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1 Introduction and theorem.

In this communication we are concerned with free boundary prob-
lem for compressible viscous isotropic Newtonian fluid which is formu-
lated as follows: Find the domain ©Q; C R? occupied by the fluid at
the moment ¢ > 0 together with the density p(z,t), velocity vector field
v(z,t) = (v1,v2,v3) and with the absolute temperature 6(x,t) satisfying
the system of Navier-Stokes equations

( Dp Dv

ﬁ—kp(V?J):O, pﬁ‘zvp—pgel’n
D
DY pev D) 4 0py (V) = V- (90) + ¥,
|2 € Q= {2 = (z1,20) € R? —b(z) < z3 < F(z',t)}, t > 0

and the initial and boundary conditions

[ (p,v,0)]t=0 = (o, v0,00), € o,

Pn=—-pn+oHn, &Vn=k(.—80),
(1.2) { T€ I={z' € R? z3=F(z',t)}, t>0,
v=0, 0=0, =zecY={z'€ R’ z3=-bx")}, t>0,
D

E(azg —~F)=0, z€Tly,t>0, Flo=Fz), z' €R%.
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Here, V = (%,%,%), D% = % + (v - V) is the material derivatiV(_e,
P = (-p+ ¢/ (Vo)I + 2uD(v)= ~ pI + V is the stress tensor, I is
the 3 x 3 unit matrix, D(v) is the velocity deformation tensor with

the elements D;; = 3 3;’] + %;:’-),\Il = ' (V)2 + 2uD(v) : D(v) is the
dissipation function, p = p(p,0) is the pressure, (u, ', k,cy)(p, ) are,
respectively, coefficient of viscosity, second coefficient of viscosity, coeffi-
cient of heat conductivity, heat capacity at constant volume, which are
all assumed to be known smooth functions of (p,#) satisfying u,x,cy >
0, 2u+3u' >0, p,,ps > 0,(g,0,p., Ke) are, respectively, acceleration of
gravity, coeflicient of surface tention, atmospheric pressure, coefficient of
outer heat conductivity, which are all assumed to be positive constants,

__t _ 1 t . _ « . .
e3 ='(0,0,1), n = TV (=V1F,—VyF,1) is the exterior unit normal
_ _ (0 2 o7 _ ! V'F :
vector to Ft, V' = (Vl,VQ) = (5}“{,51—2) and H =V - (\/—W) is the
twice mean curvature of I';.
We seek a solution near the equilibrium rest state (p,v,0,F) =
(p,0,6,0), where 6 is any positive constant and p = p(x3) is determined by

p(z3) ,0— - 7
(1.3) /p’zo) %dn +gz3=0,  p(p(0),0) = pe.

We rewrite the problem (1.1),(1.2) by the .change of unknown func-
tions (p,v,0,F) — (p + p,v,0 + 8, F) using (1.3) as follows:

(

2 (o+7)+ (o +2)(V0) =0,

Dv ]
(14) { (p+p) 5, =V -V —p,Vp—pyVO + (§

Dt (pﬂ - Tgp) - p)ge37

P

Do ~
| (o + b)cv—m +(0+0)py(Vv) =V - (kVO) + ¥, x € Q,t >0,
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[ (p,v,0)lt=0 = (po,v0,00)(z), = € o,
2ullD(v) =0,. —(p—pe) +Vnn=0H,
kVOn =rk.(0. —0), xe€lt>D0,
v=0,0=80, x€X,t>0,

Fo+ 0 /ViF +vVoF —v3 =0, zel,t>0,
| Fli=o = Fo(2'), o' € R?,

where p = p(p + p,0 + ), p,= p,(p,0) etc., and Ilp = p —n(n - ).

We consider the problem (1.4),(1.5) in S.L.Sobolev-L.N.Slobodetskii
spaces. Let G be a domain in R" and [ > 0 be not an integer. By W}(G)
we mean the space of functions u(z) (z€G) equipped with the norm

lullie = X 1D7ullt, e

l7l<l

|Diu(z) — Diu(y)|?
dxdy.
[ = [l]/ / |$ —y|”+2 =)

Now we define an anisotropic spaces W. l’l/ (Qr) (Qr = 2 x (0,T)) con-
smungofmnakmsu@;w(@;weQT)uywélﬁQT) Lo(0, T; WH(Q))N
Ly (€2 wi/ 2(0,T)) and introduce in this space the norm

el gy = o 10 ) gt + [, e, VIE s 1y

The same notation will be used for the spaces of vector fields, the norms
of a vector supposed to be equal to the sum of all its components.

Let us first state local solvability of the problem (1.4),(1.5). Trans-
forming the problem to the initial domain 2y by the relation

(1.6) =€+ [ (¢, 7)dr=a(E 1),

where ¥(¢, t) is the velocity vector field in Lagrangean coordinate system,
we have
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Theorem 1.1 (local existence) Let b€W5/2+l(R2) with | € (1/2,1).
For arbitrary pg, vy, 00€W22+Z(QO), po+p,00+6>0, F0€W27/2+I(R2), 0.€

W;+l’2+l/2(R3}), 9a€W25/2+l’5/4+l/2(ET), 9. +8,0,+0 > 0 satisfying natural
compatibility conditions, which we omit them here, the problem (1.4),

(1.5) in Lagrangean coordinate system has the unique solution (p,v, é)
({ t) deﬁned on QT1 Qo x (0,T%) for some Ty € (0,T) such that pe

.\ 341 ) . |
E (Qn) = HPI|W§+I»1+’/2(QT1) + H(v’G)HWSH'WHVZ(QTI)S
(1.7) <a (H(Po,vo, 00)lwz+1(p) + 10l /241 oy +
+I|96HW24+1,2+1/2(R31) + H9a||w§/2+1,3/4+1/2(ET)) = ClEO,T.

The number 11 increases unboundedly as Eor tends to zero. Moreover,
the solution possesses some additional regularity with respect to t > ty:

R A A A 3+
(1.8) Sup <||P||W22+l(90) + (U’Q)”W;H(QO)) <c(Eor+E  (Qn))

t1<t<Ty

with arbitrary positive t1 < Tj.

The proof of Theorem 1.1 can be carried out in the same way as in [5,8].
The following is our main theorem.

Theorem 1.2 (global existence) Under the assumptions of theorem
1, if Ey=Eyo < € with sufficiently small number €, then the prob-
lem (1.4),(1.5) has the unique solution (p,v,8, F) for all t > 0 satisfying

(1'9) ?Etl? (”p”szﬂ(Qt) + ”(U’ G)HWZ’}“(Qt) + |IF“W27/2H(R‘2)) <cskEy
with each t; > 0.

Similar result for barotropic fluid bounded only by a free surface was
established in [6].
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2 Proof of theorem 1.2.

Theorem 1.2 is proved by combination of the local existence theorem
and the a priori estimate. To state the a priori estimate, it is convienient
to make use of the coordinate transformation mapping from €2; onto the
equilibrium domain Q = {y' € R?, —b(y') < y3 < 0} defined by

~ F
(2;1) (:131,962,:83) = (91,1/2, F+ yS(l + 3))5:1;(%75)7

where F is the extension of F' to Q x R, (see [1]). Let us put fy,t) =
f(=(y,),t) and

~ 3+, = - ~ A
E (Qr) = “pHW:?“’HW(QT) + ||(, 9)|IW23+1,3/2+1/2(QT) +
+“F”WJ/”””“’/Z(R%)’ QT = x (0, T).

Theorem 2.1 (a priori estimate) Let (p,v,0, F) be the solution of

(1.4),(1.5) defined on 0 < t < T. If Eyr < €1 and E3+I(QT) < 61 with
sufficiently small £1, 61, then the following a priori estimate holds:

~ 3+, =
(2.2) E (QT)SQIEO,T-

Proof of Theorem 1.2. Let FEj be so small that the problem (1.4,),(1.5)
is solvable on the interval (0,1). Such a solution satisfies inequalities
(1.7),(1.8) for Ty = 1. Furthermore, (2.2) with 7' = 1 is valid provided
that Fy < 7 and ¢1Ey < 6;. Combining these inequalities, we find
that Ey<csFy (Fy is the norms of the data at t = 1). Introducing new
Lagrangean coordinate system § € {; and again applying Theorem 1.1,
we can establish the solvability of the problem for ¢t € (1,2) provided that
Ey is sufficiently small. Repeating this process infinitely many times, we
arrive at the assertion of the theorem. |

3 a priori estimate.

First we rewrite the system (1.4),(1.5) so that all the nonlinear terms
appear in the right hand side of equations and next make transformation
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to the equilibrium rest domain Q and linearize it again. Then we finally
obtain

(p+p(V-0)+ (- V)p = f1,
iy —V -V +p,Vjp+p, V-
p N
—(p_(dpp)(ﬁ,ﬁ_)(p’ 9) - p)geS - f2a
p

| pevl — V - (V) + 0py(V - 9) = f3, in Qr,

(3.1)

' (ﬁa’ﬁa é)lt=0 - (ﬁOa {)05 é())(y)a on Qa
_ [0y, 8’53)
—
g <8y3 Oy
03 '
—(dp)(5,5)(5, 0) + B'(V - v)+2u8——aV2F PoF = 9,
(3'2) 1 Y3 y3=0

fcge——l—meﬂ = m86’~6+f7, on R2,
y3=0

Y3
v =0, _0~=9a, on Xr,
Ft - 63‘3}3:0 = fg’ on -R12") F|t=0 = FO(yl)y on R21

= (k= 1,2),

y3=0

\

where V = i'(V - v)I+2,uD(v) = 9 p(l—)(ﬂ%),@)}r I and f = {f' (i =

1,...,8)} is at least quadratic functions of (3,7, 8, F) and their first and
second derivatives. The estimate of the linearized problem (3.1),(3.2)
with given f reads as follows.

Lemma 3.1 Let be We'** with 1€(1/2,1), po, o, b€ W (Q), Fye
W:Z:gﬁi?/’JIEWHZ 1/2+;//22£L?3T/23rl{227 f3€Wl’l/2(Cg+l)3/2fjJ/f: fore

Wy "IN (RE), fPeWs TN (RY), 8.€Ws (R7), 8.€
W23/2+l’3/4+l/2(2rf). Then for the problem (3.1),(3.2), we have the estimate
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IA

”b“W}H’UZH/Z(QT) + ”(?7, 9)||W22+1,1+1/2(QT) + l|F||W2-5/2+l,5/4+l/2(R2T)
<cg (11(Bos 50, 80}l + I Follypsrssgany+
(3.3) +||f1“W21+”1/2+l/2(QT) + H(f2> f3)||W2”l/2(QT)+

+||(f3+k, 6, f7)||W21/2+l,1/4+l/2(R2T) + ||f8||w23/2+’*3/4+l/2(R?p)+

+“9€HW§+"3/2+U2(R%) -+ HeaHW23/2+1,3/4+1/2(ET)) .

We can prove Lemma3.1 by similar argument as in [4].
Let us proceed to the proof of Theorem2.1. First of all, estimating the
norms of f in the right hand side of (3.3), we have

E2+l(QT) <ecr (EO,T + 61E2+I(QT) + (E2+I(QT))2)

which implies
~240 -
(3.4) E™(Qr) < 2¢1Eor

provided that the numbers ¢; amd~ 61 are small enough 2¢;61 + 40351 < 1.
Next we rewrite the problem for 6 as

,

pev b, — RV20 = f3 — 0p,(V - 9)—
~REV+V - (V) = 3, in Qr,
§|t=0 = éO(y)a on Qa
9 . ,
Rg— =ke(le—0)+f=f", onRZ%
8y3 y3=0

é e 9(“ on ZT)

\
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and apply the well-known estimate for the heat equation to obtain

Hé||W23+1,3/2+l/2(QT)SCS (”éOHWZQH(Q) + “f/SHWZ”“/“’/Q(QT)_l_
+||f,7|IWf/2+h3/4+l/2(R%) + Hea||W§/2+’v5/4+l/2($T)>
<cy (EO,T + 51||é||W§+”3/2+”2(QT)) ’

here, of course, we have used (3.4). Hence the estimate
(3.5) “é”W;H’WHl/Z(QT) S QCgEO’T

follows provided cgb; < %

Finally, for the estimate of highest derivatives of (g, ¥, F'), we appeal to
the energy method. The idea is similar to that of Matsumura and Nishida
([3]) but we use finite differences since we work our problem in fractional
power spaces ([6]). It is convenient for a moment to rewrite the problem
for (p,9, F) as

Dp
ct V. -9)=g!
(p,0) = 5, +0(V-9) =g,
(36) EQ(IO’ ) :ﬁ@t—VP(pN,@) = 2a in QTa
P(ﬁ,’ﬁ)@g - O'V,2F€3'y320 = g?’, ’f)lg = 0,
L Fi = ¥3y=0 = ¢

where 2 = 2 — (B-V) + (5-V), V.= A4V,, 4 = (£)1 1,3, B =
(%)1cics, P(p,7) = (=p,p+ B (V-9))I+2aD(9) and here and in what
follows, the terms ¢'(z = 1,2, - - ) being thus defined. We shall begin with

the estimates of the derivatives with respect to . Let us put
. k : i~
Af(h)f(y,t) = %Ci(—l)k"f(y,tﬂ%h),
]:

k> 3(1+1), Ci ——-(f> and let ¢(t) be a smooth function vanishing for
t <ty and equals to 1 for ¢ > 2t,.
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Lemma 3.2 For (5,9, F) the inequalities

" [ /.<|Ak<h>ﬁ|2 AP <

T—Fkhg

(3.7) ho T—khy
<ew(Bip+ [ [ (080l + [Gol)dt)

| ho dh [T—khg
0 W/o
ho dh
0 h2+l

<en <E0T+/ o] [w(t / A¥(h)7) dy]T kho

he dh [T—kh
+/07;z“+7/0 "p(t)(1S1] + |G| + 1G4 |)dt>

hold true, where

o(t)dt /.<|Af<h>ﬁt|2 + | AF(h)5|?) dy+

(3.8)

Si = [, AF(r)3}5 - P(Af(R)p, Af(h)D)esdy,
p . , |
Gi= o (%%f(h)a”’ A (g + Af(R)3 - Ay (h)!f) dy, (i=0,1),

and we have assumed T > max{khg,2to}.

proof The identities
P N N ,
PEALR)E- AL - g) + AR - AL - 67) = 0,
AE(h)p - Mh)( L' — gY) + AF(h)b - AF(R)(L? - g?)+

yield the estimates (3.7),(3.8) respectively by 1ntegrat10n by parts. This
completes the proof of Lemma 3.2. |
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The estimates of the derivatives with respect to y are derived from local
considerations. We only consider here near the upper surface, since the
case of the interior domain or near the lower bottom are easier. We intro-
duce local rectangular coordinate system with the origin at some point

¥ = (y®,0) € T = {y; = 0} in a parallel direction with {y} axes and
consider the subdomains

@® = {ly' —y¥| < d, —2d < y3 < 0},
OB = {|y' —y'®| < 2d, ~4d < y3 <0} (d > 0)

and the associated smooth functions () € C§°(R?) such that (*¥)(y) =1
ifyewh, =0ifyec Q- 0™ and 0 < ¢® < 1. The similar argument as
Lemma 3.2 yields the estimate of the differences to tangential direction

MENFw.0) = ¥ CH-DFW + k7w ) (s> 241)

Lemma 3.3 For any positive number €9 1t holds that

(Aol + 1A% )’UI )¢ dy+

Azl<d z3+2l (k)

Dp |
(3.9) +/0 /|z|<d 3+21 /Q(k)(IVA (Z) |2 + |A%(z ) | )C(k)Zdy <
- dz . _
< e (E&T + e /0 dt /lzis§ e S 18° () dy+
t (]Sa| + |G2l) A
+—/0 /|z|$g- 23+21 dz )
where

2= [LA()T P(A%()5, A%(2)0)es¢ PPy,

By i s Asg o 1L s e A ﬂ
Go = Joo (gpA‘ ()5 A*(2")g" + A%(2)p - A (z')gQ) c#2gy,

We proceed to estimate the differences to normal direction in the line
with [3]. This time we rewrite the equation (3.6); in the form
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(3.10) pie — iV — (A + E)V(V -9) +p,Vi = ¢°.

If we eliminate 93 ,,, from the third component of (3.10) and

Dp _ 3 ) )
(E)yg + p(v ' ’U)y3 = 953 - [vym p]v V= 96)
we have
20+ 4') Dp. B e
( )( )1/: +pppy3 = —pPU3t —+ _(_u_ﬂi_)gﬁ_{_

~

p
+ﬁ("73,y1y1 + 03.ay,) — B(D1gy + V2 )y + 9:3:) =g"
Further, operating AF(2')A™(23) yields
(2/'L + /'L ) m Dﬁ m
S AN @) (G + BA A" (), =
(3.11)

— AN A aa)g” - AENIA" ), LN (DD, -
—AH(A™ (29), 8,150, = 0"

Multiplying (3.11) by A*(z")A™(23)p
adding them, we have

and AF(2')A™(z3)(22),, and

Y3

Lemma 3.4

/l<d 53+21 /Q(k)(IA Am( s)ﬁy3|2C(k)2dy+

//z|<d 342 /Q(lc) |A8(Z,)Am(z3)bysl2+
(3.12) b3
() Az (2P 12) (2dy <
Dt Y3

oy UG +IGH +IGA)
<en (B3 + [ [ EHE ,
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where

Gy = [, AN)A™(20)p, - 6°C PPy,

m Dﬁ
Gy = [ A (A" (23) () - 6% dy,
Gi= [ A8 (2D = 51y ) - A(HAM (21},
4= Jom Dt’Y Py, 3) Py, Y

Finally, we consider incompressible Stokes system for (u,q,n) = ¢(*
A*(2")(p,v, F), which reduces to the form

(V.u=¢"=V.g9,

pue — BV?u +5,Y¢ = ¢, Q¥ = Q® x (0,7),
(3.13) ¢ Ult=0 = uo,

—p,Vales +2iD(u)e3 — JV 2Nlys=0 = g

77t—'U3—9

\

Applying the estimate analogous to (3.3), we obtain

1C A ) VBl gurrn g, + ICOAH )5 i
+||C(k Ak(z )F||W25/2+m’5/4+m/2(R§)S

(Q(k))+

<ens (IKEAHEBollyrem gy + ICH AR Fyllysrzem gy +
(3.14) Witm(Q W/ (R?)

+||g I i zm 2 k) +||g I WoLEm2 )y +||g H mm/2(Q(k))+

g™ g rremasiemse gy + llg* ||W§”*"””‘**”’”(R’z}))'

From (3.4),(3.5) and Lemmas 3.2-3.5 together with some lengthy calcu-
lations connected with the terms in the right hand side of (3.7)-(3.14),
we arrive (2.2). This completes the proof of Theorem 2.1. i
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