Countable size counterexamples for Tamamo's problem concerning stratifiable \(k \)-metrizable spaces

作新学院大学経営学部　酒井　政美（Masami Sakai）

問題1. stratifiable \(k \)-metrizable spaceはmetrizableか？

この問題に対しては既に反例が知られており、論文[4]の中で first countable, stratifiable, \(k \)-metrizable spaceであるけれども metrizableではない空間が構成されている。ここで注目したいのはこの反例が first countable という点である。つまり問題1は否定的であるが、少なくとも first countable になるという可能性は残されている。そこで次の自然な問題が生じる。
問題2. stratifiable κ-metrizable space は first countable か？

本稿ではこの問題2に対しても反例が存在することを示したい。実際、次の条件を満たす空間 M が存在する。

Example. 次の条件を満たす空間 M が存在する。
1. 可算濃度で、孤立点はただひとつ。故に M は stratifiable,
2. κ-metrizable,
3. non-trivial な収束点列をもたない。故に M は first countable ではない。

構成した空間が κ-metrizable であることを示すために次の定理を利用する。集合 Y に対して、P(Y) を Y の部分集合全体からなる集合とする。

定理 空間 X は X = Y ∪ P と表され、Y の各点は X の孤立点であり、P は孤立点ではない X の G₅-point とする。このとき次のことは同値。

(1) X は κ-metrizable,
(2) 次の条件を満たす写像 φ: P(Y) → [1,∞] が存在する。
(A) 各 \(\mathcal{F} \in \mathcal{P}(Y) \) に対して，\(F \in X \) で開集合であることにと
す \(\mathcal{Q}(F) < \omega \) が同値，

(\(F_1 < F_2 \) ならば \(\mathcal{Q}(F_1) \leq \mathcal{Q}(F_2) \))

(C) \(\mathcal{P}(Y) = \{ F \in \mathcal{P}(X) \mid \text{increasing} \} \) であり，各 \(F \) に対して
す \(\mathcal{Q}(F) = \omega < \omega \) であれば \(\mathcal{Q}(F_0) = \omega \)。

Example の構成

\(T \) を \(0 \)からなる有限列全体からなる集合とし，\(\mathcal{C} = \{ 0, 1 \}^\omega \) を Cantor 集合とする。各 \(t \in T \) に対して \(U(t) = \{ f \in \mathcal{C} : t \subseteq f \} \)
とおく。このとき \(U = \{ U(t) : t \in T \} \) は空でない clopen set からなる
る \(\mathcal{C} \) の base となる。\(Y \) を \(\mathcal{C} \) の clopen set 全体からなる集合と
すると，\(Y \) は可算であるから \(\mathcal{Y} = \{ V_0 = \varnothing \} \cup \{ V_m : m \in \mathbb{N} \} \) とかける。

\(\mathcal{C}_p (\mathcal{C} ; 0,1) \) を \(0,1 \) への連続関数全体に各点収束位相を
いた空間とする。\(\mathcal{C}_p (\mathcal{C} ; 0,1) \) の元と \(\mathcal{Y} \) の元は \(1 \) 対 \(1 \) に対応す
るから \(\mathcal{C}_p (\mathcal{C} ; 0,1) = \{ f_0 \} \cup \{ f_m : m \in \mathbb{N} \} \) とがける。ここで，\(f_0 \) は \(0 \) \nの定値関数，また \(f_m = X_m (V_m 上の特徴関数) \) である。

\(\mathcal{C}_p (\mathcal{C} ; 0,1) \) において，\(f_0 \) の近傍はそのままにしても以外の
各 \(f_m \) を孤立点にした空間を \(T \) とおく。

Claim 1 は \(k \)-metrizable。

（証明の概略）各 \(m \in \mathbb{N} \) に対して，\(V_m = U \cup U_m \) となる \(\mathcal{Y} \) の有限

部分集合 U_m を固定する。各 $A \in N$ に対して $L(A) = \{ f_m : m \in A \}$ とき \(Y = L(N) \) とおく。写像 $\phi : Y \rightarrow [\omega, \omega]$ を次のように定義する。

\[
\begin{align*}
\cdot \phi(\emptyset) &= 1, \\
\cdot \phi(L(A)) &\leq \omega < \omega & \iff \text{ある } (U_m) \in \prod_{m \in A} U_m \text{ が存在して,} \\
&\{U_m : m \in A\}\text{ の disjoint 部分集合は高々} \end{align*}
\]

このとき ϕ は定理の (a) (b) (c) を満たし、L は κ-metrizable となる。

論文 [1] により、$C_p(C;10,11)$ は Fréchet にはならないことと知られている。故に $C_p(C;10,11)$ の部分集合 E で、$\emptyset \in \text{E}-\text{E}$ を満たし、しかも E は \emptyset への non-trivial な収束点列をもたないもので、$\pi : L \rightarrow C_p(C;10,11)$ を恒等写像とすれば、$M = \pi(L \cup E)$ が求める空間である。

References

