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1. Introduction

We consider the quadratic form

(1.1) afu] = / 3 (#*0,,u,0,u) dz
Q 7,k=1
on the space H'(Q) := H*(Q;CN) of N-vector H' functions u on a domain Q of R"

(n>2, N >1) with constant coefficients A’ € My having the symmetry relations
(1.2) (A =A%, 1<j,k<n,

where (-, -) denotes the hermitian inner product on CN, My = My nx with M, the set of
complex £xm matrices, and (A’F)* the adjoint of A’¥. Note that by (1.2) a[-] is real-valued.
It is fundamental in PDE theory to examine the coercivity or the positivity of quadratic
forms such as a[-] on H'(Q) or its certain subspaces. Our first aim is to describe, in terms

of the coefficients A?¥, conditions for the following basic inequalities to hold:

(1.3) Cafu] > cx [Vul*  Vu€ HY(R") or H'(R}),

(14) el zeplulr Ve HY() or “HY()

(1.5) &[u] > cs [u]? Vu € "H'(®,)

with some positive constants ck,cp,cs, where || - || stands for the L? norm on the domain

considered, R} = {(z',z,); zn > 0} the upper half space, , = {(¢/,z,); 0 < z, < 1} a

slab in R®, and [u]? = fge-1 |u(z’,0)|?dz’ for u € °H'(Q,) := {v € H'(®4);v|z,=1 = 0}.
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Our strategy for attacking the problem mentioned above is symmetric factorization of
positive-semidefinite matrix-polynomials: it is known (see Jakubovi¢ [5], Gohberg, Lan-

caster & Rodmann (3], [4]) that, if a matrix polynomial H(7) in the form

(1.6) H(r) = Hyr*+ Hy7 + Hy with Hy, Hy, Hy € My hermitian and H; > O
satisfies H(a) > O for all a € R, then there exists a matrix A € My such that
(1.7) H(r)= (It —A*)H,(IT—A)  as polynomial in 7.

For the purpose of application to the inequalities above (and to more general PDE’s of
second order) we investigate some properties, suitable for that use, of such a A as satisfies
(1.7). This is our second aim in the present paper.

The following §2 will be devoted to factorization of matrix polynomials of form (1.6).
In §3, using the technique developed in §2, we shall reveal to some extent the relationship
between the coefficients A%F of (1.1) and the validity of inequlities (1.3)-(1.5). If n = 2
or if N =1 in particular, our method will be so powerful that we can obtain satisfactory
results. The results in §3 will be roughly proved in §4. Finally, in §5 we shall apply results
obtained in §3 to the following two practical cases:

Example 1: the scalar case.
(1.8) afu] = /Q , jél A*9, ud udz for i€ H'(Q,) (N=1).

Example 2: the case of linear isotropic elasticity:
(1.9) afu] = A||divu|® +2u(le(w)]|®* for u € H'(Q;C*) (n=N >2),

where A, u € R are the Lamé moduli and e(u) denotes the symmetric part of Vu: e(x) =

2-1 (Vu + (Vu)T).



2. Factorization of matrix polynomials

Let H(7) be as in (1.6). It is known (for details see [2, Chap. VI], [4, Chap. S1], etc.)
that, by applying a sequence of elementary transformations, H(t) can be reduced to a
diagonal polynomial matrix
( dy(7) )

d2 T
(2.1) D(r) = ")

\ dn(r) )

with monic (i.e., the leading coefficient is 1) scalar polynomials d;(7) such that d;(7) is
divisible by d;_;(7); in other words there are matrix polynomials P(7) and Q(7) with

constant nonzero determinants such that
(2.2) D(r) = P(r) H(7) Q(7).

While the invertible matrix polynomials P(7) and Q(7) in (2.2) are not uniquely deter-
mined, the scalar polynomials di(7),d2(7),... ,dn(7) are uniquely defined. Indeed, denot-

ing by g;(7) the G.C.D. of the minors of H(7) of order j, we have
di(t) =gqi(r) and d;(7) = g;(7)/g;-1(r) for 2<j < N.

We call D(7) the Smith form of H(7) and d;(7),d(7),... ,dn(7) the invariant polynomials
of H(7). Note that the invariant polynomials of H(7) considered here are with real coef-
ficients. Now we represent each of them as a product of irreducible factors over the field
K=CorR:

di(1) = $in ()P ¢ia(T)P? - - - hjp; ()%, 1 <j< N,
where ¢j1(7'), .o+ »®ix,;(7) are all the distinct factors of d;(7) over K, and pj1,... ,pjs, €N
(positive integers). The factors ¢;x(7)?* (1 < k < kj,1 < j < N) are called the elementary

divisors of H(r) if K = C, and the real elementary divisors if K = R.
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Theorem 2.1. (cf. Gohberg et al. [3], [4]) For a matrix polynomial H(7) of form (1.6),

the following three conditions are equivalent:
(i) H(r) 20O forall T €R.
(i) There exists a matrix A € My which satisfies (1.7).

(ili) The real elementary divisors of H(r) have the forms

(2.3) | {(r —ag)(7 — @)}, 1<¢<L

with o, € C and p, € N satisfying Y% p, = N.

Furthermore, under condition (iii), we can construct a A € My which satisfies (1.7) and

whose Jordan form is

{ J(al’pl)

L - J(ag,p
@J(C!g,p() = ( ’ 2) )
=1

\ J(ew,pL) |

where J(a, p) denotes a Jordan block of size p and eigenvalue a.

For convenience of explanation we define three sets X, X, X; of matrix polynomials by

X = {H(r) = Hyr* + Hy7 + Hy; Hy, Hy, Hy € My and hermitian},
Xo={H(7) € %; H(a) > OVa€eR and H; > O},
¥,={H(r) €%, Ha)>0VaeR} C X, C ZX.

We can identify X with the set of triplets (H,, Hy, Hoy) of hermitian matrices of order N,

so with (RN X CN(N‘l)/2)3 o~ R3N*. Given H(r) € Xo we are interested in a matrix A

which satisfies (1.7) and all whose eigenvalues are included in the closed upper half Cy =
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{z € C;Imz > 0} of the compex plane C. The last assertion of Theorem 2.1 guarantees
the existence of such a A, and the following proposition shows an explicit construction of

it. Later, this A will prove to be unique (Theorem 2.4).

Proposition 2.2. Let H(r) € X,. First, by means of elementary transformations,
represent H(7) in form (2.2). Second, express the real elementary divisors of H(r) as the
form (2.3) but with o, € C, for all 1 < £ < L. For each £ let €9 be the unit vector in CN
such that the j,-th element is 1 and the others are 0, where j, is the index such that the
elementary divisor {(T — @z )(T — ay)}?* is chosen out of d;,(7). Finally, using Q(r) and

given above, define a matrix R by

IN

9 = 2 QIa)e®ecy, 1<k<p,
(2.4) { RO = (,go P9 ,1(;;)) € Mn,,, 1<E<L,

IA

R=(RW R® ... RD) € My,

\

where Q%=1 (qa,) =( o )k_lQ(T)|T=a,. Then R is nonsingular. Furthermore the matrix

r

= (o)

=1

satisfies (1.7) and its spectrum o(A) is included in C,.

Proposition 2.3. Let H(7) € X, and let A be a matrix such that (1.7) is valid and

o(A) C C,. Define a subspace V; of CN by

(2.5) | Vi= @ ker(al —A)V.

aEa(A)ﬂC+

Then we have the following:
(i) Given d € CV the boundary-value problem
H(D)u(t)=0 for 0<t<1,

u(0)=d, u(l)=0 (Dt=%%)
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admits a unique solution u, which is given by

— itA » ¢ —1sA ry—1 _isA* 1 —isA ry—1 _isA* .
u(t)=€e""{I — e Hy e ds e H; e ds d.
0 .

(i) Given d € V; the boundary-value problem
H(D)u(t)=0 for t>0,
u(0)=d, u(t)—0 ast— oo

admits a unique solution w, which is given by
u(t) = .

Conversely if the problem has a solution w, then there must be d € V.

Theorem 2.4. Let H = H(7) € Xo. Then there exists a unique A € My such that
(1.7) holds and the spectrum o(A) of A is included in C; = {Imz > 0}. Furthermore, the
mapping A : X9 — My defined by \(H) = A is continuous on X¢ and real-analytic in ¥;.

If H € X, in particular, A(H) is represented as

MH) = (/[‘ H(z)'ldz>_l (/r zH(z)"ldz) , |

where T is a contour in C4 = {Imz > 0} with o(A) inside.

Given H = H(t) € X¢ let A = A(H). We define two subspaces Vo(H), Vi(H) of CN by
(26)  Vo(H)= @ ker(al =AY, Vi(H)= @ ker(ad—A);
’ a€o(A)NR a€o(AINC4
ker (al — A)VN is so-called the generalized eigenspace of A corresponding to a € o(A). With

the notation (2.4) used in Proposition 2.2, these spaces are expressed more explicitly as

27) Vo) = @ Sk, o], Vit = @ S, 7Y,

17 pe 17 pe
£ a0€R & 0€Cy
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where S[ri?, ... ,r;‘)] denotes the linear subspace of CV generated by r{?, ... vl We

note that Vo(H) @ Vi(H) = CV, and that if H € X, then Vo(H) = {0} and V;(H) = CN.
Further note that, by Theorem 2.3, given H € X, the V; in (2.5) and the V;(H) in (2.6)
are the same.

Now we write H(7) = H(—7) for H € X¢; note that H € ¥, if and only if H € ¥,. The
following theorem explains how the positive semidefiniteness of H(r) is reflected in A(H)

(and A\(H)).

Theorem 2.5. Let H € Xo. Then the matrix
K = (2i)7'H, (AM(H) + \(H))
is hermitian and satisfies
(i) K>0, (ii) ker K = Vy(H).

If H,, Hy, Hy are real matrices in addition, then A(H) = —A(H), so that K = H, Im A\(H),

where Im A denotes the imaginary part of A : ImA = (A — A)/(27).

We give a proof only to Theorem 2.5 because it is the most important in this section.

For convenience of explanation we write Ay = A(H(+£7)) and set for ¢ > 0
H§ = Hoy+el, He(r)=H(r)+el,
A% = MH(£7)), K =(20)"1Hy(AS + A%).

Since H¢(+7) € X,, we see from Theorem 2.4 that, given d € CV, u5(t) := e'*A%d are the

unique solutions of the problems

He(£D)us(t)=0 for t >0,

ul(0)=d, wu(l)=0.
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Now define quadratic forms h3 [u]; on H'(I), I being an open interval in R, by
hilulr = (ng’;u')Lz(I) + Im (Hho', w)p2(p + (Hu, u) 2y for w € HY(I),
where u’ = du/dt. If we set further
G(r) = —i(HyT + 271 Hy),
integration by parts gives
(28)  bilutle, = ((£G(£D)us)(0), ui(0)) = (—i(H:AL £ 27 Hy)d, d)
The function v*(t) defined by
ve(t) =ul(t) fort>0, =wui(-t) fort<0

is in H'(R) and satisfies h%[v¢]g = §%[us]r, + h%[u]r,. Furthermore we have by the

Fourier transformation
(2.9) b [ola = [[(H(r)e(r),%(r)) dr 2 0
Thus it follows from (2.8) and (2.9) that
2(K°d,d) = b4 [uf]e, + b [ulle, =b5[v e 20 VdeC”,

where we tend € — 0 to obtain (Kd,d) > 0 for all d € CV. Since this implies that K

satisfies (i) above, our remaining task is to show ker X' = V4(H). For simplicity we set
Vo' = Vo(H(£7)), Vit = Vi(H(£7)).

We begin with showing V¥ C ker K. In order to find the explicit forms, such as in

(2.6), of Vi, choose invertible matrix polyﬁomials P(7) and Q(7) such that P(7)H(7)Q(7)
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is the Smith form of H(7). Then P(r)H(7)Q(7) is the Smith form of H(r) = H(-7). If

the real elementa,ry divisors of H(7) are given by

(2.10) {(r—a)(r -}, 1<ELU,
then those of H(7) are given by

(2.11) {(r+a)(r+a)}*, 1<LLL

For the elementary divisors (2.10) of H(7) and (2.11) of H(7) we set respectively

O _ _L__ok-D(q,)e® 0=

= e 1)' Q(k D(_ag)e®

(k

for1<k<prand1<{< L. If ay € R in particular, then i'g) = (—l)k“l'rg), so that

Vo =Vo = @ Sl

? Pl
¢ a€R

.Moreover, for such £,

2 <Krff),rk)> Im((H A+r§f),r§f)> <H2A rg),rk)»

= Im ((H:(Aer) + 7(2)),77) + (Ha(= M) + #2,), 7)) = 0,

where we have used the notation r{’ = 0. Hence by (i) we obtain K rg) = 0 for all £ such
that o, € R.
Finally, suppose that V;t (= Vi) # ker K. Let $1,5z,...,8u € C, be the distinct

imaginary eigenvalues of A_. Then we have

(2.12) Vi= @ V(Bn) with V7(8,)=ker(B.I—A)".
1<m<M
- Since CN = V;~ @ V[~ and V; C ker K, the supposition above implies that there is a
nontrivial * € ker K N V7. We decompose this r to the sum corresponding to (2.12):

> rn  with v, € V7 (Ba).

. 1<m<M
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Choose m; such that v, # 0 and p; such that
(ﬁmlI - A—)mrnu 7é 0’ (ﬂmll - A—)m+lrm1 = Oa
and define # # 0 by

3

( II  (BI- A-)N) (B, I — APt

1<m<M,m#m,

( H ('BkI - A—)N) (:Bmxl - A—)mrml-

1<m<M,m#m;

Then it follows that A_# = B, #. On the other hand, since r € ker K = ker (A4 + A_), we
have # € ker (A4 + A_). Hence we arrive at a contradiction that A # = —A_# = —3,,, .

Therefore V;' (= Vy) = ker K.

3. Positivity of the quadratic form af-]

The quadratic form a[-] of (1.1) with @ = R} determines differential operaters A =

A(D) in R} and B = B(D) on R} whose symbols are respectively

A€)= 3 AMet, BE)=—i Y A™& for £€R".
k=1

Jk=1

Indeed, integration by parts gives
= Au,u)d Bu,u)dz’ Vue€ H*}RD).
afu] /R¢< u,u) m+/m< w,u)de’  Vue HYRY)

Let A(¢) > O for all £ and A™ = A(0,...,0,1) > O. Then, by Theorem 2.2, for each

n € R™! there exists a A(n) € My such that o(A(n)) C Ci and
A(n,7) = (IT - A(n)*) A™ (IT - A(n)) as polynomial of 7.

By means of this A() we define for each € R™!

n—-1

(3.1 T(n) = ~i X A e+ AA(D)),

k=1

Vo) = @ ker (al=AMm)) (= Vo(A(n, 7))

a€a(A(n))NR
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Note that T'(n) is a hermitian matrix-valued continous function of n € R"™! which is
positively homogeneous in 7 of degree 1 (i.e., T'(rp) = rT'(n) Vr > 0).

Let A be a strongly elliptic system, that is, let A(¢) > O for all ¢ € §*~! := {|¢] = 1}.

Then, given ¢ € H'?(GR"), the Dirichlet problem

(3.2) Au=0 in R}, u=¢ on 3R1V

has a unique H? solution u. We define a mapping 7 : H'/*(GR%) — H>?(R") by
T = B“Ix,,:ﬂ

using the unique H? solution u of (3.2); 7 is called the Dirichlet-to-Neumann map for
{A,B}.

Proposition 3.1. Let A be a strongly elliptic system. Then the symbol of the Dirichlet-
to-Neumann map 7T for {A,B} is equal to the T(n) defined in (3.1). Moreover T(n) is

real-analytic in n € S"2.

INEQUALITY (1.3).

It is well-known under what condition on the coefficients A’* inequality (1.3) holds.

Theorem 3.2. The following is a necessary and sufficient condition for inequality (1.3)
to hold for some constant cx > 0 :
Case 1: on the space H'(R"). A(£) > OVE € 81,

Case 2 : on the space H'(R%). A(¢€) > OVE € S*! and T(n) > OVnpe S" 2.

The symbol A(£) depends only on the hermitian parts $ A% := (A% 4 (A47%)*)/2 of the
coefficient matrices A’¥; note that any A € My can be decomposed as A = HA + i GA

with 6A := (A — A*)/(2¢) the skew-hermitian part of A. Thus the following question is
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naturally raised: Can we change the skew-hermitian parts GA’* of the coefficients A7* so

that T'(n) > O for all 7 € S*~% if A is strongly elliptic?

Theorem 3.3. Let A be strongly elliptic. Then we can change the coefficients A7*

with A(¢) left unchanged so that T(n) > O forallp € S*? ifn=2o0rif N =1.
INEQUALITY (1.4) ON H ().

Theorem 3.4. For inequality (1.4) to hold on Hy(Q;) with some constant cp > 0, it

is necéssary that A(¢) satisfies the following conditions:
(i) A¢)z0oveEes (i) A™ > O;

(iii) For every n € S"~? the matrix polynomial A(n,t) in 7 has no elementary divisors in

the form (1 — @)* witha € R and p > 2.

Furthermore, if n = 2 or if N < 2, then it is also sufficient.

Corollary 3.5. Assumen =2 or N = 1. Let Q be an arbitrary bounded domain in
R"™. Then, inequality (1.4) holds on Hy(Q) with some constant cp > 0 if and only if the

following conditions are satisfied:
(i) A(§) > 0VEes
(i) There is a £, € S™! such that A(fo) > 0;

(iil)’ For some (or any) &, satisfying (ii)’ above, if we rotate the coordinate axes so that &

is on the z,-axis, the transformed A(¢) satisfies condition (iii) in Theorem 3.4.

INEQUALITIES (1.4) AND (1.5) oN °H'(Q,).
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Theorem 3.6. For inequality (1.4) to hold on °H'(f;) with some constant cp > 0, it

is necessary that A(¢) and T(n) satisfy the following conditions:
(i) - (iii) : as in Theorem 3.4;
(iv) T(n) >0VneS*?% (v) KerT(n) = Vo(n) Vn € S*72.

Furthermore, if n = 2 or if N = 1, then it is also sufficient.

Theorem 3.7. For inequality (1.5) to hold on °H'(§;) with some constant cs > 0, it
is necessary that A(¢) and T(n) satisfy conditions (i)-(iv) as in Theorem 3.6. Furthermore,

ifn=2orif N =1, then it is also sufficient.

Corollary 3.8. Assume that A is strongly elliptic system. Then the following four

conditions are eqm'va]ent:
(1) Inequality (1.3) holds on the space H'(R?) for some constant cx > 0.
(2) Inequality (1.4) holds on the space °H*(f;) for some constant cp > 0.
(3) Inequality (1.5) holds on the space °H"(;) for some constant cs > 0.

(4) T(n) > O for all n € S*2.

4. Sketchy proofs of Theorems in the case n =2

As mentioned in Introduction, our method is fit for the case n = 2 or N = 1. Proofs
of Theorems of the preceding section in the case N =1 are found in Ito [1]. Here we give

those in the case n = 2. Now let n = 2. Then ;, =R x (0,1) and

A(n,7) = A2 + (A21 + AT + Allp? for (n,7) €eRxR.
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If A(€) satisfies conditions (i) and (ii) in Theorem 3.4, the A(n) defined at the beginning of

§3 is given by
(4.1) A(p)=Ay if n>0, =-Anp if n<0,
where A = A(A(1,7)) and A = MA(~1,7)). We further set, for simplicity,
Vo= Vo(A(L,7) (= VoA=L 7)), Vi=Va(A(L7)), Vi = VA(A(-1,7))

In what follows we shall use the notation above.

PROOF OF THEOREM 3.3.

Using (4.1) we have
A(n) + A(=n) = (A+A)nl,  Aln) = A(=n) = (A= A)n.

Thus the T'(n) defined by (3.1) is calculated as follows:
(42)  T(n)=—i(4"n+ A”A(n))

= (20) ' A(A + R)|p| — i (A + 272 4%(A - R)) n

= (2i) A (A + K)Jn| + (-6 A + 276 (A% (A - K))) 1.
Therefore, if GA? (= —GA?) = 2716 (A%(A — A)), then T(£1) > O by Theorem 2.5.
Note that the quadratic form

afu] = 5 {(A7(00, — A0, )u, (0, — A0 )u) + (A2(00, + K0, ), (01, + K0, )}

has the property just stated.

PROOF OF THEOREM 3.4.
It is easy to see that conditions (i) and (ii) are necessary. So, under (i) and (ii), we show

that (iii) is a necessary and sufficient condition. Since

A(p,7)=(r - A"n)A”(IT — An) for (n,7) e R xR,
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we have for every u € Hy(;), which is regarded as an element of H'(R?) by 0-extension,

afu] = (A(n, 7)i(n, 1), ﬁ(ﬂ;’f))L?(ne,,,)
= (A®(I - An)a(n, ), (IT — An)ﬁ(n,f))m(mg.r)
= (4702, — 800 )u, (B — ABuy)u)
= (R*A®R(8,, — JO.,) R u, (8s, — J azl)R_I")Lz(ng)’
where J and R denote a Jordan form of A and a corresponding transforming matrix:

J = R™'AR, and u(n,7) represents the Fourier transform of u(z). Thus the validity of

inequality (1.4) on Hg(f);) is equivalent to that of thé inequality
18 = JOz,)ull® 2 Epllull®  Vu € Ho()

for some ép > 0. Moreover the inequality just above is due to the following rough estimates

for cp(a, p) = inf{||(0z, — J (@, p)dz, )v||*/||v]|%; v € H3(9:;CP)} witha € C and p € N:

cp(a,1) = 72,

¢1(p) min{1, |Im o**~V} < cp(a, p) < c(p)min{l, |Ima|2(1—%)} ifp>2,

where c;(p) and c;(p) are positive constants depending only on p > 2. We here note that, if
a € R and p > 2, for arbitrary nontrivial functions ¢ € C3(R) and ¢ € C2(0,1) the family

{we}eso in Hy(Qy; CP) defined by

T
we(mh 332) = <¢;(-Tl+al‘2) d)(x?)a ¢e(x1 +ax2) 1,[)'((82), 0) ey 0)

with ¢.(t) = e~/2¢(e't) satisfies

|Ber — J(,P)Ou el _ [18ells 1Mooy

< 0 as ¢ — (.
l|w.|? el ¥l

PROOF OF THEOREM 3.7.
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Since conditions (i) and (ii) are easily checked to be necessary, we show under (i) and
(ii) that for inequality (1.5) to hold it is necessary and sufficient that conditions (iii)—(v)
are satisfied together.

First, assume that inequality (1.5) is valid. By Proposition 2.3 the boundary-value

problem

A(n,D)U(t) =0 for 0<t<1,
vioy=1, UQ1)=0

with parameter 7 € R admits a unique solution U(t) = U(n,t), which is given by

(4.3) .
' t 1 -1
— pitA(n) _ —isA(n)( 422\—1 _isA(n)* —isA(n) [ A22\—1 isA(n)*
Unt)=e {I (/0 e (A*) e ds) (/0 e (A*) e ds) } .

Note that U(n,t) satisfies

1
a(t+ ) < [ Ut < alrf?,

(4.4) 1
| 10U et < o+ e VrecYvneR

for some positive constants ¢; and ¢; independent of r and 7. Introducing Tp(n) :=

B(n, D¢)U(n, t)|¢=0, we have
L ) .\l
To(n) = T(n) + Too(n) with Teo(n) = ( /0 g A (422)=1 gisA(n) ds) '

Moreover, for any v € °H'(Q;) N H*(Q,), if we define v € °H(Q,) by o(y,z,) =

U(n,z2)@(n,0) (see (4.4)), then u —v € Hy(Q;) and -

(45) . afo] = [ (To(n)i(n,0), a(n, 0))dn,

where 9(n, ;) denotes the partial Fourier transform of v(z;, z;). Simple observation using

(4.5) yields that the best constant, denoted by cs again, in inequality (1.5) is given by

cs = ilelg ¢s(n) with cg(n) = minimum eigenvalue of Tp(7).
n
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Thus, by assumption, condition (iv) follows from
T(+1) = lim p~'To(£p) 2 O,

where we have used the fact that Too(7) is uniformly bounded in 7 (see (4.6)). Hence, on
the subspaces ker T'(£1) of CV, the behaviors of Too(n) as  — oo determine whether
cs >0orcs=0.

Now remind Proposition 2.2 in order to find explicit forms of Too(+00) :=limy—1.00Too(n),

which do exist. Firstly, we write the real elementary divisors of A(1,7) in the form
{(T—E)(T—.Bl)}wm’ 1 Sm SMla 1 SZSLI'*'LZ’
where By, B2, ... , BrL,+L, are distinct complex numbers such that

ﬂl)"' 7ﬂL1 € R') ﬁL1+1,"' 7ﬂL1+L2 S C+’
and ge1,qe, . .. ,qem, are positive integers satisfying Zf;‘*{[" Eﬁ‘:] gem = N and
qe1 2 qe2 2+ 2 ey, 1<L< L+ L.

Secondly, using the invertible matrix polynomial Q(7) in the representation (2.2) with H(r)

replaced by A(1,7), we define

{
rﬁl,m) _ (k_ll)!.Q(k—l)(ﬁl)e("m) eCV 1<k< qm,

! Rplem) — (,,,gt.m) P L ,-((If:)) € Mygus 1Sm< My, 1<8< Li+1Lo,

R —_ (R(Ivl) cee R(ler) R(2vl) e R(2’M2) e R(L1+L271) e R(L1+L21ML1+L2)) € MN7

\
where the unit vectors e(“™ are chosen in the same way as we chose e in Proposition
2.2. The R just obtained transforms A to its Jordan form:

Ly+Ly M,

R_IARZ @ @J(ﬂlaqlm)'

=1 m=1
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Thirdly, corresponding to the form R, we write (R™!)* in the form

(RV) = (5(1,1) ..o M) o(2) L g(2M2) | G(lat2) |, S(L1+szML1+L2)) € My,

Sem = (5™ g™ . sltm) € Mug,, 1<m< My, 1<L Lty

dtm

Note here that
LitLy M; qim

z z Zr‘"’”@s("’“) 1,

=1 m=1 k=1

1 if ¢y =4y5,m; =my, and k; = k,
[ ) ‘ y b
<r£11 ml), 3£22 m2)> —

0 otherwise,
where @ ® b € My denotes the tensor product of a,b € CV. In these circumstances we

obtain

l P —ithy 422y~1 ttA‘ -
(4.6) Hoo(+00) = (p /0 eIt (A?) dt

Ly min{gz;,9ex}
= Z ( Z (2h — l)cﬁ}k) s @ si),
=1 h=1 4
where ¢ "k 15 the (4, k)-th element of the matrix ((S,(f))*(A”)“IS,(f))—l € M ne,n) With

m(£, k) = max{m; gem > h}, S\ = (s 8D .- sl mie, M) € My mien)-

= qn 9¢,m(2,h)

In addition, for any 7,7, € Vi, the function (Heo(n)ry,72) of 7 decays exponentially as
7 — +00.
It follows from (4.6) that
[4
(4.7) ker Too(+00) = (@ @ Sfrim™, pltm, e lm), ) o Vi.
£=1 m=1
Similarly we have

4
(4.8) ker Too(—00) = (@ @ SrE™, e L f,f,,’,"_’l) @ Vi.

{=1 m=1
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On the other hand, Theorem 2.5 and (4.2) show that
T(n)ly, = 6(-A2 +27'A%(A - K))n >0 VneR,

from which we can conclude that ker T'(£1) ‘D Vo. Now suppose that there is an index ¢

such that 1 < £ < L; and gy > 2. Then we have by (4.7) and (4.8)

(To(m)r&, rEs) = (To(n)rin i, reats) = 0 as g — oo,

ga-1Tgn-1 qa -1 qn-1

which is a contradiction. Thus condition (iii) is satisfied. Suppose again that ker T'(1) # V5.

Then there is a nontrivial » € V; such that T(1)r = 0, which satisfies
(To(n)r,7) = (Too(n)r,7) =0 as g — +oo.

Since this contradict the positivity of cs, we have ker T(1) = V4. Likewise we can show
that ker T'(—1) = V,. Hence, we lastly olbtain condition (v).

We proceed to the sufficiency part. Under cogdition (iii), (4.6) and the corresponding
representation for Too(—00) show that Too(+oo)|y, > O. Hence, using conditions (iv) and
(v) we can deduce that

To(n) = cal Vn €R

for some constant c3 > 0 independent of 7.

PROOF OF THEOREM 3.6.

Since conditions (i)-(iii) are necessary by Theorem 3.4, assuming those to be satisfied
we show that inequality (1.4) is valid on the space °H'(€;) if and only if conditions (iv)
and (v) hold.

We begin with the necessity part. For any ¢ € H'(R), define v € °H'(Q,) by #(n, z,) =

U(n, z2)@(n), where U(n,t) is as in (4.3). Then inequality (1.4) on °H'(;) yields, by (4.5)
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and the arbirariness of ¢, that
1
(4.9) (To(n)r, ) > cp2 /0 UG, t)rl?dt Vr € CV, Vg €R.

This implies that To(n) > O for all n € R, so that T(+1) > O (condition (iv)). Thus, as in
Proof of Theorem 3.7, we have ker T(:i:l) D Vo. Now suppose that there exists a nonzero

r; € ker T(1) N V;. Since, from what stated just below (4.6), we have

(nTo(m)r1,m1) = (0 Too(n)r1,71) = 0  as 5§ — +oo,

so by (4.9) that 5 fJ |U(n,t)r,[*dt — 0 as n — +oo. This contradicts (4.4), so ker T'(1) =
Vo. Likewise ker T'(1) = V; is obtained. Therefore condition (v) holds.
Conversely, let (iv) and (v) be satisfied. Given w € °H* ()N H?();) we write ¢(z;) =

u(z;,0) € H(R) and define v € °H'(Q;) as above. Using (4.4) we have

ol = [ dn [ [0, 03(m)Pde < cal Bl

Since u — v € Hy(9;), Theorems 3.4 and 3.7 yield that

C C
afu] = afu — v] + a[v] > cpyflu — v||? + cscy | > ——— ||u|f?,
cocpy + ¢cs

where cp; denotes the best constant in inequality (1.4) on Hg(€;). This completes the

proof.

5. Examples

ExXAMPLE 1. Consider the quadratic form (1.8). This determines the symbols

A(¢) = Z A*EiE, B(€) = —i \ZjA"kgk for ¢ € R™.
k=1

Jik=1

Conditions (i) and (ii) in §3 hold if and only if

2
n—-1 n—-1
(5.1) A™ >0 and A™ Y AFpipe > (Re 3 Aw‘n,-) Vn e §"2.
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Let (5.1) be satisfied. Then condition (iii) always holds. The A(n) and T'(n), defined at the

beginning of §3, are given by

) ‘ n-—1 n-1 2 n—1 .
A(n) = (A™)7 i\]A'"‘ D Ak — (Re‘ZA""nj) —Re ) A™n; ¢,

Jk=1 i=1 j=1

n—-1 n—1 2 n—-1 .
T(n) = \JA'"‘ > Adknin — (Re > A"jn_,-) +1Im Y AYp; for ne R*.

Jik=1 i=1 i=1

Thus conditions (iv) and (v) are satisfied if and only if

2

n—-1 n—1
A ST At > |30 AVl Vpest?
i1 s

with the equality attained only by 7 satisfying Im Y721 A™n; = 0. If all the coefficients

A’* are real in particular, then conditions (iv) and (v) follows directly from (5.1).

EXAMPLE 2. The quadratic form (1.9) determines the symbols

A=A +p)E®E+pElT, -

B(t)=-ile,®¢+pé@®e, +&1) for £ €R™,
where e,, = (0,...,0,1)T. Condition (i) in §3 is equivalent that
(5.2) >0 and A+2u>0.

Let (5.2) be satisfied. Then conditions (ii) and (iii) are satisfied. The real elementary

divisors of the matrix polynomial A(n,7) in 7 with parameter 7 € R®~! are given by

(T + P 2+l s+ 2 i A4 p#0 and 5 #£0;
n:2

il if \A+p=0 or n=0.

Vv
n
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Moreover, the A(n) and T'(y) are given by
: ®
i (In_lm + ﬂ'—’—ﬂ) ~Bn

A(n) = nl ,
—Bn” i(1 - B)nl
I, 1@1’. —i(1 —
T(n)=n ( i+ Inl ) (= for n € R*,

i(1-B)n” (1 + B)nl
where 8 = (A + p)/(A + 3u); the eigenvalues of T'(n) are

2ulnl, 2Bplnl, plnl, ..., pinl.

-~

n—2

Since Vi(n) = {0} for all 5 € §"~2, conditions (i)-(v) hold together if and only if
>0 and A+pu>0.

We finally note that Corollary 3.8 is applicable to this case under (5.2).
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