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Spin Models Constructed from Hadamard matrices

EFREMEBERXFE FHMIE
Tokyo Ikashika University Kazumasa Nomura

A new spin model M is constructed from an arbitrary Hadamard matrix H through a
distance-regular graph which is called a Hadamard graph. F. Jaeger gives a formula for
the link invariant of the model M, and V. F. R. Jones gives two links which have the same
V-polynomial but different polynomials of M.

1 Definition of a Spin Model

The following definition is essentially due to V. F. R. Jones [8].

Definition 1 Let n be a positive integer, D be one of the square roots of n. A spin
model with loop variable D is a pair (X, w) of a finite non-empty set X of size n, and a
complex-valued symmetric function w on X x X which satisfy the following equations for

all o, 8,7y € X:
ZM=50.»6 (1)

1 w(eauwba)  wap)
b z% w(r,z)  wle,7)w(8,7) @)

Each element of X is called a spin, and the function w is called Boltzmann weight. The
(n x n)-matrix W = (w(a, f)), is called the weight matriz of the spin model. The equation
(2) is called star-triagle relation.

Example Let X be a finite set of size n = D? > 1 and let a,b be complex numbers
'such that

Define a function w by
a ifa=p

As easily shown, (X, w) becomes a spin model with the weight matrix
M = (a—b)I+bJ.
This spin model is called Potts model.

Remark 1 If (X,w) is a spin model with D = /n, then (X,/~1w) becomes a spin
model with D = —/n.
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Remark 2 Under (1), the star-triagle relation (2) is equivalent to:

1 2 wleB)u(ay)
x%w )(7,) wiBy) ()

Remark 3 By putting § = v in 2, we get
5549 = sy

zGX
This shows w(, B) is independent on the choise of € X:

w(B,B) =a

i1s a constant called modulus of the model Thus we have

1

From 3, we have
1 1

D = w(a, ) -

Remark 4 The equation (1) is equivallent to

wled)
2 e 0 Hath

2 Spin Models on Distance-Regular Graphs

A connected graph T' is said to be distance-regular if there are integers b;, ¢; (¢ > 0) such
that for any two vertices u, z at distance ¢ = d(u, z), there are precisely ¢; neighbours of z
in I';_1(u) and b; neighbours of z in I';;;(u). In particular, I' is regular of valency k = bo.
The sequence |

((T) = {bg, by,...,b4-1; c1,€2,-.-,Ca},
where d is the diameter of I', is called the intersection array of G. For two vertices u, v,
the size
pi; = [Ti(u) N T5(v)]
depends only on the distance o = 9(u,v), rather than the individual vertices u, v with
O(u,v) = a (see [4] 4.1). In particular k; = |[';(u)|, which is called the i-th valency, does
not depend on the choice of a vertex u. For three vertices u, v, w, put

Pijo(u,v,w) =|T;(u) N T;(v)N [o(w)|-
More presice descriptions about distance-regular graphs will be found in [3], [4].

The following Proposition is obtained directly from the definition and remarks in the
previous section.
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Proposition 1 Let T be a distance-regular graph of diameter d with the vertex set X. Put
|X| =n and let D be one of the square roots of n. Let to, t1, ..., tq be non-zero complex
numbers and let w be the complex valued function on X x X defined by w(u,v) =t; where
i = O(u,v). Then (X, w) becomes a spin model if and only if the following conditions hold:

d
(C1) > kit; = Dt3?,

=0
d
(C2) 3_kit;' = Dty
=0
d d
o -1 _
(C3) Z;)X;injtitj =0 (a=1,2,...,d),
1=0 j=

(C4) For all vertices u, v, w in X,
d d d
Z Z Z P,'jg(u, v, w)titjtzl = Dtatb‘lt;l,
£=01:=0 j=0

where o = a(u,vv), B = 0(u,w), v = 0(v,w).

Remark 5 Though conditions (C1) and (C2) can be removed in the above, these are
useful to find solutions of the equations.

3 Result

A distance-regular graph having the intersection a.rfay
{4m,4m —1,2m, 1; 1, 2m, 4m — 1, 4m}

is called a Hadamard graph of order 4m. There is a natural one-to-one correspondence
between Hadamard graphs of order 4m and Hadamard matrices of order 4m (see [4] 1.8).
Now our main result follows:

Theorem 2 Let I' be a Hadamard graph of order 4m. Let s, to, t1 be complex numbers
such that

2v/m

2422m—1)s+1=0 R b —
3+ (m )S+ 9 (1] (4m_1)3+1)

t = 1.

Put t; = sty, t3 = —t; and ty = to. Then ty,...,t, satisfy the conditions in Proposition 1

with D = 4/m.

Theorem 2 can be described without using distance-regular graphs as follows:
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Theorem 3 Let H be a Hadamard matriz of order n, n =0 (mod 4), and let M be the
weight matriz of the Potts model of size n. Let w be one of the 4-th roots of 1, w* = 1.
Define a 4n x 4n-matriz W as: ‘

M M wH —-wH
M M —-wH wH
wHt —wH' M M
~wH! wH! M M

W =

Then W becomes the weight matriz of a spin model having 4n spins.

4 Proof of Theorem 2

Let H be a Hadamard graph of order 4m and let s, to, ..., t4 be complex numbers such

that : 2/
2 _ _ 2 _ m
4+22m—-1)s+1=0, t; @m—Ds 11’

t]=1, ty=sty, tz=—t, ts=1t.
By k;_1b;_; = k,-c;, we get
ko=1, ki=4m, ky=8m—2, ks=4m, k4=1.
So (C1) becomes
to + 4mty + (8m — 2)ty + dmiz + t4 = 4/mt5".
By t3 = —t1, to = t4 and ¢, = stq, this becomes
2ty + (8m — 2)sty = 4/m t5".

Clearly this holds by the assumption 2 = 2/m((4m — 1)s + 1)~1.
Condition (C2) becomes

to! +4mtt 4 (8m — 2)t; 1 + dmitz ! + 71 = 4y/mty,

and it becomes
1 2t + (8m — 2)t;! = 4/mt,,
14+ (4m —1)s7! = 2¢/m 2.
By the assumption 2 = 2/m((4m — 1)s + 1)1, it is equivalent to

1+ (4m —1)s7! = 2y/m - 2/m (4m — 1)s + 1)L,
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This is implied by the assumption s* +2(2m —1)s+1 = 0.

Next consider condition (C3). The values of pf; are easily computed by the ‘following
formula ([4] 4.1.7). ’

1
p?+1,£ = ;:(p?,l—lbf—l + P?,t+152+1 - P?—l,zbj—l)-
7 .

Case a = 1:
- (0,1), (1,0), (3,4), (4,3) 1

(1,2), (2,1), (2,3), (3,2) 4m -1
Condition (C3) becomes o

totT! + titgt + taty ! + tatyt + (dm — 1) (8t + ot7t + o235t + 13150) = 0.
This holds by t3 = —t; and ¢, = 4.

Case a = 2:

(z’]) p?j
(0,2), (2,0), (2,4), (4,2) 1
(1,1), (1,3), (3,1), (3,3) om
(2,2) 8m —4

(C3) becomes
tot; 1 + tatgt + oty + gty + 2m(t Tt + tit3 ! + ety + £3t31) + (8m — 4) = 0.

This is implied by 3 = —t;, to = t4, t; = stp and s2 +2(2m —1)s+1 = 0.

Case a = 3:

(4,9) ;
(0,3), (3,0), (1,4), (4,1) 1
(1,2), (2,1), (2,3), (3,2) dm—1

tol3! + tatgt + tyt7t + tatTt + (dm — 1)(tyt5Y + Gt + tat5 1 + t5t31) = 0.
This holds by t; = —¢; and 5 = 1, |

Case a = 4:

(é,5) Pl
(0,4), (4,0) 1
(113)5 (31 1) 4m

(2,2) 8m — 2
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toty! +tatgt + 4m(titz! + ta3th) + (8m — 2)t,t5 = 0.
Clearly this holds.

Now we consider condition (C4). Since (C4) is symmetric in u, v, we may assume
O(u,w) < 8(v,w). Fix three vertices u, v, w. Put (u,v) = a, I(u,w) = B, d(v,w) =~
and P, = Pyjo(u,v,w). If B =0, we have u = w, @ =, and P,y = 0 for 7 # £. Therefore

> Pyetitity’ =323 Pty = ) _kit;,
il F j

and (C4) is equivalent to (C1) in the case 8 = 0. So we must verify (C4) in each of the
following cases of (a, 3,7): : .

(0,1,1)- (0,2,2) (0,3,3) (0,4,4)

(1,1,2) (1,2,3) (1,3,4) |
(2,1,1) (2,1,3) (2,2,2) (2,2,4) (2,3,3)
3,1,2) (3,1,4) (3,2,3)

(4,1,3) (4,2,2)

In the case (a, 8,7) # (2,2,2), the values of P;j; are easﬂy computed. We need the following
Lemma for the case (o, 8,7) = (2,2,2).

Lemma 4 If 0(u,v) = 0(u,w) = B(p,w) = 2, then w has precisely m neighbours in
F](U) n Fl(’l)). ;

Proof. Put Dj = Ti(u) NT;(v). We have w € D3. Put e(w,D}) = r, e(w,D}) = s,
e(w,D}) = &', e(w,DJ) = r'. Notice that every vertex + € X has the unique opposite
vertex z’ such that d(z,z’) = 4, since we have ks = 1. Sine the opposite vertex z’ of
z € DI NTy(w) is in D3, we get ' < |D3| —r = 2m — r. Similarly we get s’ < 2m — s.
On the other hand, we have r + s = 2m since w has precisely 2m neighbours in I'; (u). We
have also s + 1’ = 2m since w has 2m neighbours in I's(v). These imply r = r’. By the
same reason, we get s = s'. Therefore we must have r = s =r' =3’ = m.

Case (a, 8,7) = (0,1,1):

(¢,7,0) Pije
(0,0’ 1)’ (1’1)0)’ (3’3’4)7 (4’4’3) 1
(1,1,2), (2,2,1), (2,2,3), (3,3,2) dm —1
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So, condition (C4) becomes
2070 4 22450 4 270+ 2150 4 (dm — 1)(8250 + 247 + 26570 + 2171) = Diot7?,

263t51 + (8m — 2)t3t5! = Doty 2.
By t} = 1, this is equivalent to (C2).

Case (a,8,7) = (0,2,2):

(2,5,¢) Py
(0,0,2), (2,2,0), (2,2,4), (4,4,2) 1
(1,1,1), (1,1,3), (3,3,1), (3,3,3) 2m
(2,2,2) ~ ) 8m — 4

Then condition (C4) becomes
28451 + £2151) + (8m — 4)t, = Diot;?,

sTh+ 82 + (4m — 2)s = 2¢/m s7252.
By the assumption 3 = 2/m((4m — 1)s + 1)1, this becomes

st 48+ (4m —2)s = (4m — s~ 4572,
This is implied by the assumption s+ 2(2m — 1)s +1 = 0.

Case (a,4,7) = (0,3,3)

(%J?Z) [)ijl
(0,0,3), (1,1,4), (3,3,0), (4,4,1) 1
(1,1,2), (2,2,1), (2,2,3), (3,3,2) im — 1

(C4) becomes
2051 + 27T+ 23T + G+ (4m - D)(234 + 27 + 251 + 135 1) = Diotz 2
This is equivalent to Case (o, 8,7) = (0,1,1).

Case (o, 8,7) = (0,4,4): .

(2,1,£) Py
0,0,4), (4,4,0) 1
(1,1,3), (3,3,1) 4m

(2,2,2) 8m — 2
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37+ 245 4 Am(E25 + 2470 + (8m — 2)t2t7! = Diot .

- Case (,8,7) = (1, 1,2):

(i,j,ﬂ) Py
(0,1,1), (1,0,2), (1,2,0), (3,2,4), (3,4,2), (4,3,3) 1
2,1,1), (2,3,3) : 2m —1
(2,1,3), (2,3,1) . 2m
(1, 2,2), (3,2,2) 4m — 2

to + bty + totrts !t + titaty ! + totaty ! + tatats ! + 2m(tatats ! + tatsty!)

+(4m —2)(t, + t2 + t3) = Dt; L.

Case (o, 8,7) = (1,2,3):

(2,7,£) : : Pij,
(0,1,2), (1,0,3), (2,1,4), (2,3,0), (3,4,1), (4,3,2) 1
(1,2,3), (3,2,1) om — 1
(1,2,1), (3,2,3) | | 2m
(2,1,2), (2,3,2) dm —2

totity '+ totats ! + titaty ! + totaty ! + tatat] " + tataty"

+(2m = 1)(titat3 + tatsty ') + (4m — 2)(t + ts) + 4mity = Dtst; 45"

Case (o, 8,7) = (1,3,4):

(2,5,0) P
(0,1,3), (1,0,4), (3,4,0), (4,3,1) 1
(1,2,2), (2,1,3), (2,3,1), (3,2,2) ’ 4m — 1

tot1ts! + totaty ! + tataty! + tatatyt + (dm — 1) (¢ + 83 + titat3t + tatat]?)
= Dtt3't;".

Case (o, 8,7) = (2,1,1):
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(Z,],E) ) Ijijl
(0,2,1), (2, 0 1), (2,4,3), (4,2,3), (1,1,0), (3,3,4) 1
(1,1,2), (3,3,2) - - 2m—1
(1,3,2), (3, 1,2) : 2m
(2,2,1), (2,2,3) o 4m — 2

51 4 270 4 2totatTt 4 tatat3?) + (2m — 1)(E38; 1 + £33 1)
+(4m — 2)(82t7 + t3t31) + dAmt sty = Doty

Case (a,8,7) = (2,1,3):

(4,4,€) K Pije
(0,2,1), (2,0,3), (2,4,1), (4,2,3), (1,3,0), (3,1,4) 1.
(1,3,2), (3,1,2) ' om — 1
(1,1,2), (3,3,2) 2
(2,2,1), (2,2,3) , 4m —2

totat]! + totats ! + totaty! + totats ! + titaty + tataty? + 2m(t5t; 1 + £5457)
+(4m — 2)(ttsty T + +27 + 2451) = Dyt 5.

Case (a, 5,7) = (2,2,2):

(z,.77€) . . . P‘iﬂ
(0,2,2), (2,0,2), (2,2,0), (2,2,4), (2,4,2), (4,2,2) 1
(1,1,1), (1,1,3), (1,3,1), (1,3,3) » m
(3,1,1), (3,1,3), (3,3,1), (3,3,3) m
(2,2,2)  8m-—6

2851 + 2171 4+ 2(t0 + ta) + m(3t31 + 247) 4+ 3m(ty + ts)
+(8m — 6)t, = Dit;'.

Case (o, 8,7) = (2,2,4):

(,5,4) Pije
(0a2v2)’ (2’074)’ (2’47 0)? ‘(472’2) 1
(1,1,3), (1,3,1), (3,1,3),(3,3,1) 2m
(2,2,2) | 8m — 4

to + ta + totaty + tataty! + 2m(ty + 13 + 3851 + 2471 + (8m — 4)t, = Dt

Case (o, 8,7) = (2,3,3):



- (4,4,€) Pije
(0,2,3), (1,1,4), (2,0,3), (2,4,1), (3,3,0), (4,2,1) 1
(1,1,2), (3,3,2) = 9m — 1
(1,3,2), (3,1,2) I 2m
(2,2,1), (2,2,3) | | 4m — 2

247+ t2t0 4 2(totats ! + tataty) + (2m — 1) (345 + 13157)
+(4m — 2)(£2471 + t3¢51) + dmiytat; ' = Digt;.

Case (o, 8,7) = (3,1,2):

(2,5,€) P;je
(0,3,1), (1,2,0), (3,0,2), (1,4,2), (3,2,4), (4,1,3) 1
(2,1,3), (2,3,1) o2m — 1
(2,1,1), (2,3,3) . 2m
(1,2,2), (3,2,2) dm — 2

totaty ! + totaty ! + titaty ! + titgty ! + titats ! + tytaty!

+(2m — 1)(t1tt3" + tataty?) + (4m — 2)(t; + t3) + 4mty = Digty 'ty

Case (o, 8,7) = (3,1,4):

: : (Z’]vé) Rﬂ
(0,3,1), (3,0,4), (1,4,0), (4,1,3) ‘ 1
(1,2,2), (2,1,3), (2,3,1), (3,2,2) 4m —1

totaty! + totaty! + titaty + titats' + (4m — 1)(¢1 + 13)
+(4m — 1)(tatats + totst?) = Dtgt7 7.

Case (o, 3,7) = (3,2,3):

(¢,75,£) " Py
(0,3,2), (2,1,4), (3,0,3), (1,4,1), (2,3,0), (4,1,2) 1
(1,2,1), (3,2,3) | ‘ 9m —1
(1,2,3), (3,2,1) om
2,1,2), (2,3,2) 4m — 2

to + ta + totat; t + tataty ! + titaty ! + titat; ' + 2m(tatats ! + tataty")
+(4m — 2)(t; + t2 + t3) = Dt; 1.

Case (o, 4,7) = (4,1,3)
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(i,j,f) - Pije
(0,4,1), (1,3,0), (3,1,4), (4,0,3) 1
- (1,3,2), (2,2,1), (2,2,3), (3,1,2) 4m —1

totatT! + totats! + tytaty + titstyt + (4m — 1)(E247 + 2t57)
+(8m — 2)titst;t = Digty't".

Case (o, 8,7) = (4,2,2):

(2,7,%) ' P;;,
(0,4,2), (2,2,0), (2,2,4), (4,0,2) 1
(1,3,1),(1,3,3), (3,1,1), (3,1,3) 2m
(2,2,2) 8m —4

2450 4+ 12871 4 2ttty 4 dm(ty + t3) + (8m — 4)ty = Diyt; .
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