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ON THE INSTABILITY OF THE UNIFORM
ROTATION OF A BODY WITH LIQUID INSIDE

A.A LYASHENKO

Department of Mathematics F aculty of Science Kyoto University
Kyoto 606 Japan

1. Introduction

The present work deals with the stability of a uniformly rotating body with a cavity
filled with an incompressible viscous fluid. Various statements of the problem of the motion
of a rigid body with a cavity filled with fluid have been discussed in the literature [1-5]. In
the present work we shall follow [4-5].

Given a rigid body G with a cavity ) entirely filled with an incompressible viscous
liquid. Let O be the center of mass of the entire system ”body+liquid”, Ozz,z3 be
an orthogonal system of coordinates rigidly connected with the body. We assume that
the undisturbed motion of the system relative to the point O be a uniform rotation of
whole system with constant angular velocity wges around the axis Oxz3. We shall examine
the perturbed motion assuming that its deviations from the unperturbed one are small.
Then in the rotating system of coordinates Oz ;2,73 the linearization of the Navier-Stokes
equations and the equations of moments with respect to the point O can be written as

follows [4-5]

ou dw 1
(1) a+2woe3xu+ﬁxr———;Vp+VAu+f
(2) divu=0
dw Ou
(3) J-E{+WOWXJ-G3+LU0€3XJ-W+p[/I‘XEdﬂ—l—cw)e;;X pzfrxudQ =M
Q Q

where
J-w=p,/rx(wxr)dQ+pb/rx(wxr)dG
Q G ’
is the inertia tensor of the entire system with respect to the point O. Here t denotes

. —-..——_——__) . . . . .
time; r = (z1,%2,23); p1, pp are the constant densities of the liquid and the body; v is
the kinematic viscosity of the liquid; u is a relative velocity of the liquid; w is a relative
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angular velocity of the body; p is a relative pressure; M(t) is a central moment of exterior
forces with respect to O; f(t,z) is a field of external force.
To complete the system (1)-(3) we consider the following boundary and initial conditions

(4) ufag =0

(5) u(0,z) = ue(z), w(0) = wy

As in [5] the closure in the norm of L2(2) of the set of all smooth solenoidal fields u,
satisfying the condition u-n = 0 on 9, will be referred to as the Hilbert space Jo(2).
Then equations (1),(2),(4) can be rewritten in the operator form [4-5]

(6) ‘2—‘; + Py (%V— x r> + vAu + 2iweTu = Pof

where Py is the operator of the orthogonal projection of space Ly(£2) onto Jo(Q2),
(7) Tu =:Po(uxe;), T=T%, oT)=][-1,1]
and A is the Friedrichs extension [5] of the following symmetric operator

Aog=-PoA , D(Ag)={ue WQ)|divu=0; ulsq =0}

The operator A is usually called Stokes operator [5].
Following [5] we denote

(8) v(t) = (u(t,z),w(t)) € H=Jo(Q) & R®

Then in the Hilbert space H system (1)-(5) can be written in the form of abstract Cauchy
problem [5]

9) INVH(CHBv=g(t) . 1) =((Pof)(t), M(2)
(10) v(0) = vy, v = (uo(z), wo)
where

Nv = u+P0(er),p1/rxudQ+J-w)
Q

C = diag(vA,I)
Zionu

Bv =
woes X (pl/rxud§2> +wo(egxJ - wH+wxJ-e3)—w
Q
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It is shown in [5] that if g(¢) satisfies Holder condition then for any vy € H there exists
unique solution v(t) € H of the problem (9),(10).

Consider the spectral problem corresponding to the operator equation (9). Let v(t) =
exp(—At)V , V € H; g(t) =0. Then V should satisfy

(11) . (C+B)V=ANV , VecH

Using the properties of the operators C, B, N it has been proved in [5] that:
(1) Problem (11) has discrete spectrum {A;}52,. Each eigenvalue );, j € N has finite
multiplicity.
(2) There exist positive constants Cy,C3 > 0 such that

(12) Re);>-C, ; |Im)\|<Cy , j€N

(3) The sequence of eigenfunctions and associated functions corresponding to the eigen-
values {);}32, is complete in H. '
In the present paper we shall consider the following problem: under what conditions

there exists an eigenvalue );; such that
(13) Re A;, <0

If there exists A, satisfying (13) then using results of [6] it can be shown that the uniform
rotation with the fixed angular velocity wge; of the body G with the fluid-filled cavity 2
is unstable.

2. Symmetry assumption

We assume that the boundary 0 is smooth enough and domains G, are invariant

with respect to the turn to the angle 7 about the axis Ox3. Exactly speaking, it means

that the following symmetry condition holds: '
(z1,72,23) € Q@ > (—z2,71,73) € D

(.1'1,132,563) € G <~ (~.’E2,.’L'1,IE3) € G

(S)

Consider the inertia tensor J. From (S) it follows that for any w = (w1, we, w3)

(14) J-w= (a0w1 , QW2 , bowg) = diag(ao,ao, bo) W

where

(15) ay = pi /(xf + :cg) dz, dz, d:c3 + pp /(:cf + 22) dzy dzy dzs
Q G

(16) by = 2/)1/37% dzqdzo dzs +2pb/wf dzidzradzs

Q G
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Denote

(17) co = by —ag=p /(a:% —z2)dzy drodrs + pp /(a:f — 22)dz; dzy dzs

Q -
It is easy to check that if A = 0 then (u, w) = «(0, e3) satisfies (11) for any a € C.
Therefore A = 0 is eigenvalue of the spectral problem (11). Let A # 0. Then (11) can be
rewritten as follows [7]:

18 vV'Au+ 2iTu+m ’Y+,Z P1u+ P2u+dP3u =7yu
v
_ v+ 1k v —1k
where
cy||? cs||?
(19) v= .)L , k= _& . U= z , m= _._._pl“ 1HLz(Q) . d= @.H 3”;42(9)
ag Wo 2a0 bo llcl”Lz(Q)

(20) Ci = Po((l,i,O) X I'), Cy = Po((l, —i,O) X r), C3 = Po((0,0,l) X I‘)

(u, ¢5)L,(0)
||Cj”%2(9)
Lemma 1 [7]. (ci,Cn)r,@) =0, kn€{1,2,3}, k#n; |cillL,) = llcllL@)-

It is easy to check that the following inequalities hold [7]
(22) -1<k<1, O<m<1, 0<md<1

Since wg > 0 then the spectral problem (11) has an eigenvalue A € C~ = {z € C| Rez < 0}
if and only if (18) has an eigenvalue y € C~. -

(21) Pju= cj,  j1=1,2,3, uelyR)

3. Necessary condition

Let v € C~ be an eigenvalue of (69), uy be a corresponding eigenfunction. Then (18)
implies

. vk + iy? 7k
v'(Auy, u,)L, + 2i(Tu,, uy)L, + m(1 — k) [Wllpluvlliz TTE k2 ||P2“~y||L2]
= (sl ) = P12, @) = mIP2us ]2, 0 - mdnpsuvniz(m)
Since A > 0, T = T*, v’ > 0 then using (22) and Lemma 1 we obtain
1 1
I(Au’Y7 u’Y)Lz + m(l - k)kR67 [”Plu‘Y”Lz ! +1 k|2 + “P2u‘Y”L2 I le]
= Rey (”u'Y”LQ(Q) - muplu‘Y“Lg(Q) - m“P2u7|IL2(Q) - md”P3u7“L2(Q))
< Revy (1 — max(m, md)) ||u.,ll%2(9) <0
As far as k € (—1,1), m > 0 then condition Rey < 0 implies
(23) k>0

which is a necessary condition for the existence an eigenvalue ¥ € C~. Henceforth we shall
assume k € (0,1).
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4. Instability criterion

We denote ‘ o _
Yt ¥t

P; +dP
L S

D(y, k) =
three-dimensional operator in Jo(£2). Then (18) can be written as follows:
(24) v'Au + 2:Tu + myD(v, k)u = yu
Using properties of A and applying usual érguments [5] it is easy to show that the operator

v'A +2iT has discrete spectrum {A;(¢')}32;. Since A* = A >0, T =T* and A7 is
compact then Re A\j(v') > v'A\1(A). Therefore for any v' > 0, v € C~ there exists

R(7,v) = (VA + 24T —4I)"
Thus for v € C™ equation (24) can be written in the form
(25) u+myR(y,v")oD(v,k)u =0
Applying the orthogonal projector P = Py + P + P; we can rewrite (25) as follows:

(26) Pu+ myPoR(y,v')oD(y,k)oPu=20
(27) I-Plu+my(I-P)oR(y,v)oD(vy,k)oPu=0

It is obvious that the system (26),(27) is solvable if and only if the equation (27) is solvable.
. Since P+mAyPoR(y, v')oD(~, k)oP is a linear three-dimensional operator mapping PJy(£2)
into PJo(§2) then (27) is solvable if and only if

(28) det H (cjs€n)Ly(0) +my(P o R(v,v") 0 D(v,k)c;j, en)r,(n) ”j,n=1,2,3 =0

We denote for v > 0,7 € C~

(29) . an(’% V) = (R(77 V)cj ) Cn)Lz(Q) ) j> n= 1,273

Lemma 2 [7]. Foranyy€C™,v>0,j5,n€{1,2,3},7#n

(30) bin(y,v) =0

From (29),(30) it follows that equation (28) can be rewritten as follows:

v+
<m>o=@mﬁﬂm+mv bm%wﬂ

v+ tk

—1

i) - lesl o + mibaa(r, o)

2 v
: I:HCZHLz(Q) + m77 —
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We denote for any v > 0, m,k € (0,1), y € C™

(32)

) .
2 Yt _

fl(’Ya v, ma k) = Hcllng(Q) + m77 + ikb”(% V)

)

Faty v ms ) = llealfy @)+ 2 = baa(,v)

—

L f3(77 v, m, k) = ”C3”%.2(Q) + m7b33(77 V)

Functions f;(vy,v,m,k), j = 1,2,3 are analytic in v € C~ for any v > 0, m,k € (0,1).
Since

lim |v]-[[R(y,v)|| =1
[v]—o0
~eC™

then for any v > 0, m € (O, 1) there exists r(v,m) > 0 such that

(33) fitv,v,mk)#0 , ~v€C™, |y]>r(y,m)

for any j =1,2,3, k€ (0,1).

Thus we obtain the following instability criterion:

spectral problem (18) has an eigenvalue v € C™ if and only if
f1(7’ V,a m, k) ’ f2(7, V’7 m, k) : f3(’7a VI’ mdv k) =0
All the eigenvalues v € C™ are situated inside the half-disk

{z € C™ | |z| £ max (r(v',m), r(v',md))}
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