_{\lambda}'(|z|) - (\lambda - \frac{3}{2}) \frac{1 + |z|^2}{|z|} r_{\lambda}(|z|) - 3|z| r_{\lambda}(|z|) \right) \varphi_{\lambda}(\frac{z}{|z|}). \end{split}$$

But $r_{\lambda}(t)$ satisfies the equation

$$(1+t^2)r'_{\lambda}(t) - (\lambda - \frac{3}{2})\frac{1+t^2}{t}r_{\lambda}(t) - 3tr_{\lambda}(t) = 0.$$

Therefore $D\Phi_{\lambda}=0$.

Let $\mathcal{N}(U)$ (resp. $\mathcal{N}^\dagger(U)$) be the space of zero-mode spinors of Dirac operator D (resp. D^\dagger) on U that have L^2 -boundary values .

Theorem 2 [K]. Let $R = \{z \in \mathbb{C}^2; \, |z| < 1\}$ and $\hat{R} = \{w \in \widehat{\mathbb{C}}^2; \, |w| < 1\}.$

- (1) H_+ is isomorphic to $\mathcal{N}(R)$,
- (2) H_{-} is isomorphic to $\mathcal{N}(\hat{R})$,
- (3) Every spinor in H is equal to the difference of the restrictions of zero mode spinors on R and on \hat{R} .

Proof: Let $\varphi \in H_+$ and expand it in $\varphi = \sum_{\lambda>0} a_\lambda \phi_\lambda$. The spinor on R; $\Phi(z) = \sum_{\lambda>0} a_\lambda \Phi_\lambda(z)$ is well defined. In fact, consider the finite sum; $\Phi_m^n = \sum_{\lambda=m+\frac{3}{2}}^{n+\frac{3}{2}} a_\lambda \Phi_\lambda$. Then $<\Phi_m^n, \Phi_m^n>(z)$ is subharmonic on R and is dominated by some constant multiple of its L^2 -norm on E, hence converges there to 0 compact uniformly as m, n tend to infinity. If we note the fact that each component of Φ is harmonic we see that it has L^2 -boundary value. Conversely let $\Phi \in \mathcal{N}(R)$ and let φ be its restriction to E. We can show that the eigenfunction expansion of φ by $\{\phi_\lambda\}$ can not contain the term with $\lambda < 0$ and $\varphi \in H_+$. As for (2) consider the function $r_{-\mu}(t) = t^{\mu-\frac{3}{2}}(\frac{1+t^2}{2})^{\frac{3}{2}}, \quad t \geq 0$, where $-\mu = -r - \frac{3}{2}, r = 0, 1, \cdots$ and do the same argument as in (1). Relations in Φ transform the result to that on \hat{R} .

b Let H^* be the space of square integrable spinors of negative chirality on E. γ_0 switches H and H^* ; $(\gamma_0|S^+)H = H^*$, $(\gamma_0|S^-)H^* = H$. We shall define $H_+^* = (\gamma_0|S^+)H_+$ and $H_-^* = (\gamma_0|S^+)H_-$.

Let $\psi^* \in H_-^*$ and suppose that $\psi = (\gamma_0|S^-)\psi^*$ is an eigenspinor belonging to a negative eigenvalue $\lambda = -(r + \frac{3}{2})$. Let $\Psi(z) = s_{\lambda}(|z|)\psi(\frac{z}{|z|})$, where $s_{\lambda}(t) = t^{-(\lambda - \frac{3}{2})}(\frac{2}{1+t^2})^{\frac{3}{2}}$. Then as before we can verify that $\Psi(z)$ extend ψ to C^2 , $\Psi(0) = 0$ and $D^{\dagger}\psi^* = (\mathbf{n} + \mathcal{P})\gamma_0\psi^* = (\mathbf{n} + \mathcal{P})\psi = 0$.

Thus in the same manner as in Theorem 2 we have the following;

Theorem 3.

- (1) H_{-}^{*} is isomorphic to $\{\phi \in \mathcal{N}^{\dagger}(R); \phi(0) = 0\},\$
- (2) H_+^* is isomorphic to $\{\psi \in \mathcal{N}^{\dagger}(\hat{R}); \psi(\hat{0}) = 0\},$
- (3) Every spinor in H^* is equal to the difference of the restrictions of zero mode spinors on R and on \hat{R} .
- c From the definition $\langle \phi, \psi \rangle = 0$ for all $\phi \in H$ and $\psi \in H^*$. Let ϕ and ψ be spinors on $R = \{|z| \leq 1\}$, Stokes' theorem statts;

$$\int_{R} \frac{1}{(1+|z|^{2})^{4}} \left(\langle D\phi, \psi \rangle + \langle \phi, D^{\dagger}\psi \rangle \right) dV = \frac{1}{8} \int_{E} \langle \phi, \gamma_{0}\psi \rangle d\sigma.$$

Theorems 2,3 and Stokes' theorem yield immediately that

$$\int_{E} \langle \phi, \gamma_0 \psi \rangle d\sigma = 0 \quad \text{for } \phi \in H_+, \, \psi \in H_-^*.$$

Similarly

$$\int_{E} \langle \phi, \gamma_0 \psi \rangle d\sigma = 0 \quad \text{ for } \phi \in H_-, \, \psi \in H_+^*.$$

The coupling between H_{\pm}^* and H_{\pm} does not vanish and is important to construct the geometric model of conformal field theory on S^4 which will be treated in the next paper.

d Actually eigenspinors ϕ_{λ} ; $\lambda > 0$ are extended to $\mathcal{N}(\mathbf{C}^2)$ and those for $\lambda < 0$ are extended to $\mathcal{N}(\widehat{\mathbf{C}}^2)$. We list here a table of expansion formula for ϕ_{λ} , $\phi_{\lambda}^* = \gamma_0 \phi_{\lambda}$ for $\lambda > 0$ and π_{λ} $\pi_{\lambda}^* = \gamma_0 \phi_{\lambda}$ for $\lambda < 0$.

- (1) $\Phi_{\lambda}(z) = |z|^{\lambda \frac{3}{2}} (\frac{1 + |z|^2}{2})^{\frac{3}{2}} \phi_{\lambda}(\frac{z}{|z|}) \in \mathcal{N}(\mathbf{C}^2), \ \lambda > 0 \text{ and } \Phi_{\lambda}(z) = \phi_{\lambda}(z)$ for |z| = 1.
- (2) $\widehat{\Phi}_{\lambda}^{*}(w) = |w|^{\lambda + \frac{3}{2}} (\frac{2}{1 + |w|^{2}})^{\frac{3}{2}} \widehat{\phi}_{\lambda}^{*}(\frac{w}{|w|}) \in \mathcal{N}^{\dagger}(\widehat{C}^{2})_{0}, \ \lambda > 0 \text{ and } \widehat{\Phi}_{\lambda}^{*}(-\overline{z}) = -\overline{\gamma_{0}\phi_{\lambda}^{*}}(z) \text{ for } |z| = 1.$
- (3) $\widehat{\Pi}_{\lambda}(w) = |w|^{-\lambda \frac{3}{2}} (\frac{1 + |w|^2}{2})^{\frac{3}{2}} \widehat{\pi}_{\lambda}(\frac{w}{|w|}) \in \mathcal{N}(\widehat{\mathbb{C}}^2), \ \lambda < 0 \text{ and } \widehat{\Pi}_{\lambda}(-\overline{z}) = -\overline{\gamma_0 \pi_{\lambda}}(z) \text{ for } |z| = 1.$
- (4) $\Pi_{\lambda}^{*}(z) = |z|^{-\lambda + \frac{3}{2}} (\frac{2}{1+|z|^{2}})^{\frac{3}{2}} \pi_{\lambda}^{*}(\frac{z}{|z|}) \in \mathcal{N}^{\dagger}(\mathbf{C}^{2})_{0}, \lambda < 0 \text{ and } \Pi_{\lambda}^{*}(z) = \pi_{\lambda}^{*}(z)$ for |z| = 1.

References

[K] Kori, T., Dirac operators on S⁴ and on S³. In nite dimensional Grassmanian on S³.

University of Waseda, Shinjuku-ku, Tokyo