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Planar functions of type (p,p,°***,p) and the numbers of

solutions of special polynomial equations over Zp for an odd

prime p

MR FE T A o JIl B R
(Nobuo Nakagawa)

1. Introduction

Let G and H be two finite groups of order n, and f be a
mapping from G into H. If f satisfies the following condition,
f is named a planar function from G into H of degree n. For any
element u(u®l) of G and any element o of H, there exists unique
element x of G such that f(ux)f(x) '=«.

Let f be a planar function of degree n from G into H. Then
we can naturally construct an affine plane A of order n such
that GxH acts on the set of points of A regularly. Therefore if
we can construct a planar function of no prime power degree, it
means to construct a counter example for the following famous
conjecture.

Conjecture A; "Orders of finite projective planes are prime
power."

One of our purpose is to construct planar functions of no
prime power degree. Sorry to say I guess from known results
that there is little possibility of the existence of such
planar functions(cf.[1]1,[4]1,(5]1). By the way our another

purpose is to solve the following problem.
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Problem B; "Determine all planar functions of 'prime power
degree and classify affine planes corresponding to them."
Concerning this problem, the following result obtained by Y.
Hiramine and D.Gluck shines out.(They showed this theorem
independently by different ways.)

Theorem C; "Supppose f is a planar function of degree p for an
odd prime p. Then f is a quadratic polynomial as a mapping from
Zp into Zp, and an affine plane corresponding to f is
Desarguesian(cf.[2],[3]).

The following result was shown by N.Nakagawa, C.I.Fung,
M.K.Siu and S.L.Ma. Let f be a planar function of degree pn
from G into H for an odd prime p and n=2. Then G is not cyclic
and H contains no relatively large cyclic subgroups as direct
sumonds, specially H is not cyclic(cf.[1],[7],[8]).

Now in the rest of this paper we study about planar
functions of degfee pn(nzz) from G into H where G and H are

elementary abelian p-groups. Such planar functions 1is called

type (p,p," ' ',pP).

2. The deviation of numbers of the solutions of special
polynomial equations in n indeterminates over Zp.
Let f(xl,x2,~--,xn) be a polynomial in n indeterminates

over Zp for an odd prime p. We use N(f=k) to denote the number

of solutions of the equation f(xl,xz,---,xn)=k for kGZp and
deg(f) to denote the degree of f(xl,xz,---,xn).

i1 i2 in~
Problem 2.1. Let f(xl,x2,~-',xn)=2 ay 4 ...q{ Xy Xy ttcx " be
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a polynomial over Zp with 2<deg(f), and X be the multiplicative

character of Zp of order 2, namely x(c)=1 if c is the square of
K

an element of Zp and x(c)=-1 otherwise. Moreover we set A(c)=0.

Then f(x ---,xn) is a nondegenerate quadratic form if

1’x2!

f(xl,x --',xn) satisfies the folloeing equations for any fixed

2’
element kGZp and a element kOEZp which depends to k.

(i) Let n be even. N(ilxl+12X2+°--+inxn+f(xl,x2,'°-,xn)=k)
p(n—1)+8kp(n/2)_ekp(n—z)/z ( if k=k0 )
= _ _ (e, €{x1}) for
p(n 1)—8kp(n 2)/2 ( otherwise ) k
any elements 11,12,°-°,1neZp
(ii)‘Let n be odd. N(11x1+12X2+---+1nxn+f(x1.x2,'*',xn)=k)
. o(n-1) (n-1)/2 : ..
=p +8kk(k+k0)p (ekE{tl}) for any elements 11,12,
°,1n€Zp.
If f(xl,xz,---,xn) is a nondegenerate quadratic form,
then f(xl,xz,-°',xn) satisfies the above equations in Problem

2.1(cf.[6], Theorem 6.26 and 6.27). We would like to show that
if Problem 2.1 is solved affirmatively, then planar functions
of type (g,p,'°-,p) are neafly decided in the following
arguments. On the first time we show the key lemma.

Let G and H be finite groups of order m,‘and f be a
mapping from G into H. We define the Gauss sum Zx.p obtained
from f with respect to x€Irr(G) and p€lIrr(H) as follows.

z =2 (2 x(x) )p(a).

X!p _l
-1 x€H x€f ~ (o)
(Here if f ~(«x)=¢, we define 2 x(x) to be 0.)

fo_l(a)
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Then Zy T 2 x(x)p(f(x)) holds.
P X€EG

Lemma 2.2. Suppose that G and H are abelian groups. Then f is a

planar function from G into H if and only if ZX pr p =m holds

for any x€Irr(G) and any p€lrr(H) such that p#lH(cf.[SJ,Theorem

2.6 and [9],Lemma 2.4).

In the remainder of the paper we suppose p is an odd prime

and G and H are the additive groups of a finite field GF(pn).

pt-1

A mapping f from G into H is described as f(x)= > aix
i=1

(aieGF(pn)). We fix an element GGGF(pn) such that GF(pn)=Zp(6),

i

and we set ai=a§i)+aéi)9+'--+aéi)9(n_l) (a}i)elp,0$i£pn-1,1SJ$n.

Then the indeterminate X over GF(pn) may be described as X=

X +x29+---+xn9(n—l) where {xillsisn} are indeterminates over_Zp.

1
Then we may set f(X)=a1(x1,‘--,xn)+a2(x1,---,xn)9+---+
- (n-1) - L .
an(xl, ,xn)G for suitable polynomials ai(xl, ,xn) w1thr
respect to indeterminates {xl,xz,'3-,xn} over Zp. Let o be a
primitive p-th root of unity. We put t= 3 A(X)e~. Then it is
x€Z
p
well known that tt=p holds. For 11,12,---,in€Zp, we define
(i,,i,,-*+,1 )eIrr(G) as (i,,i,, -°,1 )(k +X, 0+ +Xx G(nvl))=
1'°2°  n 1’72 '“n 1 72 n
w(11x1+12x2+"'+1nxn)' For s, s,,"**,s_€Z , we define
R 1,72 n_p
(sl,sz,---,sn)EIrr(H) as well as (il,iz,---,in). Moreover
slal(xl,xz,---,xn)+'--+snan(xl,x2,---,xn) will be denoted by
fs L. (xl,xz,---,xn).

1'%y
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Lemma 2.3. Let f be a mapping from G into H which is described
... (n-1),_ - - .
as f(x +x20+ +xn9 )—al(xl, ,xn)+a2(xl, ,xn)9+ +

a (x x -,xn)G(n_l). Fix an arbitrary element k of Zp. Then

g "
f is a planar function if and only if f satisfies the following

equations. N(11x1+1 Xg*: -'+inxn+fs S, (xl.xz,"-,xn)=k)
1’72 n
(n-1) (n/2) . (n-2)/2 _ '
p(n_1)+8p(n_2)/§p (1f k=t) in the case n is even,
p -Ep (otherwise)
and p(n_1)+81(k+t)p(n—l)/2 in the case n is odd for any 11,12,'

,1nEZp and any s -,snEZp such that (s ',sn)¢(0.0,

1782". 1’52’.
+,0). Here g€{%x1} and t is a suitable element of Zp.and g, t

depend on k.

Proof. From Lemma 2.2 f is a planar function if and only if

if n is even and sz p|=tp(n-1)/2twt if n is

odd for any x€Irr(G) and any p€Irr(H) such p#lH and a suitable

(n/2) t
=%
|ZX: pl P ®

'tEZp. From the definition of zX o above equations implies

S (ilxl+1 Xot- -~+inxn+fsl,sz’.__,Sn(xl,x2.°'°,xn)-t)
(X, X9, 0uX )EZ
n P
( +p(n/2) (if n is even)
= - _ for any 1,,i,,°**,1i_,8.,,8,,***,S
L ip(n l)/zr (if n is odd) 127 n’-1’-2 n
EZp such that (sy,8,," .8 )¥(0,0, --,0). We put
> (11x1+i x2+--'+inxn+fsl’sz'...,sn(xl,xz."'.xn)—t)
(xl Xz,"',xn)EZp \
p_l i )
=» c,» . Then we have the following equation.
i=o *
Cy = N(ilx1+i Xopt+: --+inxn+f s (xl,xz,---,xn)—t=k) for

slyszv' n
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| p_l n ol oy
any K€EZ_. Moreover from the equalities 2 c.,=p and 2 c.o
P i=o * i=o !
ip(n/Z) (if n is even)
(n-1)/2 , it can be shown that
+p T (if n is odd)

=p(n-1) g (n/2) o (n-2)/2

C -Ep . .
0 if n is even, and
c,=p (B~ 1) _gp(n-2)/2 (1<i<p-1)
Lin-1) (n-1)/2
C;=P +ex(i)p (0<i<p-1) if n is odd. (Here g€{#1l}.)

Thus the lemma proved.

n
p -1
Now suppose that Problem 2.1 is true. Let f(X)=2 aiX'1 be a
i=1
mapping from GF(pn) into GF(pn). We remark that we may assume

(n-1)

a(pJ)=0 for all j (0<j<p -1) without loss of generality if

f is a planar function. Then f is described as

f(X +x29+--.+xne(n_1))=al(xl,...'xn)+a2(xly..-,Xn)e+-o-+

1

o (x o(n-1)

n 1,xz,"-,xn) with deg(ai(xl,xz,-'",xn))zz (1<i<n).

If f is planar, from our assumption and Lemma 2.3

fsl’sz""'s (xl,xz,--°.xn) is a non-degenerate quadatic form
over Zp for any sl,sz,-“,snelp such that (sl,sz,'~-,sn)¢(0,0.-
*,0). Therefore ai(xl,xz,f--,xn) is a quadratic form for all i

(1<i<n), which implies ai=0 for many elements i, namely the

n_l (pt+pd)
following equation holds. f(X)= 2 a i j.xX5 .
i,j=0 (P *P7)
n:t (plepd)
Problem 2.4. Let f(X)= 2 a, i  j.X be a mapping from
, i,5=0 (p~+pY)

GF(pn) into GF(Pn). Then find out equivalent conditions for f
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to be a planar function and describe the equivalent conditions

as equations to be satisfied between coefficients of f(X).

3. A partial solutions for Problem 2.1 and Problem 2.4 for n=2
The following theorem is a solution for Problem 2.4 in the

case n=2. For elements a,bEGF(pZ), we write b=/a if a=b2 holds.

Theorem 3.1. Let f(X)=aX2+bX(p+1)+cX2p be a mapping from GF(pz)
into GF(pz) for an odd prime p. Then f is a planar function on

the additive group GF(pz) if and only if

(quap_cbp)(p+l)_(a(p+l)_c(p+1))2,i(a(p+1)_c(p+1)))(p+l)

=(baP-cb?) P*1) 1o1ds, and if b=0, then the following (i) and
(ii) hold.

(1) baP=cbP. (i1) b2-4ac=0 if bP*1)_ga(P*1) o (P+1)_4 (P*1)

Proof. For ueGF(pz) we define a mapping on GF(pz) fu as
fu(x)=f(u+x)—f(x). Then f is a planar function if and only if
£, is bijective for any ue€GF(p®)\{0}. That is f_(x)=f (y) if
x#y. Therefore by direct calculation we get
(2a+bu(p_1))+(b+20u(p~1))(x—y)(p—1)¢0 for any u#0 if x#y holds.
Hence if b=0, then a(p+1)¢c(p+1) holds. Suppose that b#0. If
2a+buP1) 0 holds for some uEGF(pz)*, then b+2cu(p_1)¢0, and
if b+2cuP 10 holds for some uGGF(pz), then za+buP ™10,
Thus if b(p+1)=4a(p+l) or b(p+l)=4c(p+l) holds, then it follows

that b2—4ac#0. In other case we have

((2a+bu(p_1))/(b+20u(p_l)))(p+1)¢0 for any u®0, which implies

that (bap4cbp)sz+2(a(p+l)—C(p+l))s+(abp—bcp)¢0 for any
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se(GF(pZ)*)(p_l). Thus we have baP=cb® and (A/B)(p+1)¢1 where

A= (2/(baP-cbP) (PTD)_(a (PY1)_(P+1))2 _ (p+1)_(P+1)y) ang pe

(bap—cbp). (Here (bap~cbp)(p+l)—(a(p+1)—c(p+1))2 is squre since

it belongs to Zp). Hence the theorem follows.

The following theorem is a partial solution at the case of_

n=2 and f is a cubic form in Problem 2.1.

Theorem 3.2. Let p be an odd prime. Suppose that f(x,y) be a
nontrivial cubic form over Zp. Then there exists elements i, j
and k of Zp such that N(ix+jy+f(x,y)=k)€¢{1,p-1,p+1,2p-1}, that
is a cubic form f(x,y) does not satisfy the equations in

Problem 2.1.

Proof. We have proved for the case p=l1(mod 3) in [10].
Therefore we may assume that p#l(mod 3). Put f(x,y)=

ax3+bx2y+cxy2+dy3.

If f(x,y) is transformed into a cubic form
g(X,Y) by means of a nonsingular linear substitution of
indeterminates, it is named that f(x,y) is equivalent to g(X,Y).
Then the deviation of the numbers of solutions of equations
{1x+jy+f(x,y)=k|k€lp} coincides those of {iX+jY+g(X,Y)=k1kEZp}.
It is shown that the coefficient of X3 of Y3 of a suitable
cubic form g(X,Y) equivalent to f(x,y) is nonzero. Therefore we
may assume aZ*0. Moreover if b#0, then f(x,y) is transformed
into AX3+CXY2+DY3 for somé elements A,B and CEZp such that AZ0

by a linear substitution x=X+Y,y=((-3a)/b)Y. Hence we may assume

b=0 and a=1, namely f(x,y)=x3+cxy2+dy3. We set the following
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assumption.
Assumption (#); N(ix+jy+f(x,y)=k)€{1l,p-1,p+1,2p-1} for any
elements 1i,j and k of Zp.

We lead a contradiction from Assumption (#). If x=0, then f=dy3.

3

We call dy® is the (x=0)-part of f(x,y). If x#0, we put ix=y

for any fixed iEZp. Then f(x,y)=Aix3 where Ai=1+ciz+di3. We

3 is the i-part of f(x,y). (The O-part of f corresponds

call Aix
to (y=0) and AO=1 holds.)

(1) d#0 holds, Suppose that d=0. Then N(f(x,y)=0)=p, therefore
by Assumption (#) N(f=0)=p+1Aor 2p-1, which implies Ai=0 for
some iEZp. Giving a linear substitution of indeterminates to f
as X=ix and Y=y, we may assume A1=0. Then c=-1 holds and hence
A(—1)=0' which means that N(f=0)=3p-2. This contradicts to
Assumption (#).

(2) Ai=0 for some iEZp. Suppose that Ai¢0 for all iGZp. The
i-part of sx+f(x,y) is sx+Aix3 for a fixed element sEZp. 1t
follows that sX+A1x3=O has exactly two solutions except x=0 if
and only if A(A;)=x(-s) holds. Set I{iGZpll(Ai)=A(-1)}l=t. Then
we have N(x+f(x,y)=0)=1+2t. Hence by Assumption (#), t=0 or
t=p-1 holds. We pick up a element sEZp such that x(s)=-1. Then
we get |{1€Zp|A(A1)=A(—s)}I=p—t. Therefore N(sx+fT(x,y)=0)=1+2p
if t=0, and N(sx+f(x,y)=0)=3 if t=p-1. Whichever we have a
contrédiction to Assumption (#). Thus we may assume A1=O as we
did in previous arguments. Then N(f=0)=zp holds. If Ai¢0 for any
element iEZp except i=1, it follows that N(f=0)=p, which is a

contradiction. Therefore Aj=0 for some jEZp such that j=1 and

J#0. Thus we get 1l+c+d=0 and 1+cj2+dj3=0, which implies
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d=(J+l)/(j2) and c=—(j2+j+1)/(j2). Then since Ai=
((J+1)/Kj2))(i—1)(i—j)(i+(j/(j+1))) holds, we get A(_j/(j+1))=0-
If -j/(j+1)€{1,j}, it follows that N(f=0)=3p-2, which is a
contradiction. Hence (-j/(j+1))=1 of (-j/(j+1))=j, that is
J=—2*1 or j=-2 holds. Suppose that j=-2. Then we have
A1=4—1(i+2)2(1-i). Therefore it is shown that x+Aix3=O has
exactly two nonzero solutions if and only if x(i-1)=1. On the
other hand l{1ezp|x(1-1)=1,1¢1,1¢—2}|=(p—1)/z or (p-3)/2 holds.
Therefore N(x+f(x,y)=0)=p or p-2. This contradicts to
Assumption (#). Next suppose that j=—2_1. In this case we also
have a contradiction as well as the case j=-2. Thus Theorem 3.2

proved.
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