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Tsukasa Nakayama
Department of Mechanical Engineering, Chuo University, Tokyo, Japan

1. Introduction
In space vehicles and artificial satellites, liquids having various functions are carried,

as exenplified by coolants, fuels and so forth, and they constitute a substantial part of
the total weight of spacecraft. The acceleration of a spacecraft due to a thrust causes the
hquid in a container to move. Then, the moving liquid exerts forces and torques on the
spacecraft. Therefore, in order to control the motion of spacecraft precisely and stabilize
it, the knowledge of the liquid motion in moving containers, or sloshing, under low gravity
is required.

The problem of liquid sloshing is formulated mathematically as an initial-boundary
value problem and requires a static configuration of a free liquid surface as a part of initial
conditions. As is well known, the static shape of a free surface is highly curved due to surface
tension effects under low-gravity conditions. The curved free surface, called (meniscus’, is
governed theoretically by the Young-Laplace equation, for which several numerical methods
have been developed in the past Among those methods, one developed by Concus et
$a1^{2)}$ is straightforward and easy to use. In the method, the Young-Laplace equation is
transformed into a system of four ordinary differential equations and integrated numerically
under well-posed initial conditions and a contact-angle condition. The system of differential
equations includes a constant. Its value is not known a priori and must be determined as
a part of solutions when the liquid vloume in a container is to be prescribed. However,
Concus et al. have not shown any detailed way to evaluate the constant in their paper, and
moreover the characteristic of the solution obtained by their method is not obvious.

Then, the present paper aims to make the characteristic of the method of Concus et al.
clear and to develop a practical method for the evaluation of the constant. The method
is used in the calculation of the meniscus configurations in $twc\succ dimensional$ rectangular,
three-dimensional circular cylindrical and spheroidal containers. The numerical results are
compared with analytical exact solutions wherever possible. Furthermore, the method is
applied to the computation of configurations of droplets lying on horizontal flat plates.
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2. Mathematical Formulation of the Problem
We consider a spheroidal container shown in Fig. 1 which is partially filled with an

incompressible liquid. The liquid occupies a simply connected domain, and the remainder
of the container is filled with a gas or a vapor. The container and the fluids in it are at
rest in low-gravity environments. Our task is to find the configuration of the equilibrium
interface (meniscus) between the liquid and the gas.

The meniscus is denoted by $S_{f}$ and the wetted part of the impermiable container wall is
denoted by $S_{w}$ . The meniscus $S_{f}$ is assumed to be smooth and meets the wall in a constant
contact angle $\gamma$ . The contact line at which the meniscus meets the wal1 is denoted by C.
A cylindrical coordinate system $(r, \theta, z)$ is introduced and fixed to the container as partly
shown in Fig. 1. The origin $O$ is located at the center of the container. The z-axis coincides
with the axis of rotational symmetry of the container and is directed upwards, namely in the
opposite direction to the gravity. Since the meniscus configuration has rotational symmetry,
the further investigation is restricted to the semi-plane $\theta=0$ .

The static configuration of the meniscus is governed by the Young-Laplace equation,

$\sigma\kappa=p_{g}-p_{1}$ on $S_{f}$ , (1)

where $\sigma$ is the surface tension of the liquid, $\kappa$ is the curvature of the meniscus, $p$ is the
hydrostatic pressure, and the subscripts

$g$
and 1 refer to the gas and the liquid phases

respectively. The hydrostatic pressure distributions within the gas and the liquid are given
by

$p_{g}=p_{g}^{0}-\rho_{g}g(z-z_{0})$ , $p_{1}=n^{0}-\rho_{1}g(z-z_{0})$ (2)

Fig. 1. A meniscus in a spheroidal container under low gravity
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respectively. Here $\rho$ is the density, $g$ is the acceleration due to gravity, and $p^{0}$ is the pressure
at a reference point of the height $z_{0}$ on $S_{f}$ . In the present formulation, the reference point
coincides with the intersection of the meniscus and the $z- a\dot{n}s$ . Substituting the expression
(2) into Eq. (1) yields

$\sigma\kappa-\rho gh-\sigma\kappa_{0}=0$ , (3)

with $\rho=\rho_{1}-\rho_{g}$ and $h=z-z_{0}$ . Here $\kappa_{0}=(p_{g}^{0}-p_{1}^{0})/\sigma$ denotes the curvature of the
meniscus at the reference point.

It will be convenient to express all quantities in nondimensional form. Let the maximum
semi-width of the container, $a$ , be chosen as a representative length and set

$R= \frac{r}{a}$ , $Z= \frac{z}{a’}$ $Z_{0}= \frac{z_{0}}{a}$ , $H= \frac{h}{a}$ , $K=\kappa a$ , $K_{0}=\kappa_{0}a$ . (4)

Then Eq. (3) becomes
K–Bo $H-K_{0}=0$ , (5)

where $Bo=\rho ga^{2}/\sigma$ is the Bond number which denotes the ratio of the gravitational force
to the capilary force of the liquid. In the present formulation we employ the expression

$K=R_{s}H_{ss}-H_{s}R_{ss}+ \frac{H_{s}}{R}$ , (6)

for the curvature $K$ , where the parameter $s$ is the nondimensional arc length measured
along $S_{f}$ from the reference point and the subscript $s$ means the differentiation with respect
to $s$ . Then, $R(s)$ and $Z(s)(=H(s)+Z_{0})$ give the nondimensional coordinates of points
which form the meniscus $S_{f}$ . Substituting the expression (6) into Eq. (5) yields

$R_{s}H_{ss}-H_{s}R_{ss}+ \frac{H_{s}}{R}-BoH-K_{0}=0$ . (7)

On the other hand, by differentiating the geometric relation

$R_{s}^{2}+H_{s}^{2}=1$ (8)

with respect to $s$ , we obtain
$R_{s}R_{ss}+H_{s}H_{ss}=0$ . (9)

From Eqs. (7) and(9), $R_{ss}$ and $H_{ss}$ are expressed as follows:

$R_{ss}=-\lambda H_{s}$ , $H_{ss}=\lambda R_{s}$ , (10)

where
$\lambda=K_{0}+BoH-\frac{H_{s}}{R}$ . (11)
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As noticed by Concus et $a1^{2)}$ , a couple of differential equations (10) can be transformed
into the following system of differential equations of the first order:

$R_{s}$ $=$ $U$

$H_{s}$ $=$ $V$

(12)
$U_{s}$ $=$ $-\lambda V$

$V_{s}$ $=$ $\lambda U$

It should be noticed here that the coefficient $\lambda$ is a function of $R,$ $H$ and $V$ as shown in Eq.
(11).

The system of equations (12) is solved as an initial-value problem with the initial con-
ditions

$R=H=V=0$, $U=1$ at $s=0$ . (13)

Moreover the problem is subjected to the subsidiary condition

$U^{2}+V^{2}=1$ for $s>0$ (14)

and the static contact-angle condition on the $co$ntact line C. The contact-angle condition
is formulated as

$\theta_{w}-\theta_{f}=\gamma$ on $C$ (15)

where $\theta_{w}$ is the angle between the radial direction and the tangent to the container wall, and
$\theta_{\{}$ is the angle between the radial direction and the tangent to the meniscus. Throughout
the computaions in the present work, the contact angle is set as $\gamma=5$ degrees.

3. Menisci in Spheroidal Containers

3.1. Computational strategy

The cross-section of a spheroidal container is expressed as

$R^{2}+ \frac{Z^{2}}{B^{2}}=1$ (16)

where $B$ is the nondimensional length of the polar semi-axis of the container. It is noted
here that the nondimensional length of the equatorial semi-axis is unity. The system of dif-
ferential equations (12) is integrated numerically by the fourth-order Runge-Kutta method.
For the practical use, the condition (15) is replaced with

$|\theta_{f}^{n}+\gamma-\theta_{w}^{n}|\leq\epsilon$ (17)
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by introducing a permissible small error limit $\epsilon$ . Throughout the present work, $\epsilon$ is taken
to be $10^{-5}$ .

For fixed values of $K_{0}$ and $Bo$ , the solution of Eq. (12) under the conditions (13), (14)
and (17) proceeds in the following steps:

1. By assuming $Z_{0}=0$ , the numerical integration of Eq. (12) is started from the origin
O. The subsidiary condition (14) is satisfied by normalizing $U$ and $V$ as

$U’= \frac{U}{\sqrt{U^{2}+V^{2}}}$ , $V’= \frac{V}{\sqrt{U^{2}+V^{2}}}$ (18)

and replacing $U$ and $V$ with $U’$ and $V$‘ whenever $U$ and $V$ are evaluated during the
integration.

2. Suppose that the numerical integration of Eq. (12) yields the radius $R$“ and the height
$Z^{n}$ of the point $P^{n}$ at n-th step. Here the superscript $n$ means that the quantities
and the symbol refer to the position $s=n\Delta s$ . Then, we calculate the angles $\theta_{f}^{n}$ and
$\theta_{w}^{n}$ shown in Fig. 2 at the station $R=R^{n}$ . If those angles satisfy the approximate
contact-angle condition (17), all the points up to the point $P^{n}$ are slided upwards
or downwards along the Z-axis so that the point $P$“ comes to lie on the meridian
of the container. If all the points are entirely within the domain surrounded by the
ellipse expressed by Eq. (16), the curve formed by those points gives the meridian
of a meniscus. It is obvious that the height $Z_{0}$ of the reference point is equal to the
distance of movement of those points.

Fig. 2. Symbol definitions
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3. If the condition (17) does not hold and the sign of $(\theta_{f}^{n}+\gamma-\theta_{w}^{n})$ is different from that
of $(\theta_{f}^{n-1}+\gamma-\theta_{w}^{n-1})$ , this means that the contact point $C$ exists between $R=R^{n-1}$ and
$R=R^{n}$ . Then the integration procedure is repeated in the interval of $R^{n-1}<R<R^{n}$

using a smaller increment than $\triangle s$ . If the condition (17) does not hold and the sign
of $(\theta_{f}^{n}+\gamma-\theta_{w}^{n})$ is unchanged, the numerical integration progresses forward.

4. The volume $Q$ of a liquid contained in the container is given as a resultant quantity.
It is calculated by

$Q=Q_{1}+Q_{2}$ (19)

where $Q_{1}$ denotes the volume included between the meniscus and the horizontal plane
$Z=Z_{0}$ , and $Q_{2}$ denotes the volume between the container wall and the plane $Z=Z_{0}$ .
The volume $Q_{1}$ is expressed as

$Q_{1}= \int_{Z_{0}^{Z_{C}}}\pi(\hat{R}^{2}-R^{2})dZ$ (20)

where $Z_{C}$ is the height of the contact point $C$ , and $\hat{R}$ and $R$ are the radii of the
container wall and the meniscus at height $Z$ . The integration of Eq. (20) can be
performed numerically. The volume $Q_{2}$ can be evaluated analytically using Eq. (16).

5. Repeat the steps 1-3 to obtain other possible profiles of menisci. The computation is
continued until $R$ exceeds unity or the angle $\theta_{f}$ exceeds $\pi$ . As to be mentioned later,
there are some cases in which three different menisci are computed for the fixed values
of $Bo$ and $K_{0}$ .

To start the computation we must evaluate $\lambda$ at $s=0$ . In three-dimensional cases, how-
ever, it is difficult to calculate straightforwardly the initial value of $\lambda$ , since the expression
of $\lambda$ includes the term $H_{s}/R$ and $R$ vanishes at $s=0$ . Then analytical considerations are
required. By using L’Hospital’s Rule, the term $H_{s}/R$ can be evaluated at $s=0$ as follows:

$( \frac{H_{s}}{R})_{s=0}=\lim_{sarrow 0}\frac{H_{s}}{R}=\lim_{sarrow 0}\frac{H_{ss}}{R_{s}}=(H_{ss})_{s=0}$ . (21)

Applying Eq. (7) to the point $s=0$ together with the initial condition (13) and the relation
(21), we obtain

$( \frac{H_{s}}{R}I_{s=0}=\frac{K_{0}}{2}$ . (22)

Then $\lambda$ is evaluated at $s=0$ as

$( \lambda)_{s=0}=K_{0}-\frac{K_{0}}{2}=\frac{K_{0}}{2}$ (23)
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To verify the computational accuracy, we have first calculated meniscus profiles in three-
dimensional circular cylindrical and two-dimensional rectangular containers for which ana-
lytical exact solutions are available6) . Good agreement has been obtained between numerical
and analytical solutions. The details can be found in Ref. 7.

3.2. Meniscus profiles for given values of $K_{0}$

For given values of $Bo$ and $IC_{0}$ , the problem has not necessarily a unique solution. When
$Bo=50$ and $K_{0}=0.0631$ , for example, three different profiles of menisci are obtained in
a spherical container as shown in Fig. 3. The corresponding volume fractions of the liquid
relative to the container volume are $1.2008\cross 10^{-5}$ , 0.135 and 0.647.

Here we refer to the least volume, $1.2008\cross 10^{-5}$ . The above results correspond to $\triangle s=$

0.01, where $\triangle s$ is the step size of the numerical integration and denotes the segment length of
the meridian of the meniscus. The calculation of the liquid volume uses the same segment
division as in the numerical integration. In the above computation, the meridian of the
meniscus corresponding to the least volume has been divided into 12 segments. A finer
division of 902 segments with $\triangle s=10^{-4}$ has yielded the least volume of $1.2002\cross 10^{-5}$ .
From these results, we come to the conclusion that the value of $1.2008\cross 10^{-5}$ has never
been yielded by numerical errors and it gives the amount of liquid volume. Although the
solution corresponding to the least liquid volume is meaningful mathematically, it is not so
significant for practical purposes.

Fig. 3. Three solutions of meniscus profiles in a spherical container $(Bo=50, K_{0}=0.0631)$
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(liquid volume) /(container volume)

Fig. 4. Relations between liquid-volume fraction and $\log_{10}If_{0}$ for different Bond numbers

The systematic calculation of liquid volume for different values of $K_{0}$ gives the relation
between $K_{0}$ and liquid volume for the given shape of a container and a given Bond number.
Figure 4 shows the relations obtained in a spherical container for $Bo=0,10,50,100$ . The
abscissa denotes the liquid-volume fraction which is defined as liquid volume devided by
container volume, and the ordinate denotes the logarithmic value of $K_{0}$ . It is found that for
each Bond number except $Bo=0$ , there is a range of $K_{0}$ in which three different amounts
of volume are possible for a fixed value of $K_{0}$ and the range shortens as the Bond number
decreases. In the case of $Bo=0$ , the liquid volume is a single-valued function of $K_{0}$ .

3.3. Meniscus profiles for given liquid volume
In most practical cases in engineering field, meniscus profiles will be required for pre-

scribed amounts of liquid volume contained in a vessel, not for given values of $K_{0}$ . Rough
computations may be made by estimating values of $K_{0}$ corresponding to given liquid vol-
ume on a chart as Fig. 4. For detailed calculations, iterative solution algorithms should be
prepared.

In the present work, a Newton-like iterative method is used. The process proceeds as
follows:

1. Suppose that two different amounts of liquid volume, $Q$; and $Q_{i+1}$ , are calculated for
the values $K_{0}^{i}$ and $K_{0}^{i+1}$ of $K_{0}$ , respectively. Here sub- and superscript $i$ and $i+1$

denote the step number in iterations. Since three different amounts of liquid volume
are generally obtained against a fixed value of $K_{0}$ , the closest amount of volume to
the prescribed volume $Q^{*}$ shodd be chosen among the three.
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2. Estimate the $(i+2)$-th approximation of $K_{0}$ by

$K_{0}^{1+2}= \frac{K_{\dot{0}}^{+1}-K_{0}^{i}}{Q_{t+1}-Q_{i}}(Q^{*}-Q_{i+1})+K_{0}^{i+1}$ (24)

Then compute liquid volume $Q_{i+2}$ . If $|Q^{*}-Q_{i+2}|$ is less than or equal to a given
permissible error, the corresponding profile of meniscus is the desired one. If not, try
again the steps 1 and 2 using $K_{0}^{i+1}$ and $K_{0}^{i+2}$ .

The initial guess for $K_{0}$ can be obtained using a chart of liquid volume versus $K_{0}$ similar
to Fig. 4.

Figures 5 and 6 show meniscus profiles of liquid with different volume fractions in a
spherical container, and Figures 7 and 8 show those in the spheroidal container of $B=0.6$ .
In each figure, prescribed and computed liquid-volume fractions and values of $K_{0}$ corre-
sponding to computed profiles of menisci are tabulated. In Fig. 7, the menisci correspond-
ing to the liquid-volume fractions of 0.50, 0.25 and 0.10 have not been obtained, since the
meridian of the meniscus does not wholly lie within the container. This may mean that the
liquid cannot exist in a simply connected domain as shown in Fig. 1 and separates into two
crescent-shaped regions.

Fig. 5. Meniscus profiles corresponding Fig. 6. Meniscus profiles corresponding
to different liquid-volume fractions in a to different liquid-volume fractions in a
spherical container $(Bo=0)$ spherical container $(Bo=100)$
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Fig. 7. Meniscus profiles corresponding Fig. 8. Meniscus profiles corresponding
to different liquid-volume fractions in a to different liquid-volume fractions in a
spheroidal container $(Bo=0)$ spheroidal container $(Bo=100)$

4. Application to the Calculation of Droplet
Configurations

The present method is applied to the calculation of configurations of droplets on a
horizontal flat plate. The droplet configuration is assumed to have rotational symmetry
around a vertical axis. The computed profiles of meridians of free surfaces are shown in Fig.
9. In these calculations, the radius of a contact line on the plate is chosen as a representative
length used in the nondimensionalization of quantities. The calculation prcedure goes as
follows:

1. Specify the Bond number and assume the value of $K_{0}$ . In the present problem, $K_{0}$

should have a negative value. Then, start the numerical integration from the origin
$O$ and continue it until the contact-angle condition is satisfied.

2. Examine whether the calculated radius of a contact line is unity or not. if it is equal
to unity within a prescribed permissible error, the calculation is stopped. Otherwise,
the steps 1 and 2 are repeated with other value of $K_{0}$ .
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Fig. 9. Droplet profiles for different Bond numbers

The computed results in Fig. 9 correspond to $\gamma=175$ degrees.
In the case of inclined flat plates, the problem will become more difficult. It will be a

challenging subject for us in the future.

5. Concluding Remarks
Numerical studies concerning axisymmetric configurations of free liquid surfaces in low-

gravity environment have been carried out. As an illustrative example, meniscus configu-
rations in spheroidal containers have been used to describe the methodology. The meridian
profiles of menisci have been obtained as solutions of the Young-Laplace equation, which
has been transformed into a system of four ordinary differential equations and integrated
numerically by the Runge-Kutta method. The system of equations includes an arbitrary
constant $K_{0}$ , and liquid volume contained within a vessel is determined as a resultant quan-
tity for a prescribed value of $K_{0}$ . When liquid volume is given on the contrary, difficulties
occur with respect to the determination of $K_{0}$ . Then, we have made clear graphically the re-
lations between liquid volume and $If_{0}$ by the implementation of the systematic calculations
of liquid volume against $K_{0}$ . Furthermore, based on those relations, an iterative numerical
scheme is developed for determining a meniscus proMe with prescribed liquid volume.
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