ON THE INSTABILITY OF THE UNIFORM ROTATION OF A BODY WITH LIQUID INSIDE

A.A.LYASHENKO

Department of Mathematics Faculty of Science Kyoto University Kyoto 606 Japan

1. Introduction

The present work deals with the stability of a uniformly rotating body with a cavity filled with an incompressible viscous fluid. Various statements of the problem of the motion of a rigid body with a cavity filled with fluid have been discussed in the literature [1-5]. In the present work we shall follow [4-5].

Given a rigid body G with a cavity Ω entirely filled with an incompressible viscous liquid. Let O be the center of mass of the entire system "body+liquid", $Ox_1x_2x_3$ be an orthogonal system of coordinates rigidly connected with the body. We assume that the undisturbed motion of the system relative to the point O be a uniform rotation of whole system with constant angular velocity $\omega_0 \mathbf{e}_3$ around the axis Ox_3 . We shall examine the perturbed motion assuming that its deviations from the unperturbed one are small. Then in the rotating system of coordinates $Ox_1x_2x_3$ the linearization of the Navier-Stokes equations and the equations of moments with respect to the point O can be written as follows [4-5]

(1)
$$\frac{\partial \mathbf{u}}{\partial t} + 2\omega_0 \mathbf{e}_3 \times \mathbf{u} + \frac{d\mathbf{w}}{dt} \times \mathbf{r} = -\frac{1}{\rho_I} \nabla p + \nu \Delta \mathbf{u} + \mathbf{f}$$

$$div \mathbf{u} = 0$$

(3)
$$\mathbf{J} \cdot \frac{d\mathbf{w}}{dt} + \omega_0 \mathbf{w} \times \mathbf{J} \cdot \mathbf{e}_3 + \omega_0 \mathbf{e}_3 \times \mathbf{J} \cdot \mathbf{w} + \rho_l \int_{\Omega} \mathbf{r} \times \frac{\partial \mathbf{u}}{\partial t} d\Omega + \omega_0 \mathbf{e}_3 \times \left(\rho_l \int_{\Omega} \mathbf{r} \times \mathbf{u} d\Omega \right) = \mathbf{M}$$

where

$$\mathbf{J} \cdot \mathbf{w} = \rho_l \int_{\Omega} \mathbf{r} \times (\mathbf{w} \times \mathbf{r}) \, d\Omega + \rho_b \int_{G} \mathbf{r} \times (\mathbf{w} \times \mathbf{r}) \, dG$$

is the inertia tensor of the entire system with respect to the point O. Here t denotes time; $\mathbf{r} = (x_1, x_2, x_3)$; ρ_l, ρ_b are the constant densities of the liquid and the body; ν is the kinematic viscosity of the liquid; \mathbf{u} is a relative velocity of the liquid; \mathbf{w} is a relative

angular velocity of the body; p is a relative pressure; $\mathbf{M}(t)$ is a central moment of exterior forces with respect to O; $\mathbf{f}(t,x)$ is a field of external force.

To complete the system (1)-(3) we consider the following boundary and initial conditions

$$\mathbf{u}|_{\partial\Omega} = 0$$

(5)
$$\mathbf{u}(0,x) = \mathbf{u}_0(x), \qquad \mathbf{w}(0) = \mathbf{w}_0$$

As in [5] the closure in the norm of $\mathbf{L}_2(\Omega)$ of the set of all smooth solenoidal fields \mathbf{u} , satisfying the condition $\mathbf{u} \cdot \mathbf{n} = 0$ on $\partial \Omega$, will be referred to as the Hilbert space $\mathbf{J}_0(\Omega)$. Then equations (1),(2),(4) can be rewritten in the operator form [4-5]

(6)
$$\frac{d\mathbf{u}}{dt} + \mathbf{P}_0 \left(\frac{d\mathbf{w}}{dt} \times \mathbf{r} \right) + \nu \mathbf{A} \mathbf{u} + 2i w_0 \mathbf{T} \mathbf{u} = \mathbf{P}_0 \mathbf{f}$$

where \mathbf{P}_0 is the operator of the orthogonal projection of space $\mathbf{L}_2(\Omega)$ onto $\mathbf{J}_0(\Omega)$,

(7)
$$\mathbf{T}\mathbf{u} = i\mathbf{P}_0(\mathbf{u} \times \mathbf{e}_3), \quad \mathbf{T} = \mathbf{T}^*, \quad \sigma(\mathbf{T}) = [-1, 1]$$

and A is the Friedrichs extension [5] of the following symmetric operator

$$\mathbf{A}_0 = -\mathbf{P}_0 \Delta$$
 , $D(\mathbf{A}_0) = \{ \mathbf{u} \in \mathbf{W}_2^2(\Omega) \mid \text{div } \mathbf{u} = 0 \; ; \; \mathbf{u} \mid_{\partial \Omega} = 0 \}$

The operator A is usually called Stokes operator [5].

Following [5] we denote

(8)
$$\mathbf{v}(t) = (\mathbf{u}(t,x), \mathbf{w}(t)) \in \mathbf{H} = \mathbf{J}_0(\Omega) \oplus \mathbb{R}^3$$

Then in the Hilbert space \mathbf{H} system (1)-(5) can be written in the form of abstract Cauchy problem [5]

(9)
$$\frac{d}{dt}\mathbf{N}\mathbf{v} + (\mathbf{C} + \mathbf{B})\mathbf{v} = \mathbf{g}(t) \quad , \quad \mathbf{g}(t) = ((\mathbf{P}_0\mathbf{f})(t), \mathbf{M}(t))$$

(10)
$$\mathbf{v}(0) = \mathbf{v}_0, \qquad \mathbf{v}_0 = (\mathbf{u}_0(x), \mathbf{w}_0)$$

where

$$\mathbf{N}\mathbf{v} = \left(\mathbf{u} + \mathbf{P}_0(\mathbf{w} \times \mathbf{r}), \rho_l \int_{\Omega} \mathbf{r} \times \mathbf{u} \, d\Omega + \mathbf{J} \cdot \mathbf{w}\right)$$

$$\mathbf{C} = \operatorname{diag}(\nu \mathbf{A}, \mathbf{I})$$

$$2iw_0 \mathbf{T}\mathbf{u}$$

$$\mathbf{B}\mathbf{v} = \left(w_0 \mathbf{e}_3 \times \left(\rho_l \int_{\Omega} \mathbf{r} \times \mathbf{u} \, d\Omega\right) + w_0 \left(\mathbf{e}_3 \times \mathbf{J} \cdot \mathbf{w} + \mathbf{w} \times \mathbf{J} \cdot \mathbf{e}_3\right) - \mathbf{w}\right)$$

It is shown in [5] that if $\mathbf{g}(t)$ satisfies Hölder condition then for any $\mathbf{v}_0 \in \mathbf{H}$ there exists unique solution $\mathbf{v}(t) \in \mathbf{H}$ of the problem (9),(10).

Consider the spectral problem corresponding to the operator equation (9). Let $\mathbf{v}(t) = \exp(-\lambda t)\mathbf{V}$, $\mathbf{V} \in \mathbf{H}$; $\mathbf{g}(t) \equiv 0$. Then \mathbf{V} should satisfy

(11)
$$(\mathbf{C} + \mathbf{B})\mathbf{V} = \lambda \mathbf{N}\mathbf{V} , \quad \mathbf{V} \in \mathbf{H}$$

Using the properties of the operators C, B, N it has been proved in [5] that:

- (1) Problem (11) has discrete spectrum $\{\lambda_j\}_{j=1}^{\infty}$. Each eigenvalue λ_j , $j \in \mathbb{N}$ has finite multiplicity.
- (2) There exist positive constants $C_1, C_2 > 0$ such that

(12) Re
$$\lambda_i \ge -C_1$$
 ; $|\text{Im } \lambda_i| \le C_2$, $j \in \mathbb{N}$

(3) The sequence of eigenfunctions and associated functions corresponding to the eigenvalues $\{\lambda_j\}_{j=1}^{\infty}$ is complete in **H**.

In the present paper we shall consider the following problem: under what conditions there exists an eigenvalue λ_{j_0} such that

(13)
$$\operatorname{Re} \lambda_{i_0} < 0$$

If there exists λ_{j_0} satisfying (13) then using results of [6] it can be shown that the uniform rotation with the fixed angular velocity $w_0\mathbf{e}_3$ of the body G with the fluid-filled cavity Ω is unstable.

2. Symmetry assumption

We assume that the boundary $\partial\Omega$ is smooth enough and domains G,Ω are invariant with respect to the turn to the angle $\frac{\pi}{2}$ about the axis Ox_3 . Exactly speaking, it means that the following symmetry condition holds:

(S)
$$(x_1, x_2, x_3) \in \Omega \Longleftrightarrow (-x_2, x_1, x_3) \in \Omega$$
$$(x_1, x_2, x_3) \in G \Longleftrightarrow (-x_2, x_1, x_3) \in G$$

Consider the inertia tensor **J**. From (S) it follows that for any $\mathbf{w} = (w_1, w_2, w_3)$

(14)
$$\mathbf{J} \cdot \mathbf{w} = (a_0 w_1, a_0 w_2, b_0 w_3) = \operatorname{diag}(a_0, a_0, b_0) \cdot \mathbf{w}$$

where

(15)
$$a_0 = \rho_l \int_{\Omega} (x_1^2 + x_3^2) dx_1 dx_2 dx_3 + \rho_b \int_{\Omega} (x_1^2 + x_3^2) dx_1 dx_2 dx_3$$

(16)
$$b_0 = 2\rho_l \int_{\Omega} x_1^2 dx_1 dx_2 dx_3 + 2\rho_b \int_{G} x_1^2 dx_1 dx_2 dx_3$$

Denote

(17)
$$c_0 = b_0 - a_0 = \rho_l \int_{\Omega} (x_1^2 - x_3^2) dx_1 dx_2 dx_3 + \rho_b \int_{G} (x_1^2 - x_3^2) dx_1 dx_2 dx_3$$

It is easy to check that if $\lambda = 0$ then $(\mathbf{u}, \mathbf{w}) \equiv \alpha(0, \mathbf{e_3})$ satisfies (11) for any $\alpha \in \mathbb{C}$. Therefore $\lambda = 0$ is eigenvalue of the spectral problem (11). Let $\lambda \neq 0$. Then (11) can be rewritten as follows [7]:

(18)
$$\nu' \mathbf{A} \mathbf{u} + 2i \mathbf{T} \mathbf{u} + m \gamma \left[\frac{\gamma + i}{\gamma + ik} \mathbf{P}_1 \mathbf{u} + \frac{\gamma - i}{\gamma - ik} \mathbf{P}_2 \mathbf{u} + d \mathbf{P}_3 \mathbf{u} \right] = \gamma \mathbf{u}$$

where

(19)
$$\gamma = \frac{\lambda}{\omega_0}$$
, $k = -\frac{c_0}{a_0}$, $\nu' = \frac{\nu}{w_0}$, $m = \frac{\rho_l \|\mathbf{c}_1\|_{\mathbf{L}_2(\Omega)}^2}{2a_0}$, $d = \frac{a_0}{b_0} \frac{\|\mathbf{c}_3\|_{\mathbf{L}_2(\Omega)}^2}{\|\mathbf{c}_1\|_{\mathbf{L}_2(\Omega)}^2}$

(20)
$$\mathbf{c}_1 = \mathbf{P}_0((1, i, 0) \times \mathbf{r}), \quad \mathbf{c}_2 = \mathbf{P}_0((1, -i, 0) \times \mathbf{r}), \quad \mathbf{c}_3 = \mathbf{P}_0((0, 0, 1) \times \mathbf{r})$$

(21)
$$\mathbf{P}_{j}\mathbf{u} = \frac{(\mathbf{u}, \mathbf{c}_{j})_{\mathbf{L}_{2}(\Omega)}}{\|\mathbf{c}_{j}\|_{\mathbf{L}_{2}(\Omega)}^{2}} \cdot \mathbf{c}_{j}, \qquad j = 1, 2, 3, \quad \mathbf{u} \in \mathbf{J}_{0}(\Omega)$$

Lemma 1 [7]. $(\mathbf{c}_k, \mathbf{c}_n)_{\mathbf{L}_2(\Omega)} = 0$, $k, n \in \{1, 2, 3\}$, $k \neq n$; $\|\mathbf{c}_1\|_{\mathbf{L}_2(\Omega)} = \|\mathbf{c}_2\|_{\mathbf{L}_2(\Omega)}$.

It is easy to check that the following inequalities hold [7]

$$(22) -1 < k < 1, 0 < m < 1, 0 < md < 1$$

Since $\omega_0 > 0$ then the spectral problem (11) has an eigenvalue $\lambda \in \mathbb{C}^- = \{z \in \mathbb{C} \mid \operatorname{Re} z < 0\}$ if and only if (18) has an eigenvalue $\gamma \in \mathbb{C}^-$.

3. Necessary condition

Let $\gamma \in \mathbb{C}^-$ be an eigenvalue of (69), \mathbf{u}_{γ} be a corresponding eigenfunction. Then (18) implies

$$\nu'(\mathbf{A}\mathbf{u}_{\gamma}, \mathbf{u}_{\gamma})_{\mathbf{L}_{2}} + 2i(\mathbf{T}\mathbf{u}_{\gamma}, \mathbf{u}_{g})_{\mathbf{L}_{2}} + m(1 - k) \left[\frac{\gamma k + i\gamma^{2}}{\gamma^{2} + k^{2}} \|\mathbf{P}_{1}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}}^{2} + \frac{\gamma k - i\gamma^{2}}{\gamma^{2} + k^{2}} \|\mathbf{P}_{2}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}}^{2} \right]$$

$$= \gamma \left(\|\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} - m\|\mathbf{P}_{1}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} - m\|\mathbf{P}_{2}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} - md\|\mathbf{P}_{3}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} \right)$$

Since $\mathbf{A} \gg 0$, $\mathbf{T} = \mathbf{T}^*$, $\nu' > 0$ then using (22) and Lemma 1 we obtain

$$\nu'(\mathbf{A}\mathbf{u}_{\gamma}, \mathbf{u}_{\gamma})_{\mathbf{L}_{2}} + m(1-k)k\operatorname{Re}\gamma \left[\|\mathbf{P}_{1}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}}^{2} \frac{1}{|\gamma+ik|^{2}} + \|\mathbf{P}_{2}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}}^{2} \frac{1}{|\gamma-ik|^{2}} \right]$$

$$= \operatorname{Re}\gamma \left(\|\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} - m\|\mathbf{P}_{1}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} - m\|\mathbf{P}_{2}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} - md\|\mathbf{P}_{3}\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} \right)$$

$$\leq \operatorname{Re}\gamma \left(1 - \max(m, md) \right) \|\mathbf{u}_{\gamma}\|_{\mathbf{L}_{2}(\Omega)}^{2} < 0$$

As far as $k \in (-1,1)$, m > 0 then condition $\text{Re}\gamma < 0$ implies

$$(23) k > 0$$

which is a necessary condition for the existence an eigenvalue $\gamma \in \mathbb{C}^-$. Henceforth we shall assume $k \in (0,1)$.

4. Instability criterion

We denote

$$\mathbf{D}(\gamma, k) = \left[\frac{\gamma + i}{\gamma + ik} \mathbf{P}_1 + \frac{\gamma - i}{\gamma - ik} \mathbf{P}_2 + d\mathbf{P}_3 \right]$$

three-dimensional operator in $J_0(\Omega)$. Then (18) can be written as follows:

(24)
$$\nu' \mathbf{A} \mathbf{u} + 2i \mathbf{T} \mathbf{u} + m \gamma \mathbf{D}(\gamma, k) \mathbf{u} = \gamma \mathbf{u}$$

Using properties of **A** and applying usual arguments [5] it is easy to show that the operator $\nu' \mathbf{A} + 2i\mathbf{T}$ has discrete spectrum $\{\lambda_j(\nu')\}_{j=1}^{\infty}$. Since $\mathbf{A}^* = \mathbf{A} \gg 0$, $\mathbf{T} = \mathbf{T}^*$ and \mathbf{A}^{-1} is compact then Re $\lambda_j(\nu') \geq \nu' \lambda_1(\mathbf{A})$. Therefore for any $\nu' > 0$, $\gamma \in \mathbb{C}^-$ there exists

$$\mathbf{R}(\gamma, \nu') = (\nu' \mathbf{A} + 2i\mathbf{T} - \gamma \mathbf{I})^{-1}$$

Thus for $\gamma \in \mathbb{C}^-$ equation (24) can be written in the form

(25)
$$\mathbf{u} + m\gamma \mathbf{R}(\gamma, \nu') \circ \mathbf{D}(\gamma, k)\mathbf{u} = 0$$

Applying the orthogonal projector $P = P_1 + P_2 + P_3$ we can rewrite (25) as follows:

(26)
$$\mathbf{P}\mathbf{u} + m\gamma \mathbf{P} \circ \mathbf{R}(\gamma, \nu') \circ \mathbf{D}(\gamma, k) \circ \mathbf{P}\mathbf{u} = 0$$

(27)
$$(\mathbf{I} - \mathbf{P})\mathbf{u} + m\gamma(\mathbf{I} - \mathbf{P}) \circ \mathbf{R}(\gamma, \nu') \circ \mathbf{D}(\gamma, k) \circ \mathbf{P}\mathbf{u} = 0$$

It is obvious that the system (26),(27) is solvable if and only if the equation (27) is solvable. Since $\mathbf{P}+m\gamma\mathbf{P}\circ\mathbf{R}(\gamma,\nu')\circ\mathbf{D}(\gamma,k)\circ\mathbf{P}$ is a linear three-dimensional operator mapping $\mathbf{PJ}_0(\Omega)$ into $\mathbf{PJ}_0(\Omega)$ then (27) is solvable if and only if

(28)
$$\det \| (\mathbf{c}_j, \mathbf{c}_n)_{\mathbf{L}_2(\Omega)} + m\gamma(\mathbf{P} \circ \mathbf{R}(\gamma, \nu') \circ \mathbf{D}(\gamma, k) \mathbf{c}_j, \mathbf{c}_n)_{\mathbf{L}_2(\Omega)} \|_{j, n=1, 2, 3} = 0$$

We denote for $\nu > 0, \gamma \in \mathbb{C}^-$

(29)
$$b_{jn}(\gamma,\nu) = (\mathbf{R}(\gamma,\nu)\mathbf{c}_j, \mathbf{c}_n)_{\mathbf{L}_2(\Omega)} \quad , \quad j,n = 1,2,3$$

Lemma 2 [7]. For any $\gamma \in \mathbb{C}^-$, $\nu > 0$, $j, n \in \{1, 2, 3\}$, $j \neq n$

$$(30) b_{jn}(\gamma,\nu) = 0$$

From (29),(30) it follows that equation (28) can be rewritten as follows:

$$(31) \quad 0 = \left[\|\mathbf{c}_1\|_{\mathbf{L}_2(\Omega)}^2 + m\gamma \frac{\gamma + i}{\gamma + ik} b_{11}(\gamma, \nu') \right] \cdot \left[\|\mathbf{c}_2\|_{\mathbf{L}_2(\Omega)}^2 + m\gamma \frac{\gamma - i}{\gamma - ik} b_{22}(\gamma, \nu') \right] \cdot \left[\|\mathbf{c}_3\|_{\mathbf{L}_2(\Omega)}^2 + md\gamma b_{33}(\gamma, \nu') \right]$$

We denote for any $\nu > 0$, $m, k \in (0,1)$, $\gamma \in \mathbb{C}^-$

(32)
$$\begin{cases} f_{1}(\gamma, \nu, m, k) = \|\mathbf{c}_{1}\|_{\mathbf{L}_{2}(\Omega)}^{2} + m\gamma \frac{\gamma + i}{\gamma + ik} b_{11}(\gamma, \nu) \\ f_{2}(\gamma, \nu, m, k) = \|\mathbf{c}_{2}\|_{\mathbf{L}_{2}(\Omega)}^{2} + m\gamma \frac{\gamma - i}{\gamma - ik} b_{22}(\gamma, \nu) \\ f_{3}(\gamma, \nu, m, k) = \|\mathbf{c}_{3}\|_{\mathbf{L}_{2}(\Omega)}^{2} + m\gamma b_{33}(\gamma, \nu) \end{cases}$$

Functions $f_j(\gamma, \nu, m, k)$, j = 1, 2, 3 are analytic in $\gamma \in \mathbb{C}^-$ for any $\nu > 0$, $m, k \in (0, 1)$. Since

$$\lim_{\begin{subarray}{c} |\gamma| \to \infty \\ \gamma \in \mathbb{C}^- \end{subarray}} |\gamma| \cdot \|\mathbf{R}(\gamma, \nu)\| = 1$$

then for any $\nu > 0$, $m \in (0,1)$ there exists $r(\nu, m) > 0$ such that

(33)
$$f_j(\gamma, \nu, m, k) \neq 0 \quad , \quad \gamma \in \mathbb{C}^-, \quad |\gamma| \geq r(\nu, m)$$

for any $j = 1, 2, 3, k \in (0, 1)$.

Thus we obtain the following instability criterion:

spectral problem (18) has an eigenvalue $\gamma \in \mathbb{C}^-$ if and only if

$$f_1(\gamma, \nu', m, k) \cdot f_2(\gamma, \nu', m, k) \cdot f_3(\gamma, \nu', md, k) = 0$$

All the eigenvalues $\gamma \in \mathbb{C}^-$ are situated inside the half-disk

$$\left\{z\in\mathbb{C}^{-}\mid\left|z\right|\leq\max\left(r(\nu',m)\,,\,r(\nu',md)\right)\right\}$$

Acknowledgement. I would like to express my thanks to Professor T. Nishida for bringing this problem to my attention and for helpful discussions. I also wish to thank Japan Society for the Promotion of Science for the opportunity to visit Japan and to conduct my researches in Kyoto University.

REFERENCES

- 1. Chernous'ko F.L., Motion of a rigid body with cavities containing a viscous fluid, Moscow, 1968. (Russian)
- 2. Stewattson K. and Roberts P.H., On the motion of a liquid in a spheroidal cavity of a precessing rigid body, Journal of Fluid Mechanics 17 (1963), no. 1, 1-20.
- 3. Greenspan H.P. and Howard L.N., On a time-dependent motion of a rotating fluid, Journal of Fluid Mechanics 17 (1963), no. 3, 385-404.
- 4. Ngo Zui Kan, On the rotation of a rigid body with a cavity filled with viscous liquid, U.S.S.R. Computational Mathematics and Mathematical Physics 11 (1971), no. 6, 161-172.
- 5. Kopachevsky N.D., Krein S.G. and Ngo Zui Kan, Operator methods in linear hydrodynamics: Evolution and spectral problems, Nauka, Moscow, 1989. (Russian)
- 6. Yudovich V.I., The linearization method in hydrodynamical stability theory, Translations of Math. Monographs, 74, 1989.
- 7. A.A.Lyashenko, On the instability of a rotating body with a cavity filled with viscous liquid, To appear in Japan Journal of Industrial and Applied Mathematics.