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ABSTRACT

A space 1is called supercompact if it has an open subbase
such that every cover consisting of elements of the subbase has
a subcover consisting of two elements. A space 1is called
normally supercompact ifiii: is has a normal open subbase with
the property. In this paper we prove that: (1). In a continuous
image of a closed Gb—set of a supercompagt space, a point is a
cluster point of a countable set if and only if it is the limit
of a nontrivial sequence; which answer questions asked by J. van
Mill et al. (2). A space is normally supercompact if and only it

homomeomorphism to a certain poset with the Lawson topology.
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- In this paper, we consider Hausdoff spaces only and if not
otherwise stated, subbase means subbase for closed sets. Let ¢
be a closed family of a space X, we say that

¢ 1is linked if SNS'#¢ for any S, S'€¥ ;

¥ is bimary if every linked subfamily has nonempty

intersection; and
¥ 1is normal if for every pair of S, S'€¥, SnS'=¢
implies that there exist T, T'€¥ such that
SNT=¢=S'NT' and TUT'=X.

A space 1is called normally supercompact if 1t has a normal
binary subbase[10]. A space 'is called supercomact if it has a
binary subbase[8]}. It is trivial that every supercompact sﬁace
is compact and every normally supercompact space is supercompact.
sl is supercompact but not normally supercompact[10]. Many
compact spaces, but not all, are supercompact. For ‘example, all
compact metric spaces are supercompace[5,13]; all continuous
images of compact ordered spaces are supercompact[4]. On the
other hand, closed Gs—sets of supercompact spaces are not
supercompact in ggnera1[3], nor continuous images of
supercompaét spaces[12]. Moreover, M.G.Bell gave an example of a
non-supercompact dyadic space (=a continuous image of 2K)[2].
Without loss of generality we can assume that every (normally)
supercompact spacé has a (normal) binary subbase which is closed

with Trespect <to arbitrary 1intersection énd hence, by the

Haudsorffness, every sigular point set is in the subbase.

"
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§1.

In 1982, E.K. van Douwen and J.van Mill proved in [6] that
in a continuous image of a supercompact space, at least one
cluster point of a countable sét is the 1limit of a nontrivial
convergent sequence in the whole space; and at most countable
many cluster points are not so. The result suggested to them the

following question:

Question 1.1.[6] Let Y be a continuous image of a supercompact

‘space (or just a supercompact space). If K is a countable

subset of Y, then is every cluster point of K the limit of a

nontrivial convergent sequence ?

Applying the result mentioned above, J. van Mill and C.F.
Mills proved in [11] that under a set theoretical hypothesis,

every infinite continuous image of a closed Ga—set of a

. supercompact space contains a nontrivial convergent sequence.

Then, they asked if the set theoretical hypothesis may be

dropped.

Question 1.2.[11] If Y 1is an infinite continuous image of a

closed Gs—set of a supercompact space, then does Y contain a

. nontrivial convergent sequence?

In this sectoon, we prove the next theorem which answers the

above two questions affirmatively.
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Theorem 1.1. Let Y be a continuous image of a closed Gs—subset
of a supercompac¢t space, and K a countable subset of Y. Then
evéry-cluster point of K is the 1limit of a nontrivial conver-

gent sequence in Y.

To show the theorem, we first give some lemmas. The first
two lemmas can be directly proved. Let N be the natural

numbers set.

Lemma 1.1. Let f: X—Y be a continuous mapping from a compact
space X onto a space Y and {AncX: neEN} a decreasing
sequence of closed sets of X. If néﬁAncf_l(y) for some Yye€Y,

then f(an)—fay for any aneAn.

Now let ¢ Dbe a subbase (note that subbase means subbase
for closed) for a compact X. We fix a point pe€X. For AcX,

let
J(A)=N{S€Y: peS and SNA=¢}.

If A={a}, we write J(a) 1instead of J({a}).

Lemma 1.2. Let ¢ be a subbase for a compact space X. and F
a closed subset of X, U an open subset. 'If FcU, then there

exist Sl' Sz, ceen Sn€9 such that .chluszu"'USnCU' In

particular, if x€U for some point x€X, then there exist Sl’

Sz' S, Sney such that xeslnszn...nsn and x€1nt(sluszu..;
USn) c Sluszu"‘USnCU‘
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Lemma 1.3. Let A, BcX. If for eVery Se¥ with pe€eS, SnA=¢
implies SNB#¢, then peA implies peB. In particular, if peA,

then J(A)={p}.

Proof. If pe¢B, then by Lemma 1.2 there exist Sy+ Sgv ..., S €9
such that peslnszn...nsn and
peint(sluszu. . .usn)csluszu. . .usncX\B. (1)

Since .peA, there exists Si such that SinA¢¢. Hence SinB¢¢,
which contradicts to (1). Now for any point q€J(A), we have
r€{ql}={q} since SNA®¢ 1implies q€S for every S€¥ with S3p.

Hence p=q.

Lemma 1.4, Let  E, ZcX be closed sets and C={cn: neNlcz a
countable set. If pEENC and ENC=¢, then one of the following
statements holds: |

(A): There exists an increasing sequence {An: neN} of
subsets of C such that ZnJ(An)¢E for all neN  but
ZnAENJ(An)CE'

(B): There exists a sequence {An:nEN} of subsets of C
such that CzﬁéNAn and ZnJ(An)¢E - but ZnJ(An)nJ(Am)cE for

all n, meN, n¥m.

Proof. Suppose that there exists no sequence of subsets of C
satisfying the conditions 1in (A)l Then we construct {An: neN}
so that for all neN and ceC\IUSHAi

ZnJ (A )<¢E,

ZnJ(An)nJ(c)cE,
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ck(n)EAnCC\iénAi’
where k(n) 1is the least k satisfying ckEC\}énAi'

In fact, if {Ai: i<n} have been defined satisfying the

required conditions then - U

.# 3 . re ] -
l<nAl (C, since, otherwise, _ pEAl for

some 1i<n .and hence Lemma 1.3 implies that ZnJ(Ai)cJ(Ai)={p}CE,

which contradict to the assumption. Since C is countable,

Ck(n)ec\(EUfénAi) and (A) does not hold, there exists a maximal
subset An of C\fénAi such that Ck(n)EAn ~and ZnJ(An)¢E.
Then for all CGC\fénAi’ we have ZnJ(An)nJ(c)cE. The

inductive definition is completed. It is clear that the sequence

{An: neN} satisfies the required conditions in (B).

Proof of Theorem 1.1, Suppose that Y and KcY satisfy the
conditions in ' Theorem and yeK\K; Let X Be é superéompact
space with a binary subbase ¢ and ZcX a closed- Ga~set, and
let f:Z—Y be a continuous mapping from Z onto Y. Then
there exists a countable set CcZ and p€Z such that f(C)=K
and peﬁnf—l(y). Clearly, E=f_l(y), Z and C satisfy the
requests in the last lemma. Hence there exists a sequence {An
neN} of subsets of C satisfying the conditions in (A) or (B).
Choose zn€ZnJ(An)\f_l(y). Then b{f(zn):kneN} is a sequence in
Y and f(zn)#y for all neN. If (A) holds, then Lemma 1.1
implies f(z )—Yy. If (B) holds; then, by Lemma 1.3, we have
that |
p€T§;T~H€N7. - (2)

1

ZnJ(zn)nJ(zm)cf' (y) (3)

for all n#m. To complete the proof of the theorem, it suffices



16

to show the following lemma:

1

Lemma 1.5, If D={zn: neN}czZ\f ~(y) satisfies (2) and (3), then

there exists a subsequence {zﬁ ,KEN} of {Zn’ neN} such that
Kk

Proof. Since Z 1is a Ga-set, let Z=f\{Uk: keN} for open

subsets‘ Uk (keN) of X with Uk+1CUk' Then, by Lemma 1.2,
for every KkeN there exist Sl' SZ’ - §m69 such that
peslnszn ...nsm
and
peint(sluszu...uSm)csluszu...usmcUk.
Since pe€D, there exists S, such that S,nD is infinite.

Thus {n: I(zn)cUk} is infinite for keN. Therefore, we can

inductively define {nk; keN} such that ny<n,<. .- and for keN
J(zn.)cUk. (4)
k
Then f(zn )—y. In fact, otherwise, there exists an open set
k
V3y in Y such that {k: f(zn )€V} is infinite. It follows
k
from f—l(y)cf_l(V) and Lemma 1.2 that there exist Ty Ty,
Tmey such that .
X\f_l(V)chUTzu. . .uTmcx\f'l(y) . (5)

Since {k: f(zn )¢V} is infinite there exists Ti such that
k

{k: z_ €T.} 1is infinite. Thus, we have
n i

f\{J(an): aneTi}



Hence, it follows from (3) and (5) that

Tinr\{j(zn )iz €T,)

Kk Ny
=T.NZnN{J(z_ ): z_ €T.}
1 Ilk I’lk 1
cT.nf 1 (y)

1
=¢.

On the other hand the family
{T,}v{J(z_ ): z_ €T.}
i n " nk i
is a linked subfamily of ¢. Hence,

T.nN{J(z_ ): z_ €T, }=¢
i ny ny i

since ¢ 1is binary (This is the only point in the proof where

we use the fact that ¢ 1is binary). Now a contradiction occurs.

Remark. For a nonisolated point ye€Y, let

t(y)=min{IAl: ACY\{y}. and A3y}.
In Theorem, we have proved that in cerfain spaces Y, if t(y)
is countable, then Yy 1is the 1limit of a nontrivial sequence in
Y. In fact, it is not difficult to extend the result to a
general case. We call ZcX to be a Gu—set if ‘Z=f\{UE: g<p} for

a decreasing open family {ng E<p}. Then we have

Let Y be a continuous image of a closed Gu—set of a
supercompact space and YEY a nonisolated point. If wu<cf(t(y)),

then y is the limit of a nontrivial a-sequence in Y for some

17
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limit ordinal ou<t(y).
From the statement the following corollary is obtained:

Corollary 1.1, If Y 1is a continuous image of a supercompact
space, then every nonisolated point in Y is the limit of a

nontrivial linear net.

The author is indebted to Professor Katsuya Eda for his

simiplifying the original proof of Theorem 1.1.

§2.
Let P be a partially ordered set (poset for short) and
AcP, we denote the supremum of A, if if exists, by supA or
supPA. If A={al, vaz,‘ c e, an}, then; we write a1Va2v...v a
instead of SupA. Similary, for infimum, by infA or

n

a1A85A. .. AL . The greatest element and the least element of P,
if they exist, are denoted by T and <1, respectively. Below,
we always assume that 1in a poset, every directed set has
supremum. For a,be€P, a 1is way-below to b, which is denoted
by a<<b if for every directed set DcP with supDzb, there
exists de€eD such that dza. If a<<a, then a 1is called compact
in P. For AcP, let (A={x€P: x<a for some a€A}. For a€eP, let
la=d{a} and va={x€eP: x<<a}. Duaily we define TA, ta and 2a.
P 1is called continuous poset if for every vxeP, ¥x 1s directed
and X=SUup¥x. Furthermore, if P is complete, then P .is

called a continuous lattice. It can be proved that a complete
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lattice 1is continuous if and only if it satisfies the distri-
butive law for arbitrary infimums and directed supremums([7,p.58].
Now we introduce a new concept. Let P be a poset.. DcP is
called relatively directed if for every pair . a,beD, there
exists x€P such that x=a,b. It is trivial that every set is
relatively directed in a poset containing the greatest element
and every directed set 1is relativly directed in any poset. A
poset L is called a compleitely distributive poset (CDP for
short) if
(CDP 1) every nonempty set has a infimum;
(CDP 2) every relatively directed set has a supremum; and
(CDP 3) for every family {A;: 1€I} of relatively directed
subsets of L, we have
%nf'supAi=sup{ @nf{f(i)}:‘fe_n Ai}.
i€l i€l i€l
It is trivial that completely distributive lattices (CDL for
short) are exactly CDP's with the greatest elements. Clearly, a
subset A 'of a CDP P 1is relatively directed if and only if avb

exists in P for every pair of a,b in A.

Lemma 2.1, Let L be a CDP and L*=LU{T}, where T . is the
added greatest element in L. Then L 1is a continuous poset and

* . . . . .
L is a continuous lattice in which ‘T 1is compact.

Proof{ It is followed from the defintion and Theorem 2.3 in [7,

p.58].
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Remark. L* is not necessarly a CDL, see the later example.

Lemma 2.2. For every CDP L and xe€L, ixclL is a CDL and is

closed with arbitrary supremums énd arbitrary infimums in L.
Proof. It is trivial.

For a poset P, me€P is called a molecule (In [7] it is
called co-prime) if for every a, b€P, m<avb implies that m<a

or m<b. The set of all molecules in P is denoted by M(P).

Lemma 2.3. For every CDP L, the following statements hold.
(1). M(L) 1is a continuous poset and for every x€L,
x=sup{meM(L): m<<x}.
(2). For any m€M(L) and a,belL, if m<<avb, then m<<a

or m<<b.

Proof. (1). Firét, we note that M(4x)=M(L)nix for all x€L. In
fact, if meM(ix) and a,b€L such that m<avb then m<xA(avb)
=(xAa)v(xAb) and hence m<xAa<a or m<xAb<b. Thus meM(L)nix.
The 1inversion is trivial. Secondly, it 1is followed from the
above lemma and 3.15 Theorem in [7. p.72] that for all xe€L
x=sup¢x{meM(¢x): m<<x}

=supL{meM(L): m<<x}.
In particular, for all meM(L), m=squ(L)¥mnM(L). It follows
that M(L) 1is a continuous poset.

(2). By (1) we have avb=sup{xvy: x<<a and y<<b}. Because
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¥a and ¥b are directed and m<<avb there exist X<<a and
y<<b such that m<xvy. It is followed from meM(L) that

m<x<<a or m<y<<b.

Let P be a poset. Set

o(P)={UcP: U=1U and P\U is closed with directed sups}.
Then o(P) is a topology on P (non-Hausdorff unless in some
speical case) which is called Scott topology[7]. Moreover, it is
proved that |

(1). If P 1is a continuous poset then {#x: x€P} 1is an
open base for o(P), [7, p.107].

(2). P 1is a continuous poset if and only if o(P) with
the inclusion relation is a CDL and then M(o(P)) 1isomorphis to
P[9].

The Lawson topology i(P) (see [7]) 6n P is the topology
generated by o(P)U{P\Tx: X€EP} as an open subbase. The
topological space (P,x(P)) 1is denoted by AP. Many well-known
topologies are the Lawson topologies :on natural orders. For

m is the Lawson topology on

example, the prodﬁct topology on I
the pointwise order, and more generally the interval topology
generated by {ix: xeL}u{tx: x€L} as a subbase on a CDL L is the
Lawson topology, see [7, p.187 and p.204]; for a locally compact

space, the Vietoris tdpology on the all closed sets 1is the

Lawson topology on the inversely inclusion order{7, p.284].

Remark. Unlike CDL, it is not necessary that the Lawson topology

and the interval topology coincide for a CDP.
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Example. Let L={0,1,2,...} and for a,beL, define a<b if and
only if a=b or a=0. Clearly, L 1is a CDP, and hence AL is
Hausdorff (see the following lemma) but the interval topology is

not Hausdorff.
Lemma 2.4. For every CDP L, AL 1is a compact Hausdorff space.

Proof. It is followed from Lemma 2.1 and [4, p.1468] that AL™ is
a compact Hausdorff space and AL 1is a closed subspace since T

is compact.
Our main theorem in this section is the following one.

Theorem 2.1. A space X 1is normally supercompact if and only if

X is homeomorphic to AL for a CDP L.

Proof. Necessity. Let X be a ﬁormally supercompact space with
a normal binary subbase ¢. As mentioned above, we can assume
that ¢ is closed with arbitrary intersection. Moreover, we
suppose that ¢¢¢ but Xe€¥. For AcX, let
I(A)={S€¥y: SoA}.

If A={a, b}, then I(A) 1is denoted by 1I(a, b). For a fixed
point +€X, the following partial order can be defined:

x<y if and only if I(;, x)cIl(+, y).
Then we have(see [10]):

Fact 1. For every x€X, ix=I(L, Xx)€Y;
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Fact 2. For every x, y€X, if =x<y then [x, yl=I(x, ¥y).
Fact 3. For every nonempty‘set, AcX, infA exists and
I(A)NnN {ia: aeA}={infA}.

Fact 4. For every S€¢, S=1S if and only if S34.
Lemma 2.5. For every relatively directed set AcX, supA exists.

Proof. Case 1. A={a,b,c} 1is a set of three points. Then the
family {I(avb, bve), I(bvec, cva), I(cva, avb)} is a 1linked
subfamily of ¢. Hence by ¢ being binary there exists XE€
I(avb,‘bvc)nl(bvc, cva)nI(cva, avb). Now we have only to verify
that a, b, cxx. Otherwise, for example, a<fx, then there Sl'

8269 such that

aes ianz=¢ and S,uUS_=X.

1’ 1772
Then there exist at least two elements in the set {avb, bvc,
cva}l which belong to S1 and hence, there exists at least one
belement ih the set which is greater than a and belongs to Sl'
Because Slaixal we have that Slaa, which contradicts to the
assumpations.

Case 2. A 1is finite. Suppose that n>3 and the statement
hold for all A with |Al=n-1. Now let A={al,a2,..;,an} be a
relatively directed set. Set Bé{alvaz, Bgy.e-s an}. Then
IBl=n-1 and B is relatively directed by Case 1. Thus supA=
supBbexists.

Case 3. For general case. By Case 2, we assume that A 1is

directed. Because X is compact the net {a, a€A} has a

cluster point X. Without 1loss of generality, suppose that
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x=1im{a, a€A}. Then we have X=SupA. In fact, if there exists
aOeA such that aoix, then aoelx and hence, by the normality
of ¥, there exist Sl, Szey such that

ao 1 ixn82=¢ and 81U82=X.

Then for every aeAnTao, we have aesl(otherwise aogaeslnixal

and hence aoesl) and hence x=1lim{a, a€A}=1im{a, aeAnTx}GS2

€S

since 52 is closed. A contradiction. On the other hand, if yeX
such that y2a for all a€A, then Acly. Hence x=1limA€ly since

ly=I(+, y) 1is closed, that is, axb.

Lemma 2.6. Let {Ai:iel} be a family of relatively directed
sets. Then

infsupAi=sup{inf{f(i)}: fe n Ai}.
iel i€l iel

Proof. Let ai=supAi and a=inf{ai: i€I}, Db=sup{inf{f(i)}:

_ i€l
fe W Ai}' It is trivial that a2b. Now suppose that a=b. Then
iel
ibn{a}=¢. By the normarity of ¢, there exist Sl’ Széy such
that

aesl, Sznib=¢ and SIUSZ=X.

Then for every 1€I, we have aies since aSai.

1
Case 1. AicS1 for some i€I. We consider the family
90={Sl}u{1(x, ai): xeAi}.
Then 90 is a linked subfamily of ¢ and hence (\90#¢. But
for every ye(\go we have xsySai for all xGAi by Fact 2 and

hence, from the definition of a;, ai=y€S A contradition.

1
Case 2. Otherwise. For every i€l, there exists f(i)esznAi.
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It follows that the family

{SZ}U{if(i): iel}

is 'a linked subfamily of ~ ¢ -hence there exists yeszn(\tf(i).
i€l
Then y<inf{f(i)}<b. Thus we have yesznib, which contradicts

i€l
to the assumptions.

Lemma 2.7. The topology on X coincides with a(X, <).

Proof. Because the two topologies are compact Hausdorff, we have
only to verify that every elemént of ¢ 1is closed in AX, that
is, for every S€¢ and every x€S, there exists a closed set T
in AX such that x¢T>S. Let Se¢ and Xx¢S. Then by the

normality of ¢ there exists S S, €¥ such that

1’ 2
xesl, Snsz=¢. and Slusz=X. |
Case 1. J-ESZ. Then Szaix and infSeS by Fact 3,4. It is
followed from San=¢ that SctinfS?x. Thus T=1infS satisfies

the required conditions.

1 Then we have x=11mX$xesl
because X is directed and Sl is closed in X (see the

proof of Lemma 5). A contradition. Thus ¥x¢S

Case 2. Lesl. Suppose that $xcS

1 that is, there

exists yE¥X\S It follows that x¢X\2y>S,oS since 'Sl=¢Sl.

1 1
Thus T=X\%y satisfies the required conditions since xy is

open in AX.

Sufficiency: Let L be a CDP. we at first define a conect.

BcM(L) is called a subase for L if for every Xx€L, x=sub{b€B:
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b<<x}. Then we have the following lemma:

Lemma 2.8. Let B be a subase for L. Then
9B={L\$b: beB}U{Tb: beB}

is a subbase for the topological space AL.

Proof. Let x€L.. Then for every Y€Ax, there exists z€L such

that x<<z<<y[7,p.47]. Moreover, from the definition of subbase,

there exist bl’ b2,...,bn€B such that
x<<zsblvbzv...vbn<<y.
(Note that bl’ b2<<y implies blvb2<<y.) Thus yexbln}bzn

...nxbnc$x. It follows that for every Xx€L, AXx 1is an union of

forms 1b,nib,N...N%b for b,, b,,..., b _€B. Moreover, it is
: 2 n 1 2 n

1
easy to verify that for all x€L, tx=N{tb: beB and bx<x}. Thus

9B is a subbase for AL.

Now we consider the case B=M(L). Then Lemma 2.3 implies
that M(L) is a subase for L. To complete the proof of the

theorem we have to show that ¢=¢ is binary and normal.. Let

M(L)
{L\&mi: i=1,2,..., n}U{ij: j=1, 2, ., 1}

be a linked finite subfamily of ¢¥. (It is possible that n or 1
is zero.) Then {xj: j<1} 1is relative directed since ijnij.¢¢

for j, j'51 and hence a=xlvx2v‘...vxl

It is ‘trivial that ae(\{ij: j<1}. Now we verify aeL\fsmi for

exists. (a=+ if 1=0).

all i<n. Otherwise, mi<<a=xlvx2v...VXl for some i<n. Thus by

Lemma 2.3 we have mi<<xj for some j<1, that is, (L\&mi)nij=¢,

which contradicts to the assumption. Because AL  is compact, we
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have that ¢ 1is binary. Last, we verify that ¢ 1is normal. Let
m, x€M(L) such that (L\#m)nTx=¢. Then m<<x and hence, by [7],
there exists m'€M(L) such that m<<m'<<x. Let Sl=L\&m' and
52=Tm . - Then Sl’ Szey and

SlUS =L, S,NTx=9¢, Szﬁ(L\$m)=¢.

2 1

Moreover, suppose that x, Xx'€L such that txntx'=¢. Then
N{tm: meM(L) and m<<x}Ntx'=TxNTx'=¢.

Since ¢ 1is binary, we have that tTmntx'=¢ for some m<<x. Now

let Sl=Tm and SZ=L\$m. Then we have that

S U82=L_ and S

1 Ntx'=¢, S ,NTx=¢.

1 2

Now some applications of the above theorem-can be 1listed.
First, we give charaterizations of CDP. »
Let I=[0, 1]. Then for any cardinal number m, the cube
Im, with the pointwise order, is a CDL, For a, b, cEIm, let
tr(a, b, c)=(aab)v(bac)v(caa).

A set AcIm is called third-convex if tr(a, b, c)eEA for all

a, b, ceA[10].

Theorem 212. For a poset L the following statements are
equivalent:

(1). L 1is a CDP;

(2). L satisfies (CDP1) and (CDP2), and ix 1is a CDL for
all xe€L; )

(3). There exists a CDL L" such that LcL” is closed for
arbitrary infimums and relatively directed supremums, and

M(L)=M(L7) .
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(4). L 1is isomorphic to a subset LO of some cube which

is closed for arbitrary infimums, and for any set AcLO if A

is relative directed in Lo then sup _A€L,..
. Im 0

(5). L 1is isdmorphic to a subset of some cube which is
third-convex and is closed with arbitrary infimums and directed

supremums .

Proof. (1)—(2) and (3)——(4) can be obtained from Lemma 2.2
and [7,p204], respectively; (4)— (1) is trivial.
(2)—(1). First, for every x€L. ~ and every relative
directed set AclL, because {y, where y=supA, is a CDL, we have
XASUpPA= (XAY ) AsupA=sup{xayAa: a€A}=sup{xaa: a€A}.
Secondly, for every family {Ai: i€l} of relatively directed

sets and a fixed element iOGI, let  x=supA; . Then it is

0
followed from x being a CDL that

inf{supAi}
iel
= inf{(supAi)Ax}
i€l
=inf {sup{aax: aeAi}}
i€l
=sup{inf{f(i)Aax}: fe 1 Ai}
iel iel
=sup{inf{f(i)}: fe n Ai}
i€l i€l
because inf{f(i)}sf(iO)SX for every fe€ W A..
jel iel
(1)—(3). By Lemma 2.4 M(L) is a continuous poset and hence
#

<
there exists a CDL L such that M(L) and M(L™) are
. " «
isomorphic, [9].(In fact, L"=0(L) as mentioned above.) Let

Fin .
fO:M(L)——aM(L”) be a isomorphism and f:L——aL# defined by
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f£(x)=sup ,{f,(m): msx ‘and meM(L)}.
L

since  M(4x)=M(L)nix we have that f£,IM({x): M(Ix)——M(Lf(x))
isl a isomorphish and hénce flix: Ix—if(x) is also a
isomorphism for ever& x€EL because 4x and {f(x) are CDL's,
[9]. It follows that f:L—%eL# is embeding and preserves
arbitrary infs and relatively directed sups.

(4)—(5). Suppose that x, y, z€L. Let A={xAy, YAZ, ZzZAX}.
Then A 1is relatively directed and hence tr(x, ¥y, z)=supAe€lL,
that is, L is third-convex.

(5)—(4). First, we note that for a, beL, if av: b

L

exists, then (5) can imply av mb=tr(a, b, ava)eL and hence
I

ava=av mb‘ Secondly, for every relatively directed finite set
I

A, by the inductive method for |Al, we have sup mAeL. In fact,
I .

if A={a, b, ¢} 1is a relatively directed set of three points,

then - sup A=tr(avb, bvc, cva)eL. (Note that av,b=av b.) If
1m L 1™

Ada,b 1is a relatively directed set of n-points for n>3, then

sup mA=sup In((A\{a, b})u{avb})elL by the inductive assumpation.
I 1

Last, for any relatively directed set A, by the above fact and

the assumpation in (5), we have supImA=supIm{a1Va2v...van: aieA

for 1i=1, 2, ...n}e€L.

Corollary 2.1. A topological space X 1is homeomorphic to a CDL
with the interal topology if.and only if there exists a binary
normal subbase ¢ for X and two points x, y in X. such

that X 1is the unique element in ¢ which containes x and Y.
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Corollary 2.2. [10] Every normally supercompact space is a

retract of its hyperspace of all closed sets.
Proof. It is a corollary of 3.9 Proposition in [7,p.285].

Corrllary 3.[10] Every connected normally supercompact space is

generalized arcwise connected and locally connected.

Proof. The first statement is a corollary of well-known Koch's
Arc Theorem (see [7,p.300]). In here we give a simple direct
proof. Let L be a CDP. Since the set of all Scott-open filter
sets ( A set U=tUcL is filter if it 1is closed with finite
infs)_is base for o(L)[7,p.107], we have only to verify that
V=B\(TxlUTx2u...uTxn) is generalized arcwise connected for all
Scott-open filter sets B and any xr, xz,..., xneL. Suppose a,
beV. Then aAbeV. Let Ca and Cb be two maximal chains in L
such that Cac[aAb, a] and Cbc[aAb, b]l. Then Ca’ CbCV and
Caan={aAb}. To complete the proof of this corollary we have
only to verify that Ca and Cb is order dense, that is, for
all x, yéCa , for example, and x<y, there exists zeCa such
that x<z<y. In fact, y<£x implies that there exists meM(L)
such that m<<y and m£x. Let Zy=XVm. (Note x,m<y). Then x<zosy.
To show that Ca is order dense we have only to verify that
zo¢y since Ca is maximal. Otherwise, m<<z=Xxvm énd hence,

m<<m since meM(L) and mfx. Thus m 1is a non-zero compact

element in L, which implies that AL 1is not connected since
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Tm=#m 1is clopen.

Lemma 2.9. For a CDP L, we have

(1). AL is metric if and only if there exists a contable
subbase in L. Hence, AL 1is metric if and only if AL# is
metric.

(2). AL 1is connected if and only if AL# is connected.

Proof.(1).It. can be directly showed by Lemma 2.8. (cf. I[7,
p.170])

(2). By the above corollary we know that AL is connected
if and only if there no exist non-zero compact element in M(L).

iy
Moreover, M(L) and M(L™) are isomorphic.

Corollary 4. [10] Let X be a connected normal "supercompact

space and XOEX. Then there exists a connected linearly compcat

order space J and a continuous mapping f:JxX—X such that

(T x)=x for all x€X and f(LJ, X)=X Furthermore, if X

J ’
is metrc then J=1I.

0"

Proof. Let X=AL for a CDP L such that
#

X0=*L. Let J be g

maximal chain in L and define f:JxX—X by

f(j, x)=jax.
Then f satisfies the required conditions. Furthermore, if X
is metric, it is followed from the above lemma that so is J.

Thus J=I.
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Lemma 2.10. If LcI® is closed with abitrary infs and directed
sups, then the topology as a subspace of m coincides with

x(L).
Proof. It is direct.

Corollary 2.5. [14] If X 1is a normally supercompact space,
then X can be embeded into I™ as a closed and thire-convex

subset.

Conclusion: There exists a example to show that the hyperspace
of normally supercompat space may be not supercompact{1l]. Thus
the continuous 1lattice with the Lawson topology may not be
supercompact. But Coroloaries 2.2, 2.3 and 2.4 hold for
continuous lattices with the Lawson topology, see [7], although
the proof of Corollary 2.3 given in present paper is invalid for

. the general case.
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