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Summary

We present a new temporal model of animal behavior, includ-
ing environmental and internal pafameters, based on the ethologi-
cal idea that the internal states of the individual, not the
external stimuli, determine the behavior. This model predicts a
fractal property of the behavior, that is, an inverse power law
distribution of the duration. Being consistent with the model,

we have found a fractal feeding property in Drosophila melano-

gaster: The dwelling time of starved flies on food showed a
clear inverse power law distribution. Predicted change into an
exponential distribution and the dependence of the fractal dimen-

sion on the intensity of food stimuli have been proved.
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Introduction
Temporal analysis of animal behavior has usually been

conducted with random models using negative exponential functions
(Fagan and Young 1978). However, most behavior consists of a
large number of interdependent elementary processes. Suéh sys-—
tems, which have no characteristic time scale, are generally said
to be ’temporal fractals’, which manifest an inverse power law
distribution whose exponent is closely related to thé fractal
dimension of the process (Mandelbrot 1983; West 1990); Based on
the ethological idea that the internal states of the individual,
not the external stimuli, determine the behavior, we present a
fractal model of animal behavior that predicts an inverée power
law distribution of the duration. This communication further
presents the first evidence of temporal fractal in the feeding.

behavior of Drosophila melanogaster; the dwelling time of starved

flies on food sources shows a clear inverse power law distribu-
tion (Shimada and Hara 1988). A change in the distribution into
an exponential bne and a dependence of the fractalkdimension on
food stimulus intensity, as predicted by the model, have been

revealed under the following experimental conditions.

Methods

Male flies of Drosophila melanogaster (Canton-S), previous-

ly starved for 20 hr, were placed on micro-test plates (small
plastic boxes with 60 wells) and left to feed for 30 min at 25 C.
Ten mM sucrose or 5 mM sucrose mixed with 1 % agar were placed
in the wells of the plate (10 ul each, more than sufficient for

all the experimental flies; Shimada et al. 1987). Two types of
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food distribution were used: (1) densé‘distribution, in which
all 60 wells .in  the micro-test 'plate were filled with sucrose
solution, and (2)‘ sparse “distribution, in which only four sym-
metrically selected wells were filled with sucrose solution, and
the other 56 with water. The movements of five male flies in the
micro test plate were recorded on video tape under continuous
illumination. With the aid of a personal computer, we monitored
the video records played—back at - 1/3 normai speed and recorded
the entering and leaving times to/from the selected wells by
pressing keys correspondingly assigned to the wells. Subsequent-
ly, the dwelling times at the wells are calculated based on these

data.

Resqlts
Model

Figure 1 shows our basic éssumption‘thdt even simple animal
behavior is determined by a very large number of activated levels
N of the internal states in complicated neural networks of the
central nervoﬁs system (CNS). The internal étates are conditioned
‘by various stimuli speéified by a parameter ?c in the environ-
ment. The dynamic pfocesses of the CNS.probably‘give rise to the
fractal propertieé of animal behavior. According to statistical
considerations, taken ffom a Boltzmann distribution analogy in
statistical mechanics, the simplest exéression of the number of
intefnal states I(N) specified by Po is éxpressed by an exponen-
tial/function;

| T)=1, exp( g, N) (1)

where N denotes the internal state levels and I, is the initial
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number of states for N=0. This expression can also be derived
under the assumption of Weber-Fechner’s law between the external
stimuli and the internal activated levels, N (sensation) (see,
Appendix I).

Here, N changes with time from certain levels including zero to
a limit expressed as Nec, that is, the critical level for transi-
tion to a new state. In this sense, I(N) becomes I(N,Nc). The
transition probability, then, is described by the differences
between the internal state levels N and Nc(see, Appendix II1).

Py(Be) = T(N,Ng )/ I(Ng)
= exp[pc(N— N.) | (2)
If N is very large enough, we can define the continuous level
density function F(N, ﬁo) from the above mentioned transition
probability as follows;
F(N, Bo )AN = Py( fo)dN | (3)
A fundamental assumption of our model is the relation in which
the duration t of the behaVior type in question is determined by
a reciprocal of the transition probability specified by @ ;
1/t = W exp[B (N - Ng)J (4)

Here, the external parameterlpeof the transition probability of

the internal state changes to the internal parametew'p since the

output of the behavior may be modulated through the transduction

process from the internal states . In general, @ may be a func-
tion of @o . W is a constant having the dimension of reciprocal
time. From the fundamental assumption between t and N, we have

dN/dt = -1/pt . (5)



101

By the conservation of probability, we can define the probability

density function ¢(t) of the duration of the behavior as follows;

p(t)dt = F(N,ﬁa)dN (6)
After substituting the expression (3) with (2) into the right
hand side of (6), we have

¢(t)dt ol -exp[ﬁo(Nn Nc)]dNr

= teXp{p (N- N.)}1PB/Pan, (7)
Then we can rewrite the expression (7) as follows;
g(t) oc  lexp(p (N- N)}1BRansat. (8)
With the aid of (4) and (5), we ogtain the result
g(t) oc tT1BR [ = (1w PPy (9)
The cumulative distribution (ecd), ©(t), defined by integration
of “g(t), 1is then expreséed by the following inverse power law;
o(t)oc t B2, | (10)

Ifﬁ is small enough, we have a different relation corresponding
to (4). By applying the procedures mentioned in (5)~(8), we can
approximately express the cd by the-exponential form;
0(t)ec expl-(Be/B)WL] . (11)

Qur model, then, firstly predicts a temporal fractal behav-
ior, that is, an inverse power law distribution qf the duration
of the béhavior. The following prédictions are further deduced:
1) the fractal dimension, fhat is, the slope of the distribution
in‘log~1og plot depends on the stimulus intensity, since it 1is
determined by the environmental parameter@c. 2) O(t) ma& change
into the exponential distribution of classical random models in

(11) under certain expérimental conditions for small values of@ .
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The latter situation indicates the linear relationship between
internal states and behavioral output.
These theoretical predictions have been proved by the following

experiments.

Inverse power distribution of feeding behavior

Figure 2a shows a typical distribution of the measured
dwelling time of 50 flies on 5 mM sucrose wells in a dense food
distribution system. The dwelling time frequency histogram is
characterized by a long tail distribution. The total number of
visits (n) to the wells is 646, aﬁd the mean value + standard
deviation of the dwelling time is 2.9 + 5.0 sec. The distribu-
tion of Fig.2a is rearranged in a log-log plot’in Fig.2b and is
characterized by a linear section, between 1 and 20 sec, with a
slbpe of -1.5. The ordinate is the ratiq R (%) of data that is
longer than the dwelling time in question. This inverse power
distribution indicates that Drosophila’s staying behavior on food
can be characterized as a temporal fractal.

Dependence of fractal dimension on food stimuli

The results of three repetitions of the experiments in Fig. 2
ére shown in log-log plot in Fig.3a. The slopes of the linear
curves, that is, the fractal dimeﬁsions, are very stable at -1.5,
although data are widely scattered in the three series. Five
independent series of 10 mM sucrose dense food distribution
experiments are shown iﬁ Fig.3b in a log-log plot. The curves are
again linear between 1 and 40 sec, where the slopes are stable at
-1.1 and are clearly gentler than those of 5 mM sucrose in

Fig.3a: i.e., flies stay for a longer time on relatively concen-
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trated food. The clear difference betweeﬁ the élopes in Figs.3a
and b may reflect the difference in the environmental
parameter

Distribution change

The fractal feature of dwelling time disappears when the
food distribution is radically changed. Figure 4 shows the log-
log and log-linear plots of dwelling time in paired dense and
sparse food distribution experiments. - : The sparse distribution
dwelling time is not only much longer, but also does not produce
a linear log-log plot. More precisely, the sparse distribution
curve has a tendency to become exﬁonéntial,’as clearly shown in

the linear section of the log-linear plot curve.

Discpssion

The key point of the model (4) 1is that internal states
determine the behavior. We also note the tranSformatibn from the
internal sfate levels N to the duration t of the behavior is re-
written into the form

N = —ﬁ_l lh t + constant. | (12)

Based on (12) and wunder the constraint that <ln t> = constant,
the so-called maximum entropy formulation 1leads to the same
inverse power distribution as that in (9), where @ -1 is a Lé—

N

grange multiplier (West 1990) and corresponds to degree of
information" (Hara, 1985; Hara and Okayama, 1988). ‘Thé logarithm
of t may be called a ’fractal’ function, since the scaling of a
logarithmic Variable simply results in an additive constant. In

this sense, the transformation in (4) itself is fractal in na-

ture.
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Note that the cd function ®(t) in (10) has a scaling (frac-
tal) property, O0{(at)= constant x ©0(t). The scaling property
leads us to a relation for the fractal dimension deiermined by
the two parameters, @cand ﬁ . The range of N (0KNg<Nc) gives us
the.upper and lower limits of the duration of fractal behavior

obtained from (4) ; t, = 1 exp(@ Ne) and ty = wol.

The fractal nature that we have found, for the first time in
the feeding behavior of Drosophila suggests the presence of a
simple scaling law in the complex processes of the behavior. The
scaling principle may be a useful clue in understanding the
complex mechanism of animal behaviors. Furthermore, the inverse
power law distribution suggests that error-tolerant systems may
be present (West 1990).

' Other fractal dimensions, the temporal or spatial ones, can
be derived from precise analysis of time series and trajectories
in the feeding behavior (Dick and Burrough 1988; Shimada et al,

1990) and would be of use in obtaining additional information.
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Appendix I1

In some cases, Weber-Fechner’s law may be interpreted as an
expression of the relation between external stimuli S( T ) and
internal activated levels N

@CN = 1n S(T ) (1)
where T is a duration time of the stimuli. When S(T ) is de-
scribed by a probability dens1ty function (pdf) of stimuli P( t )

S(T ) \f‘P( t ) dt (2)

we have
P(T) = dS/dT-= (%oexp(geﬁ)dN/dt (3)
from the\ébove two relations. By rélating the pdf of the sfimuli
P( T ) to the number of internal states I( N ), we can define the

pdf for the internal states:

P(T)dT = I (N)dN / (total number of internal states ) (4)

Expressed differently, we have

I(N) &< P(T)dT/dN oC(Boexp (@oN) (5)

Appendix 11
For Markov process of a probability W(NO tgs Nl By sty NC)
(t0<tl< ..... <tC), wé have a relation for the transition probabil-

ity P(N t N, to);

W(N 5N, tg) = PON t] Ny tg) W(Ng o)
we can obtain the equation (2) in the text by multiplying each
side of the above equation by the numerical factor (Q)yand re-
placing in the following way;

I(N, N,) = Q W(N t, ; N, te)sy I(Ng) = Q W(N, to),

PN(’@G ) = P(N t | Ng tg).
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Internal State

I(N,B0)

Environment Behavior

Fig. 1. A model of animal behavior as an internal state
input-output system . Pais a parameter of information
processing from the environment to the internal states, while

parameter p specifies the output of the internal states.
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Fig. 2. Measured dwelling time distribution on 5 mM sucrose

(a) This figure represents summed results obtained from 10

runs of an experiment in which five male Drosophila flies were
starved for 20 hr, put‘on a micro-test plate at 25 °C, and
videotape recorded for 30 min. To aﬁalyze the feeding behavior
of Drosophila, the recorded videotape was played back and the
dwelling time on the symmetrically selected fouf
representative wells filled with éucrose soluﬁion was
measured with the use of a personal computer. Number of visits
of Drosophila to each well (frequency) is plotted in 1/3 sec
unit. (b) Dwelling time distribution in log-log plot. The
ordinate is the ratio R (%) of data that is longer than the
dwelling time 1in question. The plot is obtained from

rearrangement of data in Fig.2a.
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Fig. 3. Dwelling time distribution in log-log plot. The ordinate
is the ratio R (%) of data that is longer than the dwelling
time in question. (a) Three different series of the experiment
shown in Fig.2. Each point of one series is smoothly connected
by a solid line. (b) Five series of similar experiments with

10 mM sucrose. The log-log coordinates are the same as in a.
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Fig. 4. Dependence of dwelling time distribution on the food
distribution of 10 mM sucrose; @ = dense food distribution

(60 wells) and O = sparse distribution (4 wells). The wupper

abscissa is a log time scale and the lower is a linear scale.

The ordinate is the same as in Fig.3.



