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A POTENTIAL OF FUZZY RELATIONS
WITH A LINEAR STRUCTURE : THE UNBOUNDED CASE
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Abstract: This paper is a sequel of Yoshida, et al.[8], in which the potential theory
for linear fuzzy relations on the positive orthant RY is considered in the class of
fuzzy sets with compact support under the contractive assumption. In this paper,
potential treatment for unbounded fuzzy sets is developed without the assumption
of contraction and compactness. The objective of this paper is to give the existence
and the characterization of potential for linear fuzzy relations under some reasonable
conditions.
Also, introducing the partial order in fuzzy sets, we prove Riesz decomposition
© theorem in the fuzzy potential theory. The proofs are shown by using only the linear
structure and the monotonicity of fuzzy relations. In the one-dimensional case, the
potential and its a-cuts are explicitly calculated. Numerical examples are given to
comprehend further discussions.

Keyword: Fuzzy potential; superharmonic fuzzy set; partial order; linear structure; fuzzy
relation; fuzzy relational equation.

1. Introduction.

A potential theory for linear fuzzy relations on the positive orthant R? of an n-
dimensional Euclidean space is developed. Yoshida, et al.[8] have introduced a linear
structure for fuzzy relations and considered the potential theory in the class of fuzzy
sets with a compact support. In this paper, the unbounded case is considered. We shall
develop the relevant potential theory using only the linear structure and the monotonicity
‘of fuzzy relations.

We adopt the notations in [8]. Let R™ be an n-dimensional Euclidean space with
a basis {e1, ez, -,€,}. Let w; be an orthogonal projection from R™ to the subspace
{)\6,' | A€ Rl} Then, for z € R”,:n = E:;l wi(x)e,'. We put a norm “ . ” and a
metric d by ||z]| = (XTI (w;(z))?)7 and d(z,y) = ||z — y|| for z,y € R™. Let R} =
{z € R* | wi(z) > 0 forall i = 1,2,---,n} be a positive orthant of R*. (R%,d) is
a complete separable metric space. Let C(R}) be a collection of all the closed convex
subsets of R:. We put A+ B:= {z+y |z € Aand y € B} (4,B C R}) and
M :={)z |z € A} (AC R}, X >0). Especially, s+ A= A+ ¢ = ¢ (A C R}) and
=6 (A2 0).

Definition. (Partial order) For A, B € C(R}),

A > B means that there exists C' € C(R}) such that A = B + C.
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We represent a fuzzy set on R} by its membership function § : R} — [0,1] (see
Novék[6] and Zadeh[9]). For any fuzzy set § on R} and « € [0, 1], the a-cut is defined
by 5, :={z € R} | §(z) > o} (a > 0) & := ct{z € R} | 5(z) > 0}, where c/ means the
closure of a set. We call 5(€ F(R7})) to be convex if its a-cut 3, is a convex set for all
a € [0, 1]. Let F(R7) be a collection of all the convex fuzzy sets § on R}, which are upper
semi-continuous.

The linear structure of § on F(RY) is introduced in [8]. For fuzzy sets §, 7 and a scalar
A

G+A@) = s {56 AR}

y+z=z, y,2€R}

oy &x/)) i x>0, .
(A3)(z) := { Iioy(z) ifA=0, r € RY,

where A A p := min{ ), u} for scalars A, i, and I4(-) is the classical characteristic function
of A(C R}). We note that (5§+ fa = 5, + 7o and (A3)q = A3, for fuzzy sets §, 7, X € R,
and o € [0, 1] (c.f. Madan, et al.[4]).

Lemma 1.1. (Linearity) Let §, 7, f € F(R}) and A, u € R,. Then :

() 54 7=+ (i) (A1) = (409), (i) (G+7)+5=5+(7+5).

Assumption A. The fuzzy relation § satisfies the following conditions (A1) — (A45) :
(A1) G is continuous on R} x R} — {(0,0)}. (A2) §(-,y) € F(R}) forall y € R%.
(A3) sup,epn 3(2,y) =1 forally € RL. (A4) 3(0)=TIpy and §0,-) = .
(A5) §(-, Ay + pz) = \§(-,y) + pd(-,z) forall y,z € R} and ), p € R..

Assumption (AS5) of the linear structure is introduced by [8] firstly. When a fuzzy set
(-, e:)(€ F(RY)) is given for each ¢;(1 = 1,2,---,n), we can construct a fuzzy relation §
on RY} which satisfies Assumption A, by defining (-, y) := X%, wi(y)§(-, &), y € R (see

[8])-

We also introduce the transition : For § € F(R}),

i(7)(@) = sup {a(e,9) A5} (= € RY).

Then we can inductively define the sequence of fuzzy states {F(5)}2, by #(p) = §

and #(5) := {7 (p)) (k = 1,2, --). If formal infinite sums Q(§) := £, #(5) can be
defined, we call it a fuzzy potential or simply a potential.
For o € [0, 1], we also define a map §, on C(RY}) by

{z € R} | i(z,y) > aforsomey € D} fora >0, D eC(R})(D # ¢)
§.(D):={ ct{z € R} | §(z,y) > Ofor somey € D} foraa =0, D € C(RL)(D # ¢)
¢ fora €[0,1], D = ¢.

Then, Assumption (A5) means that
Ga( Ay + pz) = AG,(y) + pdn(z) forall y,z € R} and A\, u € RL (2.1)
where 7,(y) = §.({y}). Note that §,(D) = U,ep 7,(y) for all D € C(R%) holds.
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For any D € C(RY), it follows from the continuity of § and (2.1) that §,(D) € C(R?})
which implies §, : C(R?) — C(R%). Inductively we define the map & : C(R}) —
C(R})(k=0,1,2,---) by & is an identity map and & = q(&™) (k=1,2,--)

Lemma 1.3. (See Kurano, et al.[3].) For € F(R]), it holds that
(F@)e = £, k=012, ac[o,1]
Definition. (Partial order) For 3, € F(R}),
§ > 7 means that there exists p € F(R7}) such that §= 7+ p.

Lemma 1.4. (Partial order) Let §, 7, § € F(R%). Then,

7 and 7> p, then § > p.
€ F(R}), The following (i) and (ii) hold :
(i) If § > 7, then §, = 7, for all @ € [0,1]. (ii) If § > 7 then §(3) = (7).

)

2. Preliminary lemmas.
Definition. (Convergence) For {A;}32, C C(R%) and A € C(RY),

Jim 4, = 4
means that imy_, ., Ax = l_i_mk_,ooAk_:: A wherelimy_, o, Ax := {z € R% | lim,_, d(z, Ax) =
0}, limy o Ar = {z € R} | limp.ood(z, Ax) = 0} and d(z, D) := sup,cpd(z,y),
D € C(Ry).

Lemma 2.1. (Non-increasing case) Let {Ax}32, C C(R}). If Ax = Agyi(k =1,2,-- ),
then there exists A € C(R}) with limy_. o Ax = A.

Lemma 2.2. (Non-decreasing case) Let {Ax}pe, C C(R}). If Ay < Ap1(k=1,2,--4),
then there exists A € C(R7}) with limy_,,, Ax = A.

Lemma 2.3. (Linear structure of §) It holds that
§o(A+ B) = ,(A) + ,(B) for a €[0,1]. and A, B € C(R}).

Theorem 2.1. Let {Ax}f2, C C(R}) and A € C(R}) such that {Ax}2, is non-
increasing (non-increasing) with respect to the order > on C(R%) and limy_, Ax = A.
Then it holds that

lim 7,(4) = 2,(4) for a € (0,1]

Lemma 2.4. Let {4, | @ €[0,1]} C C(R}) such that A, D A, for 0 < o' < a < 1.
Then it holds that

qa(h,l}n AO") = h'ITl'l ga'(AOl‘) fOl' o€ (0) 1]
Lemma 2.5. (c.f.[6]) We suppose that a family of subsets {4, | o € [0, 1]}(C C(R}))
satisfies the following conditions (i) and (ii):
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(i) Ay C Ay for 0 <o/ <o <1 (ii) limaie Ao = Ao for o € (0,1]. Then,

5(z) ;== sup {a Al (z)}, z € R}
«€[0,1)

satisfies § € F(R%) and §, = A, for all o € [0, 1].

3. General potential theorems.

In this section we shall show the existence of potentials in F (R’ ), which are defined
formally in Section 1. Further we shall develop a fuzzy potential theory.

Definition. For {5}, C F(R}) and 7 € F(RY),

klim § = 7 means that § , — 7(k — 00) for all o € [0, 1].

Assumption B. §(e;) = {e} for i=1,2,--- n.

Note that Assumption B implies §,(A) = A for all A € C(R%}). It is more restrictive
but the contractivity of §is excluded(c.f. [8]).

Lemma 3.1. Suppose Assumption B holds. For non-empty A € C(RY),

(i) If 0 ¢ A, then 2, #(A) = ¢.
(i) If A satisfies AN E; # ¢ for all i = 1,2,---,n, then limy_o 3(A) = R} for
0< a<1, where E; := {)de; | 0< A< oo} fori=1,2,---,n.

(iii) If A satisfies AN E; # ¢ for all i = 1,2,--+,n, then T2, 5(A4) N E; # ¢ for all
0<a<land:=1,2,---,n. '

Let F*(R%) be the set of all § € F(R}) such that 0 € p, and §, N E; # ¢ for
all @ € (0,1) where E; is defined in the above. The next theorem says that for any
p € F*(R%) its potential Q(p) is well-defined.

Theorem 3.1. Suppose Assumption B holds. For any § € F*(R}), the potential
@ := Q(p) exists in F(R?) and i satisfies the following fuzzy relational equation:

i=p+ g(q). (3.2)

Definition. For § € F(R7), §is called superharmonic (harmonic respectively) provided
that

§z4(5) (5= 14(3).
Theorem 3.2. (Decomposition) Suppose Assumption B holds. Let a superharmonic
fuzzy set § € F(R}) satisfy 5, N E; # ¢ for all « € (0,1) and ¢ = 1,2,---,n. Then,
(i) limg_o 7(8)s = R for all o € [0, 1).
(ii) There exist a potential @ and a harmonic 4 such that § = @ + h.
(iii) If §> p+ §(5) for some § € F*(R7), then § > Q(p).
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4. One-dimensional case

In this section we consider a fuzzy potential of fuzzy number on Ry := R). Using
the results in Section 3 and [8], we could treat with the contractive and non-expansive
examples simultaneously.

We will calculate several examples, which is related to the existence of the potential.
Let us denote that i, := Yk_, #(5) = Qu(5).

Example 4.1. First we consider the example which satisfies Assumption A and B.
Let a fuzzy set §(-, 1) by

o {1-2z-1], 1/2<s<3/2
q(z,1) = { 0, otherwise. (4.2)
. _ | #=z/y,1), £>0andy>0,
o) = { Iy(z), =z>0andy=0. (43)

v 1=]3z-1], 0<z<4/5
pz) = { 0, otherwise. (4.4)

i(z) =5z/(4+5z), z>0.

k Figure 1.

22

The fuzzy relation §(z,y) of (4.2), (4.3). /
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0.
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| A Y A \-
0 0.5 1 1.5 2 r
\ Figure 2. The potential i for Example 4.1. /

Example 4.2. Next we consider an example where §, is contractive for o > 1/2 (see
[8]) and not contractive for @ < 1/2. The fuzzy relation § does not satisfy Assumption

B. Let a fuzzy set ¢(-,1) by

2z, 0<z<1/2
gz,1)=1¢ 3/2—z, 1/2<2<3/2
0, otherwise.
i(z) = 10z/(4 + 5z), 0<2<4/5
| (8+5z)/(4+10z), 4/5< =.
/ (84 ‘ﬁo = i) 12] '&2 \
1 n,on
/, A \\

/, o -

0 8 ,/ \\\ N ~ U= Q(p)
Y, N ~
N ~
’ N ~
0.6} y, ~ S~
\\\ ~ - -
0.4} \\\ ~
\\\
0.2} ~
\\\
0 0.5 i 5 -z
K Figure 3. ‘The potential @ for Example 4.2. /

Example 4.3. Finally we consider an example which is not contractive. The fuzzy
relation g does not satisfy Assumption B.
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r—1/2, 1/2<z<3/2
g(z,1) =< 4—2z, 3/2<z<2

0, otherwise,
i(z) =5z/(4+10z), z>0.

| 0 0.5 1 1.5 2 *
k Figure 4. The potential @ for Example 4.3. /
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