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WELL-POSEDNESS AND SINGULAR LIMITS IN THE
THEORY OF COMPRESSIBLE INVISCID FLUIDS
H. BEIRAO DA VEIGA

Centro Linceo Interdisciplinare - Accademia Nazionale dei Lincei - Roma

INTRODUCTION.The author’s talk at the RIMS Symposium was divided in two

parts. In the first one we have considered the problem of the strong well
posedness, in Hadama.rd’s sense, for nonlinear hyperbolic equations and
systems. In the second part we have considered the problem of the
incompressible limit for the compressible Euler equations. Inv this note we put
the accent on the first part, giving a concise explanation of its main ideas.
The second part consists o‘n a description of the results proved in reference

[BV8].

PART 1

1. PRELIMINARIES. Here, we describe a method for studying the

continuous dependence (in the strong norm) of solutions to nonlinear equations
on the initial data, ron ‘the esternal forces, and on the structure of the
coefficients. It applies as well to Cauchy and mixed problems, and to higher
order equations. For problems (2.1) and (4.1) below, it establishes the
continuous dependence of the solution u (in the i‘s’T(Hk) norm) on the initial
data f (in the H® norm) on the "external forces" F (in the Zi(Hk) norm) and on
the coefficient A(:) (in the c® norm on ‘ compact subsets of R™). The crucial
point is, however, related to the continuous dependence of the solutions to
linear problems on the coefficients. This method was introduced in references
[BV3] and [BV4] and was applied to some other problems in references

[BV5],[BV6]. In reference [BV8] it was partially used in order to show strong



convergence of solutions to singular limit problems. The method is technically
and conceptually very simple. By this reason, it is easily adaptable to a
class of problems that seems to us larger than that covered by the other
methods known in the literature. The simplicity of the method makes convenient
its application case by case. In fact, the very readable proofs given in the
sequel can be pleasantly adapted to particular problems in which the reader
could be interested in.

Here, we will illustrate our method by considering f irst order symmetric
hyperbolic systems. It is convenient to begin by considering the Cauchy
problem having, however, the mixed problem also in mind. So, let us consider

the symmetric hyperbolic system

(1.1) du+ A(u) u=F in Q_, u(0) = f ,
t x T

n
(u,..,u), A= YAW 8 u,
m X

where QT = [0,T] x R" , u .
i=1 i

and the Ai(u) are m X m symmetric matrices with coefficients a' e(-) of class

q,

Ck(lRm;iR), i=14....n,qf=1....m. In the following, k>1 +n/2 is a

fixed integer. Assume that f e H*= H*R") and that F e 22 (H*). We denote by

0
|| " 2 the canonical norm in He. Other notations are :
- 2 ¢ 2 -
g 1) = o™ 5 ffah = awhiomHh
j=0 Jj=0
2 £ 3 2 | 2 2
Hulllg = I [8ely s [1]ulllp = ess sup [{lu@]]],;
j=0 0St=T

T
[uly | EJ || Juw)] ][} dt.
]

Next, consider the family of problems (v € N)
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(l.l)v

3uv+A(uv)6uV=Fv, uv(0)=fv,
t v x

where Av(-) , T v, and F’ are as A(-), £, and F above. Assume that

(1.2)

(1.3)

on compact subsets of R™. Under the above hypothesis there are T > O and C > O
such that the problem (1.1) has a unique solution u € €T(Hk) (it would be
sufficient here to assume that u € 2:(Hk) since continuity follows then easily
by applying the estimates proved in the sequel). Upper bounds for T ! and for

C depend (non decreasingly) on the norms |f ||k and [F]k T and on the C* norms

of the matrices Al(°) on a fixed compact set that strictly contains the set

{f (x) : x € IRn}. By applying this result to the system (l.l)v, under the

hypothesis (1.2),(1.3),

lim |- f| =0 , lim [F-F] =0 ;
v->0 v->0 ''o

lim A () = A() in C*,
v->0

0

of v. In particular

(1.4)

(1.5)

for each & > 0. In bounded domains one also has u%su in .‘E:(Hk) with respect to

the weak-* topology. These convergence results are unsatisfactory.

eI, = C » ¥V ven

It readily follows that lim | - u||° ;=0 and, by interpolation, that

v->0

. 14
lim |||u _ulllk_ﬁ,'r =0 ’
Vv->0

since the solutions u and u” belong to B’T(Hk). the natural result is

(1.6)

From (1.6) it follows, in particular, that when the solution u(t) exists on

. v
lim |||u—u|||k,T = 0.
V->0

it follows that the constants T and C are independent
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[O,T*], for some T‘, then (for sufficiently large values of v) the solutions
v’ exist on [O,T*] and satisfy (1.6) on [0,T*]. This results are well 'known,
at least if AY = A. However, the particular problem treated here is used only
as a vehicle for illustrating the main ideas. In the next sections we will
prove (1.6) for the above nonlinear problem and for related linear and mixed
problems.The proofs can be done directly to the nonlinear problem. However,
since the results for linear problems are interesting by themselves, we study

the linear problem and then apply the results to the nonlinear problem.

2. THE CAUCHY PROBLEM.Let us consider the linear systems

(2.1) ' su+Altx) du=F u) = f ,

v

2.1) auw +A(t,x)au =F , J0) =1,
v t v x

where v € N. Notations are similar to that in section 1. Now, A(u) is replaced

by A(t,x), and so'on. We assume that A’Av € 2: (H*) and that
o

2
2.2) A, = ¢ . ¥ onen.

Moreover, we assume that f,f'e Hk, that F,Fve 2: (Hk), and that ||fV||k = C and
0 .

['Fv]k ; =G, where C is independent of v. More careful manipulations show
o

that we can replace 2:_ and .‘80,: by 22 s, P> L
0 0 ]

Differentiation of (2.1) with respect to xj yields

8 (0 u)+ A(t,x) 8 (8 =08 F-0 (Alx,t)) 3 u ,
t X X X X x X
(2.3) . ) J ]

(8 u)(0) =206 f.
X - X
j E

By setting U = (6x u,...,ax u, ¢=a8f=(@6 f,..,8 f), and Als diagonal

1 n 1 n

bloc matrix (Al,...,A‘), where the matrix Al is repeated n times, one shows
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that U (nete that U € ET(Hk—l)) solves, by the construction, the system
(2.4) 3tU + A(t,x) axU =6 , UO)=¢ ,

where, by definition,

®=08F -(8 At,x)) du.
x x x

Note that ¢ € Hk—l, ® e .‘8: (Hk_l). We do not write the detailed expression of
0

6x Alt,x) since the only fact used in the sequel is that each of its single

element has the form (6x a; 8(t,x))ax u, for some integers
S P

i,p,j € I1,n], q,¢ € [1,m].

Similarly, one gets from (2.1) (notations are obvious)

| 4

v < v v v
(2.4)V _ au” + Av(t,x) auU =90 , U (0) =¢ ,

4

"
o]
I—.)

[

~~
[s}]
]
©

o]

<

A

where o = aF’- (8 A (t,x) 84 , @ and
x x PV x

Ali) = diagonal bloc matrix (Al,...,Al). The Av satisfy (2.2). Next, for each

e > 0 we fix ¢ € H* and 6% € Jei (H*) such that
[¢]

(2.5) [o%- ¢lZ, == . 1&°-8 _ =se ,
0

and we consider the solution US of the problem

(2.4), a,U% + Alt,x) 3 U° =8, U%(0) = ¢° .

Since A € .‘E: (HY) it follows that U® € f-?T (H*). Note that an upper bound for
0 0
the norm | | |Ue| | |k ; depends only on £ and T  and on the given functions ¢,%,

and A. Hence, it depends only on e,To,f ,F, and A. We write, for convenience,

€ 2 =
(2.6) |||U ”l"'To = Cle,T; f,F,A) = Ale).
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Taking the difference, side by side, between equations (2.4)v and

(2.4)8 we get

8 (UY-U%) + A 8 (UV-US) = &¥- & + (A-A )3 US,

t V x V x
2.7

(UY- U®)0) = ¢¥-¢% .

The usual Hk—l—energy estimate gives
v . £ 2 v g2 vV €2 ~ A e]?
-S| |2, = ¢ {u¢ ST 0 [(A—AV) 5.U ]k_m} ,
where C depends on To' Hence

28 |||W-uHw|]]Z sc {e + ool _+ 18701+

.t 2 € 2
s A-A P [|]8U |||k_m}.

vk-1,t

On the other hand (recall that k-1 > n/2)

2
V_g12 V_F)? :
[6"-01>_ = IF _F]k,t+[ax(A_AV)]k—l,tl ol et

k-1,t
+ oAl J8, )] .
Hence,
29 |[|W-uHw|]||Z =c {e + e7£|2 + [FV‘F]:,T +

2 v .2
+ [AV_A]k,t + [u -—u]kt

2
+ Ale) [AV—A]k_l,t} :

The above calculations, if (2‘4)1) is replaced‘ by (2.4), yield

(2.10) [ w-uSw|||Z =ce.

Hence |H(UV—U)(t)| | ]E_l is bounded by the right hand side of (2.9). Since

this quantity is equivalent to || |(uv—u)(t)| | Ii, one has, for each t € [0,T]

(2.11) || -ww]]]2=c {e + [eV-f |2 HFY-FI
]
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2 2
+ [AV—A]k,t + A(e) [AV_A]k—l,t} .

where the term C [uv—u]i . Was previously df'oped by using Gronwall’s lemma.

This proves the following result :

THEOREM 2.1. Assume that (2.2) holds. If f,fv € I-lk and if

F.F e 2; (Hk), then the solutions u and u’ of the linear problems (2.1) and
0

(2.1)v satisfy the estimate (2.11). In particular, if (1.2) holds and if

. 2
(2.12) lim [AV_A]k,T =0

v—=>0

then, as v —ww, g converges in the G’T (H*) norm to u, i.e. (1.6) holds.
0

In fact, given o > 0, we fix €, = 80(0') in equation (2.11) in such a way
that C €, < ¢/2. Since A(eo) is a fixed quantity, the desired result follows.
Consider now the nonlinear problems (1.1) and (1.l)v. One has the

following results

THEOREM 2.2. Under the hypotheses (1.2) and (1.3) the solutions of the

nonlinear problems (l.l)v converge in the €T (H*) norm to the solution u of
’ 0

the nonlinear problem (1.1}, i.e. (1.6) holds.

Proof. We assume, for convenience, that Av(-) = A(-), V v € N, leaving
to the reader the proof when this assumption is not fulfiled. Define

A(t,x) = A(u(t,x)), Av(t,x) = A(uv(t,x)). The estimate (2.2) holds for T°= T,

2

due to (1.4),more6ver [A(uv)--A(u)lzt =C [uv—ulc ¢

for £ = k, since A(:) is

k
of class C" on compact sets. Hence, one has
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(2.13) | [w’-ww] ] |2 = c {e + €7t % FU-FIE + Ale) tu-ull_ t} .

where the term C [uv—u]lz(’t was previously droped by using Gronwall’s lemma.
Dependence of Ale) on A(t,x) becames (since A(t,x) = A(u(t,x))) dependence on
u, hence dependence on the fixed functions f,F, and A(-). The desired result
follows now trivially from (2.13), as in theorem 2.1. Note that
[uV-u)? — 0 as ¢ — 0; see (1.5). o

k-1,T

THE MIXED PROBLEM.Hyperbolic mixed problems on open sets Q with

regular, compact boundary can be, very often, reduced to the half-space case

IR: = {x e R" = X > 0}. According to our aim, emphazising the basic points in
our method, we assume here that Q = IR:. By this same reason we will consider a

boundary condition Mulz = 0, where M, a p x m matrix (p = m), has constant

T

coefficients and rank p.
Notations are that used in the previous sections, by simply replacing R"

by R". We set T E.{x eR": x = 0} , £ =[0,T] xT.
+ n T

The main strategical difference between the proofs for the Cauchy problem
and the proofs done below for the mixed problem follows from the fact that for
mixed problems, the system (2.3) is not closed. However, differentiation of
the boundary conditions with respect to x, j =1, , n-1, gives boundary

J

conditions on 6xu that make the corresponding system complete. This argument
J

fails for the normal direction xn. However, it works for the t direction.

Moreover estimates for ax u,...,ax u, atu yield estimates for Bx u provided
1 n—1 n

that the boundary matrix A" is non singular on the boundary ZT. On the other
hand, the main technical difference between the two problems is due to the
appearance of compatibility conditions for the mixed problem.

As for the Cauchy problem we start by studying the linear problem. Let us
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consider linear systems

(3.1) du+ Alt,x) du=F, uw0)=f, Mu =0,
t x IZT
and
(3.1) au'+ A (tx) au =F, o) =, M =0,
v t v x |ZT

where A,Av,f ,f v,F,Fv are as in section 2, provided that IR: replaces R" in all
the assumptions, equations and definitions. We suppose that the matrices

Al,A]l) (i=1,...,n) are symmetric; that there is a positive constant p such that
(3.2) |detA”| > p and |detA’| >p , VoeN,

on ZT ; and that the set ¥ = {v eR": Mv = 0} is maximal non-positive with
o : .

respect to A"(t,x) and A:(t,x), for each (t,x) € ZT . These assumptions are
0

done just for fixing ideas; in fact the only essential assumption is the

existence of regular solutions u € £ (H,) satisfying the classical Hz—energy
T, L .

estimates, for ¢ = k-1,k. Finally, we assume that the couples (f,F) and
(f v,Fv) satisfy the compatibility conditions up to order k-1 with respect to
the systems (3.1) and (3.l)v respectivelly.

Since H* ¢ Cl’a, for some a > 0, it readily follows from (2.2) and (4.2)

that ldetAnl > u/2 and |detA:;| > w2 in a neighbourhood S = of X,
o

independent of v. This leads to consider a cut-off function ¢ = ﬁ(xn), X = 0,
depending only on X, which is equal to.1 in a neighbourhood of x = 0 and
vanishes far f rom the boundary. Since‘ the main point is the regularity up to
boundary, there is no inconvenient in assuming that (4.2) holds on the whole

domain QT = [O’To] x Q.
)

Let us go into the proof of theorem 3.1 below. Together to the equations

(2.3) for j =1, ..., n-1, we also consider the equation



at(atu) + A(t,x) ax(atu) = atF - (atA(t.x)) Bxu R
(3.3)
(8, w)(0) = F(O) - A(O,x) 8 f=48f ,
t x t .
obtained from equation (3.1) by differentiation with respect to t.

Differentiation of the boundary' condition (3.1) 3 yields

(3.4) M(c‘:Jx U)IZ =0 , j=1,...,n-1 ; M(atU)|2 =0.
3 T T
0 0
Set, by convenience, 8 = (8 ,...,0 ,0), and define U =38 u (i.e.,
T x x t T
1 n—1
U=@8 u, ..., 3 u, du)), ¢ =438 f, and
x x t T
1 n—1
(3.5) o = 61_F - (6TA(x,t)) Bxu .

Set also M = diagonal bloc matrix (M,...,M), M repeated n times. Equations

(2.3) for j=l1,...,n-1, (3.3) and (3.4) can be written in the abreviate form

~

(3.6) atU+A(t,X) axU=<I> . U0)=¢ , MUlz =0 ,
T
0

that corresponds to (2.4). By replacing in the above arguments the system

(3.1) by the system (3'1)1) we get

, Uo) = ¢, MU"|Z =0,
T

0

(3.6) au” + A (t,x) 3 UV = ¢¥
v t | 4 X

where Uv,<I>v and ¢V are defined in the obvious way.By' the construction, the

couples (¢,8) and (¢v,<I>v) satisfy the compatibility conditions up to order k-2

for the system (3.6) and (3'6)1)' Next, we prove (2.9) and (2.10) just as done

in section 2. The construction of the couples (¢€,‘I>8) e H* x 2;2, (H*) must be
0

done here much more carefully. In fact, besides (2.5), each couple must
satisfy the compatibility conditions up to order k-1 for the system (2.4)e

s = 0. See [BV3], proposition 4.1.

endowed with the boundary conditions M USI
T

Equation (2.9) and (2.10) show that

125
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n—1
2 v 2
@7 |]]aw-ww| ||, + ,El |||6xj(u ~| || =

v 2 v 2 2 14 2 2
scC {e + Je=£ )% IF L p 1AL ol v Ae) 14,0A) t}.

k-1,

’

Finally, we use the equations (3.1) and (3.1)v to express ax (u-u) in terms
n

of the other n first order derivatives of uw-u. This is done by taking into

n-1
account the hypothesis (3.2). One has 8x u=(a"" [ ZAjaxu -6tu - F], and
J=1 J

n

similarly for 8 v readily follows from the expression of ax (uv—u) that
X
n n

2 2
(3.8) l]a, w-wiw]||[%, =c [| |18, -we) | [ |2, +
n

n-1
+ T |lle W-ww|| |2 + |||@a-aw]] ]2 +
J=1 J

s [ HE-Po] |2, + |||(u"-u)(t)|||§_1] .
Hence, by (3.7),

(3.9) @ -ww]]|? s ¢, [e - Jf-e)? +
(4]

v 2 v 2 [ %4 2
* IR+ 0T+ AeA —A]k_l,t] ,

for each t e [0,T0]. Note that ||| - |||2k_1.r = CT[ . ]ET . In equation
o 0 "o

(3.9), the term [uv—u]: . was previously droped by using Gronwall’s lemma.
This estimate corresponds to (2.11), in section 2. By using (3.9) and by

arguing as in section 2 for proving the theorems 2.1 and 2.2, one proves here

the following results.

THEOREM 3.1 Assume that (2.2) and (3.2) hold and assume that the

couples (f,F) and (fv,Fv) belong to H* x .‘Zf_ (H*) and satisfy the compatibility

0



conditions up to order k-1 for the systems (3.1) and (3.1)v respectivelly. Let

u and u, be the solutions of these linear systems. Then, (3.9) holds. In

particular, if the assumptions (1.2) and (2.12) are satisfied, then (1.6)

holds.

THEOREM 3.2 Assume that A(:) and Av(-) are as in section 1 and that M

is as above. Assume that the matrices A"(v) and A:(v) are non singular for

each v € ¥ and that the set ¥ is maximal non-positive with respect to A"(v)

and A:(v), for each v € ¥. Assume that the couples (f,F), (FV,FV) belong to

k

H x 2: (H) and satisfy the compatibility conditions up to order k-1 for the

0

systems (1.1) and (1.1)v respectivelly, endowed with the boundary conditions

M ul =0 and M uTz = 0. Finally, assume that (1.2) and (1.3) are satisfied.

T

2
T

Let u and u” be the solutions of the systems (1.1) and (l'l)v endowed with the

above boundary conditions. Then (1.6) holds.

Remark. We want to explain the reason that leads us to work on the
systems (2.4) and (2.4)v instead of working directly on the systems (1.1) and
(l.l)v. At this regard it is more significant to consider the direct approach
to the nonlinear problem (i.e., without passing through the linear approach).

In this case, instead of (2.4), (2'4)1) and (2.4)8 one has

(3.10) atU + A(U) BxU =6 , U =¢ ,
(3.10) ath + A(UY) axU" =¢ , U%0) =¢",
and

(3.10)_ atUe + A(U) aer =¢° , U%0) =¢°%,

where & = 9 F ~ (8 A(w)) 8 u, ¢ = 8 f and similarly for 8” and ¢”. Here % and

¢° are defined as done before. Next we estimate ||{(UV—U)(t)| | [E_l by

127
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following the proof done in section 2 for the linear Cauchy problem (with
obvious modifications borrowed from the extension to the nonlinear problem).
v

Let us try to follow similar arguments directly for u and u’. So,

consider the systems
(3.11) atu + A(u) axu =F , uwo0)=f |,

(3.1) su” + Ay 80 =F , W0 =1,

and the auxiliar system (that corresponds here to (3.10) e)

('3.12)8 au® + Aw) 8u° =F° , 0)=1° ,

where £° e H', F® e £2H"") and [f°f|Z =, [F*-FIZ =e. The system
(3.12)8 is not useful since the solution u®(t) does not belong to H''. We can

try to overcome this obstacle by considering the alternative auxiliar system
(3.13) a,u” + AW®) 4.0 = F° , uf(0) = %,
Note that this device requires an extra-regularity for the coefficients A(-).
Now, | -] |2 = | ][50 ]2+ |]]a-wm]|]]2 on
estimating the first term in the right hand side of this last inequality (by

taking the difference between equations (3.11)V and (3.13) and then by

applying to the solution u’-u® the Hk—energy estimate) one gets

v gy 2 €_11? 1112
DI = e {or ool 1IE, )

since

[A(ue)—A(u)]k_1 ;=C [ue—u]k_1 .- At this'point we need to show that

14

. € .2 2
(3.14) éirfo[u “ul oy e e =

This can be proved for the Cauchy problem and for some mixed problems that do

not require compatibility conditions (as the Euler incompressible equations)
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by making a particular choice for the couples (f C,Fe). This can .still be done
for some particular mixed problems that require a very small number of
compatibility conditions (for instance, compressible Euler equations in the
half space for n = k = 3). However, for general mixed problems the

compatibility conditions prevent from this way.

PART II

4. THE INCOMPRESSIBLE LIMIT.Here, we describe the problem studied and

the results obtained in reference [BV8], to which the reader is refered for
the proofs. For convenience, we study our problem in the space-periodic case.
Hence Q is the n-dimensional torus. We set QT =Q x [0,T]. In the sequel k
denotes a fixed integer, k > 1 + n/2. Moreover, u is the r-vector (ul,...,ur)
and A > A°> O is a parameter. If u = u(t,x), we denote by u(0) the function
u(0,-). Let Bi(u,?t), i=1, ..., n be rxr matrices, of class Ckﬂ, defined for
each A > AO and each u € 0. O is an open, regular, connected subset of R". As
in [K Ma 2], we assume that there are n+l symmetric matrices Ao(u,h) and

Alw,A), i = 1,...,n, such that A°B' = A! and that
(4.1) (A’E8) zm €], m>o0,

for all u € O (shrink O, if necessary) and all £ € R". Moreover,

(4.2) [BwA)| = aa , |A’wr)| s=c,
(4.3) A o, Awr)| sc,

k+1
(4.4) L D) B s e,

J=1

n
for all ue 0 A> Ao. Here B = (Bl,...,Bn) and BuxE Y Biux. Next, we
i=1 1
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consider the system of equations

(4.5) P +B MW =0 inQ , uMO) = u
t x T 0

where ug e H* and {uﬁ(x) : X € Q} d 00 for each A > Ao. Oo is a compact subset

of 0. In the sequel the symbols C,CO,Cl,..., denote positive constants that
are independent of A. The same symbol may be used to denote distinct
constants, even in the same formula.

The following result is due to Klainerman and Majda [K Ma2]:

THEOREM 4.1. Assume that ||u2]|k < Co’ for all A > Ao. Then, there is a

positive real T, independent of A, and a unique solution
uA € C'r H") A C;(Hk_l) of (4.5). Moreover,

A -1 A
(4.6) fu ||k,T +2 o, ||k_1’T = C.

Furthermore, _1£

B ' A A
(4.7) IBGZ,A) U

,x"k-l = CO
then
A
(4.8) [8,u”| sC.

t Mg-1,71

Note that vB(uz,A)ut’x= - atuA(O). Hence (4.7) is also a necessary
condition for having (4.8).Next we describe the application of the above
result to the Euler cdmpr'essible and incompressible equations.

Consider a fluid filling Q and obeying a law of state p = p(p). Denote by
p > O the mean density of this fluid. By replacing p(p) by p(p) - p(p) one has

plp) = 0 if and only if p = p. Here and in the sequel we assume that

p € "4 R*R) and that p’(p) > O for each p > 0. Let p(p) denote the inverse

function of p(p), defined on the open interval I p(lR+). Set

glp) = p’(p) 7 plp) .
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Clearly, g(p) > O for each p € 1. The equations of motion are

g(p) (atp + v-Up) +V-y = 0 ,
(4.9) p(p) (6tv + (v-V)v) + VJp =0 ,

v(0)

vo(x) , plo) = po(x) .

We are interested in considering a .family of laws of state pA(p) = Azp(p)
and in studying the behaviour of the solutions as the parameter A goes to o.
The parameter A plays here the part of inverse of the Mach number; see [Mal.

Denoting by ph the inverse of the function pA, one has pA(pA) = p(pk/hz),
hence gA(pA) = A-zg(pA/Az). Consequently, the equations of motion under the

above A-law of state and for initial data vz(x), pz(x) are

A g (M) (atﬁ"w"-v;‘:") + Vv =0 ,
(4.10) p(3*/2) (atv"+ Vv )e AV =0
vV (0) = v;‘ x) , prO) = Bi:(x) = A_lpz(x) ,

where the "true" pressure p>t is replaced by Eh = A-lpA. Note that El(x) = 0 if

and only if pl(x) = p.

The system (4.10) can be written in the above form (4.5), as follows.

"

b the "row k column element of the matrix

Denote by ”

B' = E'+ diag {vl/g,vl/p,vl/p,vx/p}, i =123. The matrix E' is defined by

. i _ . 1 _ . bo_ . .
setting e1,1+1 = Ag; ei_H’1 A/p; and ekj 0 otherwise. Moreover, if

AOE diag {g,p,p,p} one has Al= AOBl where Al= Fi+ diag {vl,vi,vl,vl},

. Il _ A 1 _ . _ A
i =1,2,3. Here f1+1,1— f1,1+1 = A; and f‘kj = 0 otherwise. Above, g = g(p /A)

and p = p(EA/A).
By using the above set up and by defining u;l = (EA,VA), u;; = (Eﬁ,vﬁ) it
readily follows that the system (4.10) has the form (4.5).

Now we assume (see [K Ma2], Eq. (1.7)) that
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A _ -1_A —A _ 41 A
(4.11) vo(x) = vo(x) + A wo(x) , po(x) =2 po(x)
where
A A
(4.12) V-vo = 0 and ||w0||k + ||p0||k

Obviously, lim ||u2— uollk =0 as A —> o, where u = (Ov) Moreover (4.7)

holds since

(4.13) B(u’;‘,A) u’(: = (vg-vsh + (A/g - v (v V)v + (A/p )Vp ),

where pz = p(Ez:/A), gz = g(Eg/A). Hence, by theorem 4.1, one has the estimate
—=A A A
By * 1 * 18y s * s = €

In particular, subsequences converge in L:(Hk) or in L‘:(Hk—l), with respect to
the weak-* topologies, as A —> w. It is not difficult to verify that the

limit functions satisfy the incompressible Euler equations

Vev=0 ,
(4.14) p (6tv + (Vv'V)V) + V=0 ,
v(0) = vo(x) ,

for some m(t,x). By the uniqueness of the regular solution of (1.14) it
follows that the whole sequence {vl}, A —> o, converges to v in the L:(Hk)
weak-* topology. Similarly, vz converges to v, | and Vph = V(AEA) converges to
Vn in L:(Hk_l) weak-* but not (in general) in CT(Hk-l). However, we prove that
the trajectories (pl,vh) converge to that of the Euler incompressible
equation, i.e. to (p,v), in the strong norm Hk, uniformly in time. More

precisely, we prove the following result:

THEOREM 4.2 Let (Bﬁ,vz), A>A, be a family of initial data

satisfying the assumptions (4.11), (4.12), and Ilet (Bl,vk) be the

corresponding solution to the compressible Euler equations (4.10). Let

p" = p(E"/A) denote the density of the fluid. Then
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. A A_ -
(4.15) lim [IIv o S Ll P“k,T] =0

A->00

where vand pare those appearing in the Euler incompressible equations

(4.14).

The theorem 1.2 is a corollary of the general theorem 5.1 below, which
guarantees an uniform approximation result (in the strong norm) for the
solution uA of (1.5) by regular solutions u"’

Remarks

(i) The above results of Klainerman and Majda on the incompressible
limit have been extended and developed by Schochet [Scl] for non barotropic
fluids in bounded domains. It is worth noting that the presence of the
boundary gives rise to serious obstacles (see also (Sc2,3]). It would be
interesting to extend the methéd developed below to Schochet’s approach. Or,
alternativelly, to get the same extension by using 6ur approach to the
compressible equations in bounded domains ([BVS], [BV7], and references).

Other interesting results on the incompressible limit were obtained by
Agemi [Agl, Asano [As], Ebin [Ebl,2], and Ukai [U].

(ii) For the viscous, time dependent, problem the reader is refered to [K
Mall, [Mal], and references in there.

(iii) Convergence of compressible viscous solutions to the incompressible

one, for the steady equations, was studied by us in references [BV 1,2].

5. THE GENERAL THEOREM.Here Q2 can be the n-dimensional thorus or the

whole space R". In the sequel we consider systems (4.5) enjoying the

hypothesis (4.1) to (4.4). Moreover, we assume that

(5.1) lim Jul-u | =0 ,
A->w

for some u, € H*. In the secjuel we will consider an auxiliar f amily
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{ u;"a cHM  a>a , 8108 } for some fixed 8> O, such that, for

each 8 € ] 0,50].

A8 A,S
luy®l, =Co - va>a, . Jurtl,, =C® vV ada,
(5.2)
lluz’a'uzllk =3 ,VAa>Ad) , |l“2'8’“);||k_1 =3, VA>A.

Under the assumption (5.1) such a family {ui:’a) exists. In the sequel we also
consider the following two additional hypotheses on the family (ug’a}:

For each fixed & € ] 0,60] there is a function ui € Hl’r"1 such that

(5.3) tim Jud®- 8] =
Ao
And
A8 ) A3
(5.4) IBlu ,A)uo'x“k =C(8), VY 2ad>a.

We remark that in the fluidynamics case the assumptions (4.11),(4.12) are
sufficient to guarantee the existence of a family {uh’a} satisfying (besides
(5.2)) (5.3) and (5.4).

Consider a family of initial data uz’a satisfying (5.2) and the

’

corresponding solutions u to the problems

(5.5) ut’a + B(uh’a,A) ui’a =0 |, uA’a(O) = uz’a .
These solutions satisfy the estimates

A3 -1y A,8 A8
(5.6) fu ||k,T + A ful ||k_1,T =C , Ju ||k_1’T = C(3) ,

for each A > 7\0 and each 8 € ] 0,601. This follows from theorem 4.1.
One has the following results.

THEOREM 5.1. Let Qbe the n-dimensional thorus or the whole R". Assume

that the hypotheses (4.1)-(4.4) hold and let uo,uz satisfy (5.1). Let uz’a

be

a family of functions such that (5.2) holds (note that such functions exist).
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Denote by u;l and by uh’a the solutions of problems (4.5) and (5.5)

respectivelly. Let £ € 10,1] be given. Then there are positive reals C(e),

Ale), and 11(6) such that for each &8>0 one has

(5.7) uk’a—uA = C (e+C(e)8) , VA > Ale,8) = max{A(e),A (3)}.
k,T 0 . 1

THEOREM 5.2 Assume that the hypotheses of theorem 5.1 are satisfied

and that, for each fixed &, the Ilimit: .lim u)\’6 exists in CT(HO). Then,
A->0

the whole sequence {uA} is convergent in CT(Hk), as A > .
The theorem 1.2 on the incompressible limit follows easily from the above

theorem 5.1 (or from theorem 5.2). See [BVSI.
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