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Neumann Problem
of One-Dimensional Nonlinear Thermoelastic Equations

筑波大・数学系
Yoshihiro Shibata 柴田良弘

Inst. of Math. Univ. of Tsukuba, Tsukuba-shi, 305 Japan

I will report here ajoint work [3] with S. Kawashima, Kyushu Univ. about a global
in time solvability and an asymptotic stability of Neumann problem of one-dimensional
nonlinear thermoelastic equations. This problem was first solved by Shibata [5] in the
bounded interval case, but the assumption on the regularity of initial data was not
optimal and polynomial decay rate was only shown. And then, Jiang Song [2] improved
the result concerning the solvability, regarding an optimal assumption of the regularity
of initial data. He also proved an existence theorem globally in time in the half line
case and he obtained an exponential decay result in the linear case. In the both works,
it is essential that no external force appears. In this note, I essentially assume that the
external force depends on the spatial variable only. When the external force depends
on not only the spacial variable but also the time, to solve the problem seems to be
difficult, in particular such difficulty appears when we decide an asymptotic behaviour
of solutions globally in time. Such difficulty sometimes appears in the Neumann case
in general and as a technical difficulty, we can not use a Poincar\’e’s inequality.

First, let me formulate the problem. Let $\Omega=(0,1)$ be the unit interval of $R$ identffied
with reference body with natural temperature $\tau_{0}>0$ . The deformation of the reference
body $\Omega$ after time $t$ past is described by the deformation map:

$X$ : $x\in\Omega X(t, x)\in R$ .

Let $T(t, x)$ be the absolute temperature of the point $X(t, x)$ . The equation of motion
and the balance of energy are described by the following equations:

(1.1) $p(x)X_{tt}-S_{x}=f$ for $x\in\Omega$ and $t>0$ ,

(1.2) $(e+ \frac{\rho(x)}{2}X_{t}^{2})_{t}-(SX_{t})_{x}$

$=q_{x}+X_{t}f+g$ for $x\in\Omega$ and $t>0$ .

Here, the subscripts stand for partial derivatives, $S$ is the stress function, $e$ is the internal
energy function, $q$ is the heat flux, $\rho(x)$ is the mass density, $f$ is an external force and
$g$ is an external heat supply. For simplicity, I assume that

$\rho(x)=1,$ $g=0$ and $q=\kappa T_{x}$ ,

$\kappa$ being a positive constant. In this lecture note, as a boundary condition, I consider
the traction free and thermally insulated condition which is described by the following
formula:

(N.N) $S=q=0$ for $x\in\partial\Omega$ .
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Note that $\partial\Omega$ consists of only two points $0$ and 1. The initial condition is given by the
formula:

(1.3) $X(O, x)=X_{0}(x),$ $X_{t}(0, x)=X_{1}(x))T(O, x)=T_{0}(x)$ .

Now, let me explain assumptions. The first one is that

(A.1) $f=f(x)$ , that is $f$ depends only on $x$ .

Next one is concerned with the constitutive relation. Let $F$ be a variable corresponding
to $X_{x}$ . Let $\psi$ be a Helmholtz free energy function and $\eta$ be an entropy function. The
second assumption is that

(A.2) $S,$ $e,$ $\psi$ and $\eta$ are functions in $(F, T)$ only, that is

$S=S(F, T),$ $e=e(F, T),$ $\psi=\psi(F, T),$ $\eta=\eta(F,T)$ ,

and they are in $C^{\infty}(G(\delta))$ ,

where
$G(\delta)=\{(F,T)\in R^{2}||(F,T)-(1, \tau_{0})|\leq\delta\}$ .

In this lecture, all the functions are real-valued unless it is mentioned. The 2nd Law of
Thermodynamics tells us that the following two relations are equivalent:

$de=SdF+Td\eta\Leftrightarrow d\psi=SdF-\eta dT$,

from which the following constitutive relations follow:

(A.3) $S= \frac{\partial\psi}{\partial F},$ $\eta=-\frac{\partial\psi}{\partial T},$ $e= \psi-T\frac{\partial\psi}{\partial T}$ .

The next assumption is that

(A.4) $\frac{\partial^{2}\psi}{\partial F^{2}}>0,$ $\frac{\partial^{2}\psi}{\partial F\partial T}\neq 0,$ $\frac{\partial^{2}\psi}{\partial T^{2}}<0$ in $G(\delta)$ .

Under the constitutive relation (A.3), (1.2) is equivalent to the following equation:

(1.4) $T\eta_{t}=q_{x}$ for $x\in\Omega$ and $t>0$ .

In fact,

$e_{t}= \frac{\partial\psi}{\partial T}T_{t}+\frac{\partial\psi}{\partial F}X_{xt}-T_{t}\frac{\partial\psi}{\partial T}-T(\frac{\partial\psi}{\partial T}I_{t}=T\eta_{t}+SX_{xt)}$

$( \frac{1}{2}X_{t}^{2})_{t}=X_{t}X_{tt}=S_{x}X_{t}+fX_{t}$ .
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Combining these two equations implies (1.4). Except for finding a conservative quantity,
usually we solve (1.1) and (1.4) instead of (1.1) and (1.2).

EXAMPLE 1.1. As a Helmholtz free energy function, let us choose

$\psi(F,T)=\sqrt{1+F^{2}}-T^{2}-\gamma TF,$ $\gamma\neq 0$ .

Then,
$S=F/\sqrt{1+F^{2}}-\gamma T,$ $e=\sqrt{1+F^{2}}+T^{2},$ $\eta=\gamma F+2T$.

The corresponding equations are that

$\{T(2T+\gamma X_{x})_{t}=\kappa T_{xx}X_{tt}-(X_{x}/\sqrt{1+X_{x^{2}}}-\gamma T)_{x}=f$

,

which is one of thermo-damping equations corresponding to $(^{*})$ in one-dimensional
case.

As a class of solutions, let me consider the following space: for $t_{0}>0$ I put

$Z(t_{0})=\{(X(t, x),$ $T(x,t))|$

(1.5) $X \in\bigcap_{j=0}^{3}C^{j}([0,t_{0});H^{3-j})$ ,

(1.6) $T \in C^{2}([0,t_{0});L^{2})\cap\bigcap_{j=0}^{1}C^{j}([0,t_{0});H^{3-j}),$ $\partial_{t^{2}}T\in L^{2}((0,t_{0});H^{1})$ ,

(1.7) $(X_{x}(t, x),$ $T(t, x))\in G(\delta)$ and $T(t, x)>0$ for any $(t, x)\in[0,t_{0})\cross\overline{\Omega}$ }.

I will look for solutions (X, $T$) $\in Z(\infty)$ . Here and hereafter, $L^{2}$ denotes the set of
all square integrable functions on $\Omega$ . $H^{k}$ denotes the set of all $L^{2}$ functions whose
distributional derivatives of order up to $k$ also belong to $L^{2}$ . $C^{k}(I;B)$ denotes the set
of all $B$-valued $k$-times continuously differentiable functions on I. $L^{2}(I;B)$ denotes the
set of all B-valued square integrable functions on $I$ .

Now, let me explain the conditions on initial data $X_{0},$ $X_{1},$ $T_{0}$ and a right member $f$ .
To do this, for a moment I assume that solutions (X, $T$) $\in Z(t_{0})$ exist. Put

$X_{j}(x)=\partial\dot{i}X(0,x)$ and $T_{j}(x)=\dot{\theta}_{t}T(0, x)$

which are successively determined through the equations (1.1) and (1.4) in terms of $X_{0}$ ,
$X_{1},$ $T_{0},$ $f$ and their derivatives. For example,

$X_{2}(x)=S(X_{0}’(x),T_{0}(x))+f(x)$ ,

$T_{1}(x)=(T_{0}(x) \frac{\partial\eta}{\partial T}(X_{0}’(x), T_{0}(x))^{-1}\{\kappa T_{0}’(x)-T_{0}(x)\frac{\partial\eta}{\partial F}(X_{0}’(x))T_{0}(x))X_{1}’(x)\}$,
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and so on. According to (1.5) and (1.6), I assume that
(A.5)

$X_{j}(x)\in H^{3-j},$ $0\leq j\leq 3$ ; $T_{j}(x)\in H^{3-j},$ $j=0,1$ ; $T_{2}(x)\in L^{2}$ ; $f(x)\in H^{1}$ .

Since

$T_{x}(t,x),$ $S(X_{x}(t,x),T(t, x)) \in\bigcap_{j=0}^{1}C^{j}([0,t_{0});H^{2-j})$ ,

in view of the trace theorem to the boundary, the boundary condition (N.N) requires
the following conditions:

(A.6) $S(X_{0}’(x), T_{0}(x))=0$ ,

$\frac{\partial S}{\partial F}(X_{0}’(x), T_{0}(x))X_{1}’(x)+\frac{\partial S}{\partial T}(X_{0}’(x),T_{0}(x))T_{1}(x)=0$ ,

$T_{0}’(x)=T_{1}’(x)=0$

for $x\in\Omega$ . In fact, these conditions come from the facts that $S=S_{t}=T_{x}=T_{xt}=0$ on
$\partial\Omega$ . (A.6) is called the compatibility condition. In addition, I assume that

(A.7) $\int_{0}^{1}f(x)dx=\int_{0}^{1}X_{0}(x)dx=\int_{0}^{1}X_{1}(x)dx=0$ .

But, (A.7) does not give us any restrictions. In fact, let me consider the compensating
function $r(t)$ defined by the formula:

$r(t)= \int_{0}^{1}X_{0}(x)dx+t\int_{0}^{1}X_{1}(x)dx+\frac{t^{2}}{2}\int_{0}^{1}f(x)dx$ .

Put $\tilde{X}(t, x)=X(t, x)-r(t)$ . Then,

$\int_{0}^{1}\tilde{X}(0, x)dx=\int_{0}^{1}\tilde{X}_{t}(0, x)dx=0$ ,

$\tilde{X}_{tt}-S(\tilde{X}_{x}, T)_{x}=X_{tt}-S(X_{x}, T)_{x}-r’’(t)=f(x)-\int_{0}^{1}f(x)dx$ ,

$\int_{0}^{1}(f(x)-\int_{0}^{1}f(x)dx)dx=0$ .

Rom these observations, you see that (A.7) actually does not give us any restrictions
on initial data and right members.

To find the possible asymptotic behaviour as $tarrow\infty$ , for unknown functions $X_{\infty}$ and
$T_{\infty}$ let me consider the stationary problem corresponding to (1.1), (1.4) and (N.N):

$S(X_{\infty}’(x), T_{\infty}(x))’=-f(x)$ and $T_{\infty}’’(x)=0$ in $\Omega$ ,

$S(X_{\infty}’(x), T_{\infty}(x))=T_{\infty}’(x)=0$ on $\partial\Omega$ .
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It follows from the boundary condition that $T_{\infty}$ is a constant and that

(1.8) $S(X_{\infty}(x),T_{\infty})=-F(x)$ ,

where
$F(x)= \int_{0}^{x}f(y)dy$ .

Note that it follows from (A.7) that $F(O)=F(1)=0$ . A pair $(X_{\infty}(x), T_{\infty})$ satisfying
(1.8) is not unique. Another requirement on $(X_{\infty}(x),T_{\infty})$ comes from the following
energy conservation law. Integrating (1.2) over $(0,t)\cross\Omega$ and noting the relation:

$X_{t}f=(X_{t}F)_{x}- \frac{\partial}{\partial t}(X_{x}F)$ ,

you see that

(1.9) $\int_{0}^{1}\{e(X_{x}(t, x),$ $T(t, x))+ \frac{1}{2}X_{t}(t, x)^{2}+X_{x}(t, x)F(x)\}dx=e_{0}$ ,

where
$e_{0}= \int_{0}^{1}\{e(X_{0}’(x),T_{0}(x))+\frac{1}{2}X_{1}(x)^{2}+X_{0}’(x)F(x)\}dx$ .

Since the motion is expected to stop at $t=\infty$ , that is $X_{t}arrow 0$ as $tarrow\infty$ , and since
a pair $(X_{x}, T)$ is expected to converge to $(X_{\infty}’,T_{\infty})$ as $t$ tends to infinity, (1.9) implies
that

(1.10) $\int_{0}^{1}\{e(X_{\infty}’(x), T_{\infty})+X_{\infty}’(x)F(x)\}dx=e_{0}$ .

Put

$M_{g}(F,T)= \frac{\partial S}{\partial F}(F, T)\frac{\partial g}{\partial T}(F, T)-\frac{\partial S}{\partial T}(F,T)\frac{\partial g}{\partial F}(F, T)$ . for $g=e$ and $\eta$ .

Assume that

(A.8) $S(1, \tau_{0})=0$ ,

which means that $(1, \tau_{0})$ is an equilibrium state with $f=g=0$ . And then, (A.3), (A.4)
and (A.8) imply that

(1.11) $M_{e}(1, \tau_{0})=M_{\eta}(1, \tau_{0})=\tau_{0}\{-\frac{\partial^{2}\psi}{\partial F^{2}}(1, \tau_{0})\frac{\partial^{2}\psi}{\partial T^{2}}(1, \tau_{0})+\frac{\partial^{2}\psi}{\partial F}\partial T(1, \tau_{0})^{2}\}>0$ .

In view of (1.11), by the implicit function theorem you can prove the following lemma
concerning the unique existence of a pair $(X_{\infty}(x), T_{\infty})$ satisfying (1.8) and (1.10).
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LEMMA 1.2. Suppose that (A.3), (A.4), (A.5), (A.7) and (A.8) hold. Then, for any
$\sigma>0$ there exists a $\kappa>0$ such that if

$||(X_{0}’,T_{0})-(1,\tau_{0})||_{\infty}+||X_{1}||+||f||_{1}<\kappa$

then there exist a $X_{\infty}(x)\in H^{3}$ and a constan$tT_{\infty}>0$ satisfying (1.8) and (1.10) and
the following conditions:

$||X_{\infty}’-1||_{2}+|T_{\infty}-\tau_{0}|<\sigma$ an $d(X_{\infty}’(x),T_{\infty})\in G(\delta/2)$ for all $x\in\overline{\Omega}$ .

In particular, $S(X_{\infty}’(x), T_{\infty})=0$ for $x\in\partial\Omega$ .

Here and hereafter, $||\cdot||$ denotes the usual $L^{2}$-norm on $\Omega$ and put

$||v||_{k}= \{\sum_{j=0}^{k}||\frac{d^{j}v}{dx^{j}}||^{2}\}^{1/2}$ and $||v||_{\infty}= \sup_{x\in\Omega}|v(x)|$ .

To state a main result exactly, let me introduce an additional notation. Put

$u(t, x)=X(t, x)-X_{\infty}(x),$ $\theta(t, x)=T(t, x)-T_{\infty}$ ,

$N(t)= \sup_{0<s<t}||\overline{D}^{2}(u_{x}, u_{t}, \theta)(s, \cdot)||$ ,

$N_{\alpha}(t)= \sup_{0<s<t}e^{\alpha s}\{||\overline{D}^{2}(u_{x}, u_{t}, \theta)(s, \cdot)||+||(\theta_{xxt}, \theta_{xxx})(s, \cdot)||\}$ ,

$M_{\alpha}(t)= \{\int_{0}^{t}e^{2\alpha s}||(D^{2}u, D^{3}u, D^{1}\theta, D^{2}\theta, \theta_{xtt}, \theta_{xxt}, \theta_{xxx})(s, \cdot)||^{2}ds\}^{1/2}$ ,

$E_{0}=||X_{0}’-X_{\infty}’||_{2}+||T_{0}-T_{\infty}||_{3}+ \sum_{j=1}^{3}||X_{j}||_{3-j}+||T_{1}||_{2}+||T_{2}||$ .

Here and hereafter, I use the following symbols:

$D^{k}u=( \frac{\partial^{k}u}{\partial t^{j}\partial x^{j-k}},j=0,1, \cdots, k)$ and $\overline{D}^{k}u=(u, D^{1}u, \ldots, D^{k}u)$ .

Under these preparations, I can state the main result of this section which was proved
by Kawashima and Shibata [3] in the following way.

THEOREM 1.3. Suppose that (A. $1$ ) $-(A.8)$ hold and that $T_{0}(x)>0$ for $x\in\overline{\Omega}$ . Then,
there exis $ts$ an $\epsilon>0$ such that if $||(X_{0}’, T_{0})-(1, \tau_{0})||_{\infty}+E_{0}+||f||_{1}<\epsilon$ , then the
problem (1.1), (1.2), (N.N) and (1.3) $ad$mi$ts$ a unique solution (X$(t,$ $x),$ $T(t,$ $x)$ ) $\in Z(\infty)$

satisfying the estimate:

(1.12) $N_{\alpha}(t)^{2}+M_{\alpha}(t)^{2}\leq CE_{0}^{2}$
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for $sui$table positive constants $\alpha$ and $C$ .

A Sketch of A Proof of Theorem 1.3.

The first step of a proof of Theorem 1.3 is a local in time existence theorem. I quote
the result due to W. Dan [1], which treated the Neumann problem for more general
quasilinear hyperbolic-parabolic coupled systems in any dimensional space.

Local in time existence theorem. Suppose that (A.2), (A.3), (A.4), (A.5)
an$d$ (A.6) hold. In addition, suppose that

$(X_{0}’(x), T_{0}(x))\in G(\delta/2)$ and $T_{0}(x)>0$ for $x\in\overline{\Omega}$ ,

$f,$ $g \in\bigcap_{j=0}^{1}C^{j}([0,t_{0});H^{1-j})$ and $\partial_{t^{2}}f,$ $\partial_{t^{2}}g\in L^{2}((0,t_{0});L^{2})$ .

Le$tB$ be a positive number $such$ that

$\sum_{j=0}^{3}||X_{j}||_{3-j}+\sum_{j=0}^{1}||T_{j}||_{3-j}+||T_{2}||$

$+ \sum_{j=0}^{1}\sup_{0\leq s\leq t_{0}}||(\dot{\theta}_{t}f,\dot{\theta}_{t}g)(s, \cdot)||_{1-j}+\{\int_{0}^{t_{0}}||(\partial_{t}^{2}f, \partial_{t^{2}}g)(s, \cdot)||^{2}ds\}^{1/2}$

$\leq B$ .

Then, there exists a time $t_{1}\in(0,t_{0})$ depending only on $B$ essentially such that the
problem (1.1), (1.2), (N.N) and (1.3) admits a unique solution (X, $T$) $\in Z^{3}(t_{1})$ satisfying
the condition:

$(X_{x}(t, x),$ $T(t, x))\in G(2\delta/3)$ for all $(t, x)\in[0,t_{1}]\cross\overline{\Omega}$ .

Combining this local in time existence theorem and a prio $\tau\dot{\tau}$ estimates of local in time
solutions, we can extend local in time solutions to any time interval, and then Theorem
1.3 is established. Therefore, the main step of the proof in Kawashima and Shibata [3]
is to show the following $a$ $p_{7\dot{\eta}}or\dot{\eta}$ estimates of a local in time solution (X, $T$) $\in Z^{3}(t_{0})$ .

A priori estimates. There exist positive constants $C,$ $\alpha$ and $\sigma$ such that (1.12)
holds provided that

(1.13) $N(t)\leq\sigma$ for $0\leq t\leq t_{0}$ ,

(1.14) $||(X_{\infty}’, T_{\infty})-(1, \tau_{0})||_{\infty}+||X_{\infty}’’||_{\infty}+||X_{\infty}’’||_{1}+||f||\leq\sigma$ .
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Our derivation of (1.12) is divided into eight steps.

STEP 1. I verify th$e$ relations:

(1.15) $||u_{t}(t, \cdot)||\leq C||u_{tx}(t, \cdot)||$ ,

(1.16) $||(u_{x)}\theta)(t, \cdot)||\leq C||(u_{t}, u_{x}, \theta)_{x}(t, \cdot)||$ ,

provided that $\sigma$ is $sm$all enough. Here and hereafter, the le$tterC$ denotes various
constants independent of $\alpha$ and $\sigma$ .

To prove Step 1, we use the following Poincar\’e’s inequalities:

(1.17) $||v|| \leq C\{|\int_{0}^{1}p(x)v(x)dx|+||v’||\}$

for $v\in H^{1}$ , where $p(x)\in L^{2}$ such that $\int_{0^{1}}p(x)dx\neq 0$ ;

(1.18) $||v||\leq C\{<v>+||v’||\}$

for $v\in H^{1}$ , where $<v>=|v(0)|+|v(1)|$ . (A.7) implies that $\int_{0^{1}}u_{t}(t, x)dx=0$ , which
combined with (1.17) implies (1.15). Put $S_{\infty}=S(X_{\infty}’(x), T_{\infty})$ . Since $S-S_{\infty}=0$

on $\partial\Omega$ as follows from (N.N), (1.8) and the fact: $F(O)=F(1)=0$ , applying (1.18) to
$S-S_{\infty}$ implies that

(1.19) $||(S_{F}^{0}u_{x}+S_{T}^{0}\theta)(t,\cdot)||\leq C\{||(u_{x},\theta)_{x}(t,\cdot)||+\sigma||(u_{x},\theta)(t, \cdot)||\}$ ,

where we have used the formula: $S-S_{\infty}=S_{F}^{0}u_{x}+S_{T}^{0}\theta$ which is obtained by the Taylor
expansion, that is

$S_{G}^{0}= \int_{0}^{1}\frac{\partial S}{\partial G}((X_{\infty}’(x), T_{\infty})+\ell(u_{x}(t, x),$ $\theta(t, x)))\mathscr{U}$ for $G=F$ and $T$ .

In the same manner, we can write: $e(X_{x}, T)=e(X_{\infty}’(x), T_{\infty})+e_{F}^{0}u_{x}+e_{T}^{0}\theta$. Inserting
this formula into (1.9) and using (1.10), we see that

(1.20) $\int_{0}^{1}\{e_{F}^{0}u_{x}+e_{T}^{0}\theta+\frac{1}{2}u_{t}^{2}+u_{x}F\}dx=0$ ,

which combined with (1.17) and (1.15) implies that

(1.21) $||(e_{F}^{0}u_{x}+e_{T}^{0}\theta)(t, \cdot)||\leq C\{\sigma||(u_{x}, \theta)(t, \cdot)||+||(u_{x}, u_{t}, \theta)_{x}(t, \cdot)||\}$ .

Let us define the matrix $U$ by:

$U=$ ( $e_{T}^{0}e_{F}^{0}$ ).
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(1.11) guarantees that the determinant of $U$ is positive provided that $\sigma$ is small enough,
so that combining (1.19) and (1.21) implies (1.16).

Note that (1.1) can be rewritten in the form:

(1.22) $u_{tt}-(S_{F}^{0}u_{x}+S_{T}^{0}\theta)_{x}=0$

with $S_{F}^{0}u_{x}+S_{T}^{0}\theta=0$ on $\partial\Omega$ . Differentiating (1.22) and (1.4) $k$-times ($k=0,1$ and 2)
with respect to $t$ and multiplying the resulting equations by $\partial_{t^{k+1}}u$ and $(T_{\infty}+\theta)^{-1}\partial_{t^{k}}\theta$ ,
we can derive the following step.

STEP 2. We have

(1.23) $e^{2\alpha t}|| \overline{\partial}_{t}^{2}(u_{t}, u_{x}, \theta)(t, \cdot)||^{2}+c_{1}\int_{0}^{1}e^{2\alpha s}||\overline{\partial}_{t}^{2}\theta_{x}(s, \cdot)||^{2}ds\leq CR_{\alpha}(t)$

for a suita$ble$ constant $c_{1}>0$ , where

$R_{\alpha}(t)=E_{0}^{2}+(\sigma+\alpha)M_{\alpha}(t)^{2}+\sigma N_{\alpha}(t)^{2}$ and $\overline{\partial}_{t}^{k}v=(v, \partial_{t}v, \ldots\partial_{t^{k}}v)$ .

In the derivation of (1.12), we use the identity:

$e^{2\alpha t}g(t)= \int_{0}^{t}e^{2\alpha s}\frac{dg}{ds}(s)ds+g(0)+2\alpha\int_{0}^{t}e^{2\alpha s}g(s)ds$ .

STEP 3. For $\sigma$ small enough, I verify the relation:

(1.24) $N_{\alpha}(t)^{2}\leq CR_{\alpha}(t)$ .

In view of (1.23), we have to estimate the terms: $\theta_{x},$ $\theta_{xt},$ $u_{xx},$ $\theta_{xx},$ $u_{xxx},$ $u_{xxt},$ $\theta_{xxx}$

and $\theta_{xxt}$ . Fkom (1.4) it follows that

$(Q\partial_{t^{k}}\theta_{x})_{x}=-k(Q_{t}\theta_{x})_{x}+\partial_{t^{k}}((T_{\infty}+\theta)\eta_{t})$ for $k=0$ and 1.

Multiplying this by $\partial_{t^{k}}\theta$ and integration by parts and using the fact that $||Q_{t}||_{\infty}\leq C\sigma$ ,
which follows from Sobolev’s inequality and (1.13), we have

$|(Q\theta_{x}, \theta_{x})|+|(Q\theta_{xt}, \theta_{xt})|\leq C\{\sigma||(\theta_{x}, \theta_{xt})(t, \cdot)||^{2}+||\overline{\partial}_{t}^{2}(u_{t)}u_{x}, \theta)(t, \cdot)||^{2}\}$ ,

where $(\cdot, \cdot)$ denotes the usual $L^{2}$-innerproduct, which combined with (1.23) implies that

(1.25) $e^{2\alpha t}||(\theta_{x}, \theta_{xt})(t, \cdot)||^{2}\leq CR_{\alpha}(t)$ .

From (1.4) and (1.22) it follows that

(1.26) $S_{F}^{0}u_{xx}=u_{tt}-\{S_{T}^{0}\theta_{x}+(S_{F}^{0})_{x}u_{x}+(S_{T}^{0})_{x}\theta\}$ ,

(1.27) $Q\theta_{xx}=-Q_{x}\theta_{x}+(T_{\infty}+\theta)(\eta_{T}\theta_{t}+\eta_{F}u_{xt})$ .
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By using these formulae, (1.23) and (1.25) we have

(1.28) $e^{2\alpha t}||(u_{xx}, \theta_{xx})(t, \cdot)||\leq CR_{\alpha}(t)$ .

Differentiating (1.26) and (1.27) with respect to $t$ and $x$ and using (1.23), (1.25) and
(1.28), we have

(1.29) $e^{2\alpha t}||(u_{xxx},u_{xxt}, \theta_{xxx}, \theta_{xxt})(t, \cdot)||^{2}\leq CR_{\alpha}(t)$ .

Combining (1.23), (1.25), (1.28) and (1.29) implies (1.24).
Now, I am going to estimate $M_{\alpha}(t)$ . The estimation for $||\overline{\partial}_{t}^{2}\theta_{x}(t, \cdot)||^{2}$ was already

obtained.

STEP 4. I verify the relation:

(1.30) $\int_{0}^{t}e^{2\alpha s}||\theta_{xxx}(s, \cdot)||^{2}ds\leq C\{\int_{0}^{t}e^{2\alpha s}||u_{xxt}(s, \cdot)||^{2}ds+R_{\alpha}(t)\}$ ;

(1.31) $\int_{0}^{t}e^{2\alpha s}||(\theta_{xx}, \theta_{xxt})(s, \cdot)||^{2}ds\leq\delta\int_{0}^{t}e^{2\alpha s}||u_{xxt}(s, \cdot)||^{2}ds+C\delta^{-1}R_{\alpha}(t)$

for $\delta\in(0,1)$ .

Differentiating (1.27) once with respect to $x$ , we have (1.30) immediately. Using (1.27)
and the formula of differentiation of (1.27) once with respect to $t$ , we have also (1.31)
immediately.

STEP 5. I verify the relation:

(1.32) $\int_{0}^{t}e^{2\alpha s}||D^{3}u(s, \cdot)||ds\leq C\{\int_{0}^{t}e^{2\alpha s}||u_{xxt}(s, \cdot)||^{2}ds+R_{\alpha}(t)\}$ .

Put $K_{L}=\partial K/\partial L$ for $K=S$ and $\eta$ and $L=F$ and $T$ . First, I shall use the following
representation formula for $u_{xtt}$ :

(1.33) $Vu_{xtt}=S_{tt}+(((T_{\infty}+\theta)\eta_{T})^{-1}S_{T}(Q\theta_{x})_{x})_{t}-V_{t}u_{xt}$ ,

where
$V=\eta^{-1}M_{\eta}(X_{\infty}’+u_{x)}T_{\infty}+\theta)$ (cf. (1.11)).

This representation follows from the differentiation with respect to $t$ of the formula:

(1.34) $S_{t}=Vu_{xt}+((T_{\infty}+\theta)7\Pi)^{-1}S_{T}(Q\theta_{x})_{x}$ ,
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which follows from the combination of the following two formulae:

$S_{t}=S_{F}u_{xt}+S_{T}\theta_{t}$ and $\theta_{t}=((T_{\infty}+\theta)m^{1})^{-1}\{(Q\theta_{x})_{x}-(T_{\infty}+\theta)\eta_{F}u_{xt}\}$ .

Since $V>0$ for $\sigma$ small enough, multiplying (1.33) by $u_{xtt}$ and noting the identity:

$(S_{tt}, u_{xtt})= \frac{d}{dt}(S_{t}, u_{xtt})+(S_{xt}, u_{ttt})=\frac{d}{dt}(S_{t}, u_{xtt})+(S_{xt}, S_{xt})$ ,

we have
$\int_{0}^{t}e^{2\alpha s}||u_{xtt}(s, \cdot)||^{2}ds\leq C\{\int_{0}^{t}e^{2\alpha s}||u_{xxt}(s, \cdot)||^{2}ds+R_{\alpha}(t)\}$ .

Differentiating (1.26) once with respect to $x$ and using the formula: $u_{ttt}=S_{xt}$ , we have
easily that

(1.35) $\int_{0}^{t}e^{2\alpha s}||(u_{xxx}, u_{ttt})(s, \cdot)||^{2}ds\leq C\{\int_{0}^{t}e^{2\alpha s}||u_{xxt}(s, \cdot)||^{2}ds+R_{\alpha}(t)\}$ ,

where we have used the relation: 11 $u_{tt}||\leq C||u_{xtt}||$ , which follows from the fact that
$\int_{0^{1}}u_{tt}(t, x)dx=0$ and (1.17).

One of the main points of the proof is the following two steps and the idea goes back
to the paper due to Munos Rivera [4].

STEP 6. I verify the relation:

(1.36) $\int_{0}^{t}e^{2\alpha s}||(D^{3}u, \theta_{xx}, \theta_{xxx}, \theta_{xxt})(s, \cdot)||^{2}ds$

$\leq\mu\int_{0}^{t}e^{2\alpha s}<u_{xxt}(s, \cdot)>^{2}ds+C\mu^{-4}R_{\alpha}(t)$

for $\mu>0$ small enough.

In view of (1.30), (1.31) and (1.32), we shall estimate I $u_{xxt}(s, \cdot)||$ . To do this, we use
the formula:

(1.37) $Q\theta_{xxx}-(T_{\infty}+\theta)\eta_{T}\theta_{xt}-(T_{\infty}+\theta)\eta_{F}u_{xxt}+g_{1}=0$,

where
$g_{1}=Q_{x}\theta_{xx}+Q_{xx}\theta_{x}-((T_{\infty}+\theta)\eta_{T})_{x}\theta_{t}-((T_{\infty}+\theta)\eta_{F})_{x}u_{xt}$ ,

which follows from the differentiation of (1.27) with respect to $x$ . Since

$(Q\theta_{xxx)}u_{xxt})=<Q\theta_{xx},$ $u_{xxt}>-(Q_{x}\theta_{xx}, u_{xxt})$

$- \frac{d}{dt}(Q\theta_{xx}, u_{xxx})+(Q_{t}\theta_{xx}, u_{xxx})+(Q\theta_{xxt}, u_{xxx})$
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where $<u,$ $v>=u(1)v(1)-u(O)v(O)$ , multiplying (1.37) by $u_{xxt}$ implies that

(1.38) $\int_{0}^{t}e^{2\alpha s}||u_{xxt}(s, \cdot)||^{2}ds\leq\int_{0}^{t}e^{2\alpha s}|<Q\theta_{xx},$ $u_{xxt}>|ds$

$+ \int_{0}^{t}e^{2\alpha s}|(Q\theta_{xxt}, u_{xxx})|ds+CR_{\alpha}(t)$ .

Choosing $\delta>0$ small enough in (1.31) and using Schwarz’s inequality and (1.32), the
second term of the right-hand side of (1.38) can be absorbed by the left-hand side of
(1.38). Since

$< \theta_{xx}(t,\cdot)>2\leq||\theta_{xx}(t,\cdot)^{2}||_{\infty}\leq C\int_{0}^{1}|\overline{\partial}_{x}^{1}(\theta_{xx}(t,\cdot)^{2})|dx$

$\leq C\{||\theta_{xx}(t,\cdot)||^{2}+||\theta_{xx}(t,\cdot)||||\theta_{xxx}(t, \cdot)||\}$

where $\overline{\partial}_{x}^{k}v=(v, \partial_{x}v, \ldots\partial_{x}^{k}v)$ and we have used Sobolev’s inequality:

$||v||_{\infty} \leq C\int_{0}^{1}|\overline{\partial}_{x}^{1}v(x)|dx$ ,

we have

$\int_{0}^{t}e^{2\alpha s}|<Q\theta_{xx},$ $u_{xxt}>|ds$

$\leq\mu\int_{0}^{t}e^{2\alpha s}<u_{xxt}(s, \cdot)>^{2}ds+C\mu^{-1}\int_{0}^{t}e^{2\alpha s}<\theta_{xx}(s, \cdot)>^{2}ds$

$\leq\mu\int_{0}^{t}e^{2\alpha s}<u_{xxt}(s, \cdot)>2ds+C\mu^{-1}(1+\delta^{-1/2})\int_{0}^{t}e^{2\alpha s}||\theta_{xx}(s, \cdot)||^{2}ds$

$+C \mu^{-1}\delta^{1/2}\int_{0}^{t}e^{2\alpha s}||\theta_{xxx}(s, \cdot)||^{2}ds$ .

Inserting this inequality into (1.38) and using (1.30) and (1.31), we have (1.36) by
choosing $\mu$ and $\delta$ in such a way that $\mu=\kappa\delta^{1/2}$ for a suitably small constant $\kappa>0$ .

STEP 7. I verify the relation:

(1.39) $\int_{0}^{t}e^{2\alpha s}<u_{xxt}(s, \cdot)>^{2}ds$

$\leq C\{\int_{0}^{t}e^{2\alpha s}||(D^{3}u, \theta_{xx}, \theta_{xxx}, \theta_{xxt})(s, \cdot)||^{2}ds+R_{\alpha}(t)\}$ .

Differentiating (1.1) with respect to $t$ and $x$ implies that

(1.40) $u_{xxxt}=S_{F}^{-1}\{u_{xttt}-S_{T}\theta_{xxt}-g_{2}\}$
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where
$g_{2}=2((S_{F})_{x}u_{xxt}+(S_{T})_{x}\theta_{xt})+(S_{F})_{xx}u_{xt}+(S_{T})_{xx}\theta_{t}$ .

Put $q(x)=x- \frac{1}{2}$ and then we have

$(u_{xxxt}, qu_{xxt})= \frac{1}{4}<u_{xxt}>^{2}-\frac{1}{2}||u_{xxt}||^{2}$ ;

$(S_{F}^{-1}u_{xttt}, qu_{xxt})= \frac{d}{dt}(S_{F}^{-1}u_{xtt}, qu_{xxt})-((S_{F}^{-1})_{t}u_{xtt}, qu_{xxt})$

$+ \frac{1}{2}((S_{F}^{-1}q)_{x}u_{xtt}, u_{xtt})-\frac{1}{4}\{(S_{F}^{-1}u_{xtt}^{2})(t, 1)+(S_{F}^{-1}u_{xtt}^{2})(t,0)\}$ .

Therefore, multiplying (1.40) by $qu_{xxt}$ implies that

(1.41) $\frac{1}{4}\{((1+S_{F}^{-1})u_{xtt}^{2})(t, 1)+((1+S_{F}^{-1})u_{xtt}^{2})(t,’ 0)\}$

$\leq C\{||\theta_{xxt}||^{2}+||D^{3}u||^{2}+||g_{2}||^{2}\}+\frac{d}{dt}(S_{F}^{-1}u_{xtt}, qu_{xxt})$ .

Multiplying (1.41) by $e^{2\alpha t}$ , integrating the resulting equation over $(0,t)$ and using (1.24),
we have (1.39).

Combining (1.36) and (1.39) and choosing $\mu$ small enough, we arrive at the relation:

(1.42) $\int_{0}^{t}e^{2\alpha s}||(D^{3}u, \theta_{xx}, \theta_{xxx)}\theta_{xxt})(s, \cdot)||^{2}ds\leq CR_{\alpha}(t)$ .

STEP 8. I verify the relation:

(1.43) $\int_{0}^{t}e^{2\alpha s}||(D^{2}u, \theta_{t}, \theta_{tt})(s, \cdot)||^{2}ds\leq CR_{\alpha}(t)$ .

We already knew the estimate: $||u_{tt}||\leq C||u_{ttx}||$ . The estimat$e$ of I $u_{xx}||$ follows from
the formula: $u_{xx}=(S_{F}^{0})^{-1}\{u_{tt}-S_{T}^{0}\theta_{x}-(S_{F}^{0})_{x}u_{x}-(S_{T}^{0})_{x}\theta\}$ . Since $S_{t}=0$ on $\partial\Omega$ as
follows from $S=0$ on $\partial\Omega$ , by (1.18) we have

$||S_{t}||^{2}\leq C||S_{xt}||^{2}\leq C\{||(u_{xxt)}\theta_{xt})(t,\cdot)||^{2}+\sigma||(u_{xt},\theta_{t})(t,\cdot)||^{2}\}$ ,

which combined with (1.34) implies that the estimate of 1 $u_{xt}||$ . Finally, the estimates
of $||\theta_{t}||$ and I $\theta_{tt}||$ follow from the formula:

$\theta_{t}=((T_{\infty}+\theta)\eta_{T})^{-1}\{(Q\theta_{x})_{x}-(T_{\infty}+\theta)\eta_{F}u_{xt}\}$

and the formula of its differentiation, respectively.
Summing up, we have obtained

$N_{\alpha}(t)^{2}+M_{\alpha}(t)^{2}\leq C\{E_{0}^{2}+(\sigma+\alpha)M_{\alpha}(t)^{2}+\sigma N_{\alpha}(t)^{2}\}$,
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and then choosing $\sigma$ and $\alpha$ small enough, we have (1.12).
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