
61

Types for Dyadic Interaction*

Kohei Honda
kohei@mt.cs.keio.ac.jp

Department of Computer Science, Keio University
3-14-1 Hiyo.shi. Kohoku-ku, Yokoh:una, 223, Japan

Abstract
We formulate a tyl) ecl forlualisul for (,$onc:tll\cdot 1^{\cdot}cncy$ wllcre types denote frecly composable structure of dyadic inter-
action in the symlnetric $s\langle\vee hcltl(:$. The resulting calculus is a typed reconstruction of name passing process calculi.
Systems with both the explicit an(1 implicit typing disciplines, where types form a simple hierarchy of types, are
presented, which are proved to be in accordance witli each other. A typed variant of bisimilarity is formulated and
it is shown that typed β-equality has a cleali enibedding in the bisimilarity. Nalne reference structure induced by
the simple hierarcby of types is studied, wllich fully characterises the typable terms in the set of untyped terms.
It turns out that tlle name reference structure results in the deadlock-free property for a subset of terms with a
certain regular structure, showing bellavionral significance of the simple type discipline.

1 Introduction
This is a preliminary study of types for concurrency. Types here denote freely composable structure
of dyadic interaction in the synnnetric $scl\iota t^{\backslash }t11C^{\backslash }$. If we view concurrent computation as collection of
interaction structures, types of coniputing naturally arise as $matl\downarrow ematical$ encapsulation of those
structures. Types arc initially a.ssigned to $11allt^{1}.\backslash$. This a.ssignment forms a universe of names, which
is essentially Milner’s sorting [18]. $\dot{\subset}tlt(1\daggerC1^{\cdot}111\backslash$ reside in this universe. Terms are formed from syntactic
constructs corresponding to type structures, and equated by a variant of bisimilarity. The formalism
can be regarded as a typed $1^{\cdot}eco\iota\downarrow\backslash t\iota\cdot\iota(:tion$ of name passing process calculi [4, 15, 16, 7, 3, 12].

Types for interaction start from constant types, say nat, which denote fixed patterns of interaction.
Then we $1_{1}ave$ input and output types, symbolised as $\downarrow\delta$

’ and $\uparrow\delta’$. Connotation of these primitives
are to receive and send a value of type δ . That a type itself occurs in a type is reminiscent of
functional types. We also have a unii $t\cdot|/pe,$ $1’$, denoting the inaction. These types are now combined
to become a composite type $|$)y connectives of sequencing and branching. Sequencing composes two
types sequentially and is denoted by ; , hence wc have a structure such as δ_{1} ; $\delta_{2}’$, which means
first to engage in an action of type δ_{1} and then engage in au action of type δ_{2} . In branching we have
two constructors. One is‘&’’, with wliich we have a structure such as $\delta_{1}\ \delta_{2}$

’ where one offers two
alternatives to wait for one of $the\ln$ to bc selected. Another is $\delta_{1}\oplus\delta_{2}$, which selects the right option
or the left option of a “&‘‘ type. Operationally a composite type denotes semantically atomic operation
which in fact is an amalgamation of multiple interactive communication. As a whole, the set of types
form a simple hierarcby, reminiscent of $Chm\cdot cl\iota’ s$ simple hierarchy of functional types.

We $t1_{1}e11$ form a typed universe of names, where each name corresponds to a certain type. Then
terms and actions are formed from names. Terms are made up of actions, each of which corresponds to
a certain type and substantiates the abstract type structure operationally. Actions provide high-level
abstraction for interactive $bel\iota avioltl\cdot$, just as λ-abstraction, arrays, and records provides abstraction for
their respective operations in the sequential setting; they are concrete type constrnctors for concurrent
programming. Transition semantics is $ftI^{\cdot}1\Pi\iota la\uparrow|ed$ and a typed $val\cdot iant$ of bisimilarity equate terms. It
is shown, via Milner’s encoding oflazy λ-calculus, that the explicitly typed β-equality can be embedded
in explicitly typed weak bisinlilal\cdotit.y.

’An extended velsion of [11].

数理解析研究所講究録
第 851巻 1993年 61-77

62

Pragmatically it is iml) 0ι tallt to be able to reconstruct typed terms from untyped terms. In the
present scheme, a $si\ln_{1)}1e$ type inference system suffices, which is essentially an extension of the foregoing
construction for functional types. $T1\iota()$ shape of the typing judgement, however, is notably different
from the foregoing one. Tbe sequent takes a form:

$\vdash P\succ x_{1}$: $\alpha_{1},$ x_{2} : $\alpha_{2},$
$\ldots,$

x_{n} : α_{n}

where P is a term, x_{i} are port names, $\alpha_{i}’ sal\cdot e$ type schemes. Basically the judgement tells us the
structures of potential interface points a term owns. The inference system enjoys Subject Reduction
and existence of $Pri11cip_{C}\backslash 1$ Typing, and assigns types exactly, modulo α-equality, to the set of terms
which are the result of erasing type annotations from explicitly typed terms. One essential result is
that a name reference structure in terms precisely differentiates typable terms from untypable terms.
It is exhibited that, in a certain set of terms, the name reference structure induced by the simple type
hierarchy results in the deadlock-free beh aviour, one of important properties in concurrent or distributed
computing. The result would lay a foundation for further investigation of varied type disciplines in
the name passing franlework.

The structure of the rest of tlie paper follows. The explicitly typed system is studied in Sections 2
and 3. Section 2 introduces types and typed terms, then defines reduction relation over terms. Section
3 first defines typed bisimilarity, then presents the embedding result of the explicitly typed β-equality
in the bisimilarity. Section 4 then introduces the implicitly typed system. After basic definitions,
syntactic properties of $tl\downarrow e$ type inference system are presented and correspondence with the explicitly
typed system is $esta\mathfrak{i}$) $lisl\iota ecl$. Section 5 studies how the present “simple“ type discipline is reflected in
syntactic and behavioural 1) $1OI$)(

$rti_{t^{Y}}.s$ of $ter\iota ns$. We give a complete cbaracterization of typable terms by
a name reference structure. and $sl_{1}ow$ tliat tbe typability induces deadlock free property for a certain
subset of terms. Section 6 discusses related work and further issues.

All proofs are omitted $fo\iota t1_{1\langle}\backslash \backslash$]$)_{C}tt:t^{\backslash }$ sake. Interested readers may consult [10] for them.

2 Typed Terms
2. 1. Types and co-types. $Initi_{r}’\iota 11y$ there are types. Syn) $met_{1}\gamma$ intrinsic in interaction is reflected
by the syntax of types –if we $1_{1}av$ \langle) a type of natural numbers (write it nat), then we have a type of
co-natural numbers, \overline{nat} . Lct us have the set of atomic types, denoted At, ranged over by $C,$ $C’,$

\ldots .
Then to each atomic type there exists another $at_{01}nic$ type, called its co-type. The co-type of the
co-type of an atomic type is always the original type.

We assume that At at least includes nat, \overline{nat} , and 1. Intuitively nat is a type of natural number,
while \overline{nat} is a type which interacts with it (like successors). \overline{nat} is the co-type of nat. 1 is rather
special– it denotes a pure form of synchronization (and resulting term generation) in the line of, say,
CCS. Its co-type is itself. How 1 acts in the concrete examples, see examples in 2.5 later. We call
atomic types which are not 1. consfan f types.

The set of types for interaction. T , ranged over by $\delta,\delta’,$
\ldots , is defined as follows.

(i) An atomic type is a type.
(ii) If δ is a type, then 1 δ and $\uparrow\delta$ aie types.
(iii) If δ_{1} and δ_{2} are types, then δ_{1} ; $\delta_{2},$ $\delta_{1}\ \delta_{2}$ and $\delta_{1}\oplus\delta_{2}$ are types.

$Intuitively\downarrow\delta$ denotes a type wbich receives $\delta,$ $while\uparrow\delta$ denotes a type which emits δ . δ_{1} ; δ_{2} denotes
sequential composition of two types, $/\rangle_{1^{\ \delta_{2}}}$ denotes a type who offers two alternatives, and $\delta_{1}\oplus\delta_{2}$

denotes a type which would select left or right and interact by $tlle$ according type.
The notion of co-types is extendecl to composite types. The co-type of a type δ is denoted 6, implying

a kind of an “interaction]$)_{\dot{C}}\iota i_{1}$. of a type $()$. The notion is to be substantiated computationally later.

(i) \overline{C} is the co-type of C .

(ii) $\overline{\downarrow\delta}deI=\uparrow\overline{\delta},$ $c\prime tnd\overline{\uparrow/)}dcf=\downarrow\overline{\delta}$.

63

(iii) $\overline{\delta;\delta’}def=\overline{\delta};\overline{\delta’},$ $\overline{\delta\ \delta’}def=\overline{\delta}\oplus\overline{\delta’}$, and $\overline{\delta\oplus\delta’}def=\overline{\delta}\ \overline{\delta’}$.
It is easy to know:

PROPOSITION 2. 1 3 $def=\delta$ for any type b .

Some syntactic conventions: we assmne the strength of a.ssociation, from the strongest, is as follows.
$\{\iota\uparrow\}$, {; }, and $\{\ ,$ $\oplus\}$. We $\zeta\sqrt so$ assume all constructors associate to the right.

2. 2. Names, terms and actions. In each type a set of names reside. The mapping from types
to typed names is called $uni\iota$ erse. Let a total function \mathcal{U} be such that it assigns, to each type δ , a
denumerable set of names, written $a^{b},$ $b^{\delta},$ $c^{\delta}..$, or $x^{\delta},$ $y^{6},$ $z^{\delta}\ldots$ Sometimes we omit type annotations, and
write $a,$ $b,$ $c,$ $.$. or $x,$ $y,$ $z,$ \ldots Each universe is equipped with an irreflexive, bijective mapping from names
to names, written $\overline{a^{\delta}}’$, where we should have $a^{\delta}\in \mathcal{U}(\delta)$ \Leftrightarrow

$\overline{a^{\delta}}\in \mathcal{U}(\overline{\delta})$. Thus the names in the
type δ should be exactly the co-names of the names in the type 5. We often write $\overline{a}^{\overline{\delta}}$ or simply \overline{a} for
$\overline{\delta}$

a .
Since any universe is isomorphic in structure, we will often fix some universe and discuss within it.

Let the concerned universe be \mathcal{U} . Then we $for\iota n$ typed expressions there. In functional types we only
have one entity, called terms. Here we have–other than $names-two$ entities, actions and terms. An
action denotes a $semantic_{c}\sqrt 1y$ atomic structure of interaction, and corresponds to one type. A term
denotes a structured collection of independent actions. What essentially differs from the situation in
functional types is that a term does not inhabit a particular type. At best, terms only inhabit the
underlying universe.

Let us assume that we have a set of consta$7lt$ symbols corresponding to each constant type (that is,
atomic types except 1). Each constant symbol bas its arity of the form $[\delta_{1}\ldots\delta_{n}]$ with $n\geq 0$. Arity
denotes types of nalnes the constant would carry.

The sets of terms and actions in a n niverse are defined inductively. $\mathcal{V}^{\delta},$ $\mathcal{V}^{\prime\delta’},$

\ldots range over typed
actions1 , while P, Q. $R,$

\ldots range over typed terms. Note it is implicit that the underlying universe is
\mathcal{U} ; “a term” and‘an action“‘ $1lleall$ “a term in \mathcal{U}^{t} and “an action in $\mathcal{U}’$, respectively.

(i) If c is a constant $s^{\neg}y_{l1}\iota I$) 01 of type C and of arity $[\delta_{1}\ldots\delta_{n}]$, and x_{i}^{δ} ‘ is a name ($i=$ l..n), then
$c(x_{1}^{\delta_{1}}\ldots.\iota_{\tau\iota}^{\delta,}))^{C}$ is $a\iota\downarrow$ action. called con,s fant action.

(ii) If x^{δ} is a $nalnt^{\supset}$. $(\triangleright x^{\delta})^{\downarrow b}$ and $(\triangleleft’\prime^{\delta})^{t^{fi}}$ are actions.
(iii) If $\mathcal{V}_{1}^{\delta_{1}}$ and $\mathcal{V}_{2^{\delta_{-}}}$ are actions, $(\mathcal{V}_{1}^{\delta_{1}} ; \mathcal{V}_{2^{\delta\underline{\backslash }}})^{\delta_{1};\delta_{2}}$ and $([\mathcal{V}_{1}^{\delta_{1}}]\ [\mathcal{V}_{2^{\delta_{2}}}])^{\delta_{1}\ \delta_{2}}$ are actions.
(iv) If \mathcal{V}^{δ} is an $actio\iota l$ and 6’ is a type, $inI(\mathcal{V}^{\delta})^{\delta\oplus\delta’}$ and $inr(\mathcal{V}^{\delta})^{\delta’\oplus\delta}$ are actions.
(v) If P is a term, $($. $P)^{1}$ is an action.
(vi) If \mathcal{V}^{δ} is an action and (

ι^{δ} is a name, a^{δ} : \mathcal{V}^{δ} is a term. This is a prime term and a^{δ} is its
subject.

(vii) If P and Q are terms, (P. Q) is a term. This is a parallel composition of P and Q .
(viii) If P is a term, $|x^{B}|P$ is a $te:1^{\cdot}ln$. This is a scope restriction of x^{δ} in P .
(ix) Λ is a term. Λ is an in actio$7l$.
(x) If P is a term, $!P$ is a $te\iota\cdot 111$. $T1_{1}is$ is a replication of P .

Some conventions: we assume all binary constructors associate to right, though we still use parenthesis
to be explicit about syntactic structure. Since it is sometimes culnbersome to write typed expressions
in full, e.g.

$((\triangleright a^{nat})^{\downarrow nat}; (\triangleleft b^{\overline{nat}})^{\uparrow\overline{nat}})^{\downarrow nat;\uparrow\overline{nat}}$

$1A\iota 1$ alert reader 111ay perceive the resemblance between Milner’s syntactic construction in [18]. In fact his notion of
“agents” may be lcgardecl as a $\triangleright prout$ of tbe syntactic category $w1\iota icl\iota$ we now call actions“. See also his suggestion
to “intermingle abstraction and (oncretion“ in [18]. We note tbat a calculus in [9] (complete in October 1991) already
contained the coucrete type structures corrcrponding to actions, an d we came to know [18] in February 1992. The
coincidence of ideas, 1ι owever. is quite notable.

64

we will abbreviate internal type script $al\downarrow d$ write:

$\triangleright a;\triangleleft b^{\downarrow nat;\uparrow\overline{nat}}$

from which the reconstruction of the $0\iota\cdot igi_{11\dot{c}}\iota 1$ expression is easy. In some cases, where type annotations
are not necessary, we will even write $tl\downarrow is$ $”\triangleright a;\triangleleft b’$, but it is always assunted tbat the expression is
essentially typed. Another $silific:\iota\uparrow ion$ of syntax is to write e.g. $\triangleleft\alpha\triangleright x$ for $\triangleleft a;\triangleright x^{\uparrow\delta_{1};\lrcorner\delta_{2}}$ (i.e.
omitting “;”), or even to write e.g. $\triangleleft a()\triangleright x^{\uparrow\delta_{t};\uparrow\delta_{2};\downarrow\delta_{2}}$ for $\triangleleft a;\triangleleft u;\triangleright x^{\uparrow\delta_{1};\uparrow\delta_{2};\downarrow\delta_{3}}$ (i.e. $omitting\triangleleft and\triangleright$

symbols in consecutive inputs and outputs), which is often convenient.

2. 3. Binding and substitution. Billdings are induced by two binders. In (2) we omit type scripts.

(1) In $|x^{\delta}|P,$ x^{δ} binds free occurrences of x^{δ} and $\overline{x}^{\overline{\delta}}$ in P .
(2) We say the occurrence of x in $\triangleright x$ is effective. If x is effective in \mathcal{V} then it is also effective in

$[\mathcal{V}]\ [\mathcal{V}’],$ $[\mathcal{V}’]\ [\mathcal{V}],$ $inl(\mathcal{V}),$ $inr(\mathcal{V})$, and $\mathcal{V};\mathcal{V}’$, except in $t1_{1}e$ last case wllen another x is effective
in $\mathcal{V}’$. Now if an $o(c\iota$ rrcnce of x is effective in V, $t1_{1}en$ it binds any free x in V’ within $\mathcal{V};\mathcal{V}’$.

With respect to (2) above. we will $1\downarrow C1\iota cefol\cdot tllass\iota 1lle$ that in $[\mathcal{V}]\ [\mathcal{V}’]$, if a name x is effective in \mathcal{V}

(resp. V’) then it should bc als 0 effective in $\mathcal{V}’$ (resp. V). To understand the intuition behind (2),
think of $([\triangleleft);\triangleright x]\ [\triangleleft\dagger\iota:\triangleleft n):\triangleright’])_{\backslash }\cdot\triangleleft 7^{\cdot}$. or inl $(\triangleleft?):\triangleright x):\triangleleft x$. In $bot1_{1}$ it is natural to assume that x in

$\triangleleft x$ is bound. Moreover the binding notion is in $1_{1almol1}y$ with $i_{11}teresting$ equality over types such
as $\delta;1=1;\delta=\delta$ and Ct) $11^{\cdot}(\backslash \backslash])(\iota ldi\iota\downarrow g$ cquivalence over actions, though we do not stipulate them in
this expository paper. For tbe sake of simplicity, the following convention is convenient without losing
generality.

CONVENTION 2. 2 We asstlme all names in bin ding occurrences in any typed expressions are pairwise
distinct and disjoi$7lt$ from free name.s .

Now we define (typed) substitution of $1\downarrow al$))(s . A free name witl] a certain type is substituted for a name
with the same type. A substitution of a $\iota\downarrow\dot{(}nne$ for another name is effective also to their co-names,
which is in harmony with tbe })$inding$ idea, so that $t1\iota e$ definition of typed substitution starts from:

$x^{\delta}[v^{\delta}/x^{b}]^{d}=^{et}x^{\delta}1^{\overline{\tau\prime}}\overline{\delta}/\overline{x}^{\overline{\delta}}]^{def}$ ’ $\overline{x}^{\overline{\delta}}[v^{\delta}/x^{\delta}]^{d}=^{ef}\overline{x}^{\overline{\delta}}[\overline{v}^{\overline{\delta}}/\overline{x}^{\overline{\delta}}]^{d}=^{ef}\overline{v}^{\overline{\delta}}$

the rest being the standard. Since tbere are infinitely many names in eacb type, we can always find
a fresh name for each type, and this makes substitution well-defined. We will mainly use simultane-
ous substitutions, written $\{\tilde{v}^{\tilde{\delta}}/\tilde{x}^{\dot{\delta}}\}$. We will omit type superscripts as in expressions, but even when
we do so, we always assume that $tl\iota e$ substitution is well-typed. σ_{id} denotes the identity operation.
Sequential composition of σ and $\sigma’$, written $\sigma;\sigma’$, denotes the result of firstly performing σ as far as
the substituted names do not collide with those of $\sigma’$, which means, under Convention 2.2, simply
$P(\sigma;\sigma’)^{d}=^{ef}(P\sigma)\sigma’$. The following is immediatc from the definition of substitution.

PROPOSITION 2. 3 If P is a $t\prime’rmf\prime_{1\Gamma 7\prime}P[\tau\prime^{b}/x^{\delta}]i.s$ also a ferm. Srmilarly. if \mathcal{V}^{δ} is an action, then
$\overline{\mathcal{V}[v^{\delta’}/x^{\delta’}]}$is also an a ctiori.

So substitution is a well-typed operation. Tben we define α -convertibility, written \equiv_{α} , in the standard
way. Substitution and α-convertibility are $natUrally$ restricted to those terms under Convention 2.2.

2. 4. Reduction (1). Reduction represents the fundamental mechanism of computing in our
formalism. Since an action is $con\iota positio\iota 1$ of several fine-grained operations in general, we need to
decompose the definition of reduction rules into that for actions and that for terms. The reduction for
actions: $\mathcal{V}\mathcal{V}’\sim\sigma\cdot\sigma’\cdot P$ means that, when V interacts with $\mathcal{V}’$, one term and two substitutions
are generated. Substit n tions are used to $n\iota aketl\iota e$ receipt of the values effective in actions sequentially
composed later. The notion is consistent with the binding idea discussed in 2.3. The definition

65

of reduction starts from how two constants interact together. Let us assume that, for each pair of
constant actions witb d ual types, we have a rule in the form:

(const) $c(\tilde{x})^{C}c’(\overline{\tau}/)^{\overline{C}}\sim\sigma_{cd}\cdot\sigma_{id}\cdot P$

where all names are distinct and $\mathcal{F}\mathcal{N}(P)\in\{\tilde{x}\tilde{y}\}$. One example is

$N^{nat}succ(x^{\delta})^{\overline{nat}}\sim\sigma_{id}\cdot\sigma_{il}\cdot!x:N^{\prime nat}$

where $N’$ denotes the successor to N . The set of rules for reduction of actions follow.

(pass) $\triangleleft\prime^{\delta}\triangleright\overline{x}^{\overline{\delta}}\sim\rangle$

$\sigma_{id}\cdot[v/x]\cdot\Lambda$ (gen) . $P^{1}.Q^{1}\sim\sigma_{1d}\cdot\sigma_{id}\cdot(P, Q)$

(inl) $\frac{\mathcal{V}_{1}^{\delta_{1}}\mathcal{V}^{\overline{\delta_{1}}}\sim\rangle\sigma_{1}\cdot\sigma’\cdot P_{1}}{\mathcal{V}_{1}\ \mathcal{V}_{2^{\delta_{1}\ \delta_{2}}}inI(\mathcal{V})^{\overline{\delta_{l}}\oplus\overline{\delta_{3}}}\sim\sigma_{1}\cdot\sigma\cdot P_{1}}$ (inr) $\frac{\mathcal{V}_{2^{\delta_{-}}’}\mathcal{V}^{\overline{\delta_{?}}}\sim\sigma_{2}\cdot\sigma\cdot P_{2}}{\mathcal{V}_{1}\ \mathcal{V}_{2}^{B_{1}\ B_{2}}inr(\mathcal{V})^{\overline{\delta_{1}}\oplus\overline{\delta_{2}}}\sim\sigma_{2}\cdot\sigma\cdot P_{2}}$

(seq) $\frac{\mathcal{V}_{1}^{\delta_{1}}\mathcal{V}_{1}^{\prime\overline{\delta_{1}}}\sim\sigma_{1}\cdot\sigma_{1}’\cdot P\mathcal{V}_{2}\sigma_{1}^{\delta_{2}}.\mathcal{V}_{2}’\sigma_{1}^{\prime\overline{\delta_{\underline{2}}}}\sim\sigma_{2}\cdot\sigma_{2}’}{\mathcal{V}_{1};\mathcal{V}_{2^{\delta}}\mathcal{V}_{1};\mathcal{V}_{2}^{\overline{\delta}}\sim\sigma_{1};\sigma_{2}\sigma_{1};\sigma_{2}\cdot(P,Q)}Q$ (exc) $\frac{\mathcal{V}_{1}^{\delta}\mathcal{V}_{2^{\overline{\delta}}}\sim\sigma_{1}\cdot.\sigma_{2}\cdot.P}{\mathcal{V}_{2^{\overline{\delta}}}\mathcal{V}_{1}^{\delta}\sim\sigma_{2}\sigma_{1}P}$

Note that reduction rules are provided only for a pair of actions with $du_{\epsilon}\sqrt{}$ types. Since we do not need
the substitution for top level actions (i.e. actions which occur in a term without being composed with
another), we will sometimes write $\mathcal{V}_{1}^{\delta}\mathcal{V}_{2}^{\overline{\delta}}\sim P$, omitting substitutions. Easily we get:

PROPOSITION 2. 4 Given two actions \mathcal{V}_{1}^{δ} and $\mathcal{V}_{2^{\overline{\delta}}}$, th ere is always a unique P such that $\mathcal{V}_{1}^{\delta}\mathcal{V}_{2^{\overline{\delta}}}\sim P$.

2. 5. Reduction (2). We next define $st\iota\cdot nc\uparrow,1lal$ rules over terms, used to define reduction relation.
The structural congruence. denoted \equiv , is tlie smallest congruence relation induced by the following
rules.

(1) $P\equiv Q$ (if $P\equiv_{\alpha}Q$) (4) $|x|P,$ $Q\equiv|x|(P, Q)$ $(x,\overline{x}\not\in F\mathcal{N}(Q))$

(2) $(P, Q).R\equiv P$. (Q. R) (5) $P,$ $Q\equiv Q,$ P

(3) P. $\Lambda\equiv p$ (6) ! $P\equiv P$, ! P

Let us write the sequence of concurrent composition of prime terms and replications, $\partial,$
$\partial’$, etcetera.

The main definition follows.

DEFINITION 2. 5 One-step reduction, $denotedarrow$. is the smallest relation over terms generated by:

(com) $\frac{\mathcal{V}_{1^{\delta}}\mathcal{V}_{2^{\overline{\delta}}}\sim P}{|\tilde{w}|(\partial,a:\mathcal{V}_{1}^{\delta},\overline{a}:\mathcal{V}_{2^{\overline{\delta}}},\partial)-arrow|\overline{w}|(\partial,P,\partial’)}$ $(st_{l11}ct)\frac{P_{1}’\equiv P_{1}P_{1}arrow P_{2}P_{2}\equiv P_{2}’}{P_{1}arrow P_{2}’}$

We also $definearrow asarrow*U\equiv$. By Proposition 2.3, we immediately have:

THEOREM 2.6 If P is a term and $Parrow P’$, th en $P’$ is also a term (in the same universe).

Some examples of terms and tbeir reduction follow.

EXAMPLE 2. 7

(i) Constant. Let the arity of succ(x) be [nat] and assume the rule which has been already mentioned
in 2.4. Then:

$(!a:3^{nat}. \overline{r\iota}:\backslash \cdot\cdot\iota\iota r^{\backslash }c(x)^{\overline{nat}})$ -.-, $(!a:3^{nat}, x:4^{nat})$

(ii) Bi-direction nl in $t_{Cr(1(}\cdot fio\tau|$. Note (1 comes back to $tl\downarrow e$ agent on the left. If one allows only one-
directional $v_{C}\sqrt 1\iota e$ passing, the result is wbat we can see in Polyadic π-calculus [18].

($a:\triangleleft?:\triangleleft 1l_{\backslash }\triangleright\overline{r};$.F. $\overline{a}:\triangleright^{-}",\cdot;\triangleright\overline{y};\triangleleft x;.Q$) $-arrow(P\{\gamma f/x\}, Q\{vw/xy\})$

66

(iii) Branching and term generatio71. Let us assume the following terms.

true (b)
$dcf=$ $b:|n1(.\Lambda)^{1\oplus 1}$ dupl (bx)

$def=$ $b:[.true(x)]\ [.false(x)]^{1\ 1}$

false (b)
$def=$ $b:inr(.\Lambda)^{1\oplus 1}$ and$(b_{1}b_{2}z)$

$def=$
b_{1} : [.dupl $(b_{2}z)$] $\ [.false(z)]^{1\ 1}$

$not(b_{1}b)$
$def=$

b_{1} : $[. fal\backslash \backslash e(b)]\ [.true(b)]^{1\ 1}$ or $(b_{1}b_{2}z)$
$def=$

b_{1} : [.true (z)] $\ [.dupl(b_{2}z)]^{1\ 1}$

Then we have, for example:

(true $(x),$ $false(y),$ $or(\overline{xy}z)$) $arrow(true(x), false(y),$ $true(z))$

Note we can define parallel or by: $por(xyz)^{d}=^{ef}(or(xyz), or(yxz))$.
(iv) Buffer (1). buffer$(a : x_{1}..x_{n})$ denotes a buffer with the oldest value x_{1} and the newest value

x_{n} , with the interaction port a . The left branch is for “read” request, while the right branch
responds to the “write“ request. If it is empty, it would tell that to the user. Note how exception
handling is elegantly embedded in the branching structure.

$l\prime uffe,r(a:\epsilon)$
$dcf=$

$a:[inl(.bt/ffc^{J}r_{0}(a;\epsilon))]\ [\triangleright x.buffer(a;x)]$

buffer$(a:v\grave{x})$
$dcf=$

$a:[nr(.buffer(a;\tilde{x}))]\$ [$\triangleright w.buffer(a$; vtw)]

(v) Buffer (2). We define tbe same behaviour as amalgamation of small parts. We can verify they
are in fact behaviourally equivalent using the typed bisimilarity later. We first define two parts,
an empty cell and a usual cell.

$em_{1^{J}}fy(a)$
$dof=$

ι : $[in1(.e?r|pty(a))]\$ [$\triangleright x.|n|$ (cell(axn), empty$(n))$]

cell(avn) $(1f=^{\backslash }$

$a:$ [$inr(\triangleleft n.\overline{n};inl$([. empty$(a)]\ [\triangleright y$. cell(ayn)]))] &
[$\triangleright y$.(\overline{n} : $inr(\triangleleft y$, cell(avn)))]

The new buffer is defined as:

$neu’ buffer(a:e)$ $def=$ empty(a)

$nevbuffer(a:v\tilde{x})$ $def=$
$|n|(cell(avn), newbuffer(n:\tilde{x}))$

In the last three examples, ‘&’’ (as an action constructor) roughly plays a role of usual summation
in process calculi, i.e. to $(x_{1})1t^{\backslash }.\backslash S$ brauching of behaviour. One essential difference lies in that type
abstraction for summation may not be possible. $Tl\downarrow is$ is related with local bebaviour of the branching
construct. At the $S\dot{\subset}t\mathfrak{U}le$ time. we cannot transform concurrent composition into &(as in so-called
“expansion law”), which is another crucial difference from the $gener_{\epsilon}\sqrt{}$ summation.

3 Transition and Bisimulation
3. 1. Labels and Instantiation. We introduce labelled transition relation in the following, to define
usual bisimilarity for processes in the typed set,ting2. As in reduction, one transition may represent an
amalgamation of many $S111_{C}\sqrt{}$[iuteractions.

$2While$ it is possible to define bebavioural $\aleph C^{\backslash }11\downarrow\iota 1t$tics based on reduction relation, tltat is, without relying on labelled
transition, as in $[12, 17]$. we clo not clo so $i\ddagger\iota$ tltis paper, since these $metl\downarrow odsale$ fairly new, and labelled transition
relation iu tbe typed setting itself is an important subject of study. We note tbat the semantics we develop in this
section conforms to $|$) $ot1\iota$ of the $ec\{niv\triangleleft encc^{3}si_{1}\iota ducc\backslash .d$ by two means developed in $[12, 17]$.

67

There are two kinds of labels: one is τ , which means that interaction takes place within a term
and coincides with reduction. Anotber takes a form $a:\mathcal{E}$, wbere \mathcal{E} is called an action instantiation.
It denotes an interaction with the outside a term engages in. The grammar to define the set of action
instantiations follows3.

\mathcal{E} $::=*|c(\overline{x})|\uparrow x|\downarrow x|\mathcal{E}_{1}$; $\mathcal{E}_{2}|[\mathcal{E}]\ |\ [\mathcal{E}]|inl(\mathcal{E})|inr(\mathcal{E})$

where $c(\tilde{x})^{C}$ is a constant action. The relationship between the action expression and these instantia-
tions is given by the notation:

$\mathcal{V}^{\delta}\sim^{e}\sigma\cdot P$

which reads “V is instantiated into \mathcal{E} and generates σ and $P’$. We first assume that the rule (const)
exists for each pair of two constant symbols with dual types4.

(const) $\frac{c(\tilde{x})^{c}c’(\tilde{y})^{\overline{c}}\sim P}{c(\tilde{x})^{C}\sim\sigma_{id}\cdot PC(\tilde{x})C(\dot{y})}$

For other actions we have the following rules.

$(i_{11})(\triangleright x^{\delta})^{\downarrow\delta}\sim^{\delta}\downarrow v\{v/x\}\cdot\Lambda$ (out) $(\triangleleft\prime^{\delta})^{\uparrow\delta}\sim^{v^{\delta}}\Lambda\cdot\sigma_{id}\uparrow$ (gen). $P^{1}\sim^{*}\sigma_{id}\cdot P$

$(seq)\frac{\mathcal{V}_{1}^{\delta_{1}}\sim\sigma_{1}\cdot P_{1}\mathcal{V}_{2}\sigma_{1}^{\delta_{2}}\approx\rangle\sigma_{2}\cdot P_{2}\epsilon_{1}c_{l}}{\mathcal{V}_{1};\mathcal{V}_{2^{\delta_{1}:\delta\underline{\circ}}}\sim^{:}\sigma_{1\backslash }\cdot\sigma_{2}\cdot(P,Q)\mathcal{E}_{1}\mathcal{E}_{2}}$ (with(1)) $\frac{\mathcal{V}^{\delta}\sim^{\mathcal{E}}\sigma\cdot P}{\mathcal{V}\ \mathcal{V}^{\delta\ \delta}’\sim\sigma\cdot P[e]\ }$

(with (r)) $\frac{\mathcal{V}’\delta^{\prime,\epsilon}\sim’\sigma’\cdot P’}{\mathcal{V}\ \mathcal{V}^{\delta\ \delta}\sim^{[\mathcal{E}’]}\sigma’\cdot P’\ }$

$(I)1\iota\iota s(1))\frac{\mathcal{V}^{B}\sim^{\mathcal{E}}P\cdot\sigma}{inI(\mathcal{V})^{\delta\oplus B’}\sim^{\mathcal{E})}P\cdot\sigma in1t}$ $(p1\iota\iota s(r))\frac{\mathcal{V}’\delta^{\prime\epsilon}\sim’\sigma’\cdot P’}{inr(\mathcal{V}’)^{\delta\oplus\delta^{\prime inr}}\sim^{(\mathcal{E})}\sigma’\cdot P’}$

As in the reduction relation, for top level actions we write $\mathcal{V}^{\delta}\sim^{\mathcal{E}_{\rangle}}$

P omitting σ . The following is
proved by induction on tlte inference rules presented above.

PROPOSITION 3. 1 $Sul^{J}pose\mathcal{V}^{\delta}\sim^{\mathcal{E}}\sigma$. P. Then σ is well-typed and P is a term.

3. 2. The transition system and bisimilarity. Now we define transition relation $arrow^{l}$, whose
element is in the form of { $P,$ $l,$ $Q\rangle$, where P and Q are typed terms in a certain universe and l is a
label, written $P\underline{\iota}Q$, as follows. Z

(inter) $\frac{\mathcal{V}^{\delta}\sim P\epsilon}{|\tilde{w}|(\partial,a:\mathcal{V}^{\delta},\partial’)|\tilde{w}\backslash \tilde{x}|(O,P_{\backslash }\partial’)a\underline{:(\dot{x})}\mathcal{E}}$
$(c0m)\frac{\mathcal{V}_{1}^{\delta}\mathcal{V}_{2^{\overline{\delta}}}\sim P}{|\overline{w}|(\partial,a:\mathcal{V}_{1}^{\delta},a:\mathcal{V}_{2^{\overline{\delta}}},\partial’)\tauarrow|\tilde{w}|(\partial,P,\partial)}$

(struct) $\frac{P_{1}’\equiv P_{1}P_{1}arrow P_{2}P_{2}\equiv P_{2}’l}{P_{1}arrow P_{2}l}$

where, in (inter), we assume $\{\tilde{x}\}\in\{\tilde{w}\}\cap \mathcal{F}N(\mathcal{E})$. Here names in (\tilde{x}) are binding occurrences. Now
the following tells us that the transition rules above are essentially typed; the result is immediate from
Proposition 3.1.

THEOREM 3. 2 If $Parrow^{l}P’$ an $dPr.s$ a term. th en $P’$ is also a term in th e same universe.

3We note that, if we equate e.g. V;.A or $\Lambda:Vwitl\iota V,$ $1\downarrow cl\iota$ ce $\delta;1=1;\delta=\delta$, as suggested in 2.3, we can have a more
abstract notion of labels, ie . $*.\epsilon=\mathcal{E};*=\mathcal{E}$. $w1_{1}ic1\downarrow$ in $t_{11}n$ is reflected on bisimilarity to induce a more general but still
sound semantic relation. Foz siltl\downarrow)licity. tltis 1) $\iota t1\iota$ is not 1) $11\aleph n(!c1$ ltere.

4In the rule tlte ge $lCl\cdot i\iota tiolt$ of tbe whole term P is sound since τ-transition is defined $witl\iota out$ labelled transition.

68

Thus, in our formalism, all terms which reside in a universe would always compute and interact within
that universe.

We now formulate typed weak bisimilarity based on the labelled transition relation. $Below\Rightarrow^{l.}$ is
defined as $arrow ifl=\mathcal{T}$, else as $-arrow\underline{l}arrow$.

DEFINITION 3. 3 P_{1} and Q_{1} are $u’ eakly$ bisimilar (in the concerned $u\dot{m}s$) $erse$), denoted by $P_{1}\approx Q_{1}$,
if there exists a symmetric relation $\mathcal{R}0\iota\ell r$ terms with $\{P_{1}, Q_{1}\}\in \mathcal{R}$, such that, for any $\{P,$ $Q\rangle$ $\in \mathcal{R}$

we have, whene$\tau’ erParrow^{l}P’vl$} $erc\mathcal{B}\mathcal{N}(l)$ does not occur free in Q , for some $Q’$, $Q\Rightarrow^{i}Q’$ and
$\langle P’, Q’\rangle\in \mathcal{R}$.

The notion is well-defined by Thcorcm 3.2. As to the bisimilarity, we have the following. The proof
basically proceeds as in usual name $p_{\dot{c}}\iota\backslash sing$ calculi (see [15, 9, 12]) and is omitted.

THEOREM 3. 4 $\approx is$ a cor}($/r(lt^{}rt(r!$ rcla f/on .

Note the notion of congruence here is in terms of typed formation rules given in 2.2. With the theorem,
we can lega\iota\cdot d\approx as providing the $eq_{1\subset}\sqrt ity$ notion for typed processes.

3. 3. Embedding simply typed β-theory. As an example application of typed equality by \approx ,
let us see how the typed β-theory over typed λ-terms can be embedded $in\approx$, using Milner’s encoding
of lazy λ-calculus [16]. We leave the definition of a simply typed λ-calculus to e.g. [2]. Naturally we
take the explicitly typed system. For simplicity only one constant type NAT is assumed and we write
$\alphaarrow\beta$ to denote the functional type whose domain is α and co-domain is β . Term formation starts
from variables and constants $(e.g$. natural numbers and successor $function)^{5}$, and written e.g. M^{α} ,
$(\lambda x^{\alpha}.M^{\beta})^{\alphaarrow\beta}$, etcetera. First we assumc $tlle$ following embedding of types:

(i) $NAT^{\cdot}def=$ nat.

(ii) $(\alphaarrow\beta)$
$df=^{(}\downarrow(\downarrow\alpha)_{\backslash }\cdot\downarrow\overline{/}$; 1,

Note how vital is $tl\iota e$ existence of constant types in tlzis mapping. We suspect that the reason that
the similar construction has not been done in the sorting discipline is precisely because they lack the
notion of constant types (and constant ac $tio\iota 1S$, for that matter) in $tl\iota eir$ framework. Now it is clear,
for each function$<\sqrt{}$ type α , there exists its ilnage α in T. To conform to the structure of the encoding,
we assume a universe in $w1_{1}ic11$. for eacb functional variable x^{α} , we have $x:\downarrow\alpha$. The mapping follows.
Actually the mapping maps t,he tuplc { M^{α} . u^{α}) to a certain term in the universe. Below we use the
name u throughout bu t it should be thought to denote sonle name with an appropriate type.

(i) $\mathbb{I}^{N^{NAT}]u}dcf=u:N^{NAT}$ and $[st\iota cc^{NATarrow NAT}Iudef=u:\triangleright\overline{xy}.x:succ(y)^{(NATarrow NAT)}$

(ii) $\beta x^{\alpha}Judcf=\overline{x}$ $:\triangleleft u^{\uparrow\alpha}$

(iii) $\beta(\lambda x^{\alpha}.M^{\beta})^{\alphaarrow\beta}Iud\epsilon f=u:(\triangleright\overline{xy}.[M^{\beta}Iy)^{(\alphaarrow\beta)}$

(iv) $[(M^{\alphaarrow\beta}N^{\alpha})^{\beta}Iudcf=|?nl|(\beta M^{\alphaarrow\beta}Jm, \overline{m}:\triangleleft lu.!l:\triangleright\overline{z}.[N^{\alpha}Iz)$.

Note that a λ-term which inhabits a certain type is mapped to a term which just inhabits the universe.
Note also, however, that the free names in the encoding owns the corresponding types of a A-term and
free valiables.

Now one crucial fact is tbat, if two simply typed λ-terms are in distinct normal forms, their en-
codings are never bisimilar to each other, which is easily proved by the induction of the structure of
the terms. We can also show that $[((\lambda x^{\alpha}.M^{\beta})^{\alphaarrow\beta}N^{\alpha})^{\beta}Ju\approx I^{M^{\beta}[N^{\alpha}}/x^{\alpha}]Ju$ for some appropriate

s We note tbat we sbould $cm\cdot||/$ a constan t function \langle if it takes multiple $alg\iota lnelt$ ts) before translation, since otherwise
we should introduce multi-party $iI\downarrow$ ter $\iota e\cdot tion$ wlticb $Ccllll\iota ot$ be represented as actions in our calculus. This does not let
us lose any genelality since the cm rying $wl\iota ic1_{1}$ ret pects the opelatiol\iota bebaviou r of functions is always possible. For
example, “add” is split i_{l1} to $a(I_{(}\dagger_{1}$ $a\iota\downarrow(1$ $a(I_{(}IN^{\cdot}\cdot$ in tbe nsn al way.

69

u . Then, using strong normalizability and determinacy [16] of the encoded terms, as well as their
invariance of bisimilarity under reduction. we can prove:

PROPOSITION 3. 5 $M^{\alpha}=\rho N^{\alpha}$ iff
\cdot

$[M^{\alpha}\mathbb{I}u\approx[N^{\alpha}I^{u}\cdot$

Finally we note that, though the embedding may be satisfactory equationally, it may not be so
semantically. This is because, in the present formulation of types, a term inhabits a universe, and a
universe is semantic$<\sqrt 1y$ too flat; in fact a llatul\cdot c$\sqrt{}$ computational content of our type scheme is only that
$\delta\overline{\delta}\sim 1$. The equational embedding nevertheless tells us that there would be room for refinement
of the present type universe, which in effect enables semantically satisfactory mapping of functional
types. The solution should be left to another occasion.

4 Untyped Terms and Type Inference
4. 1. The untyped terms. Practically it is convenient to be able to reconstruct typed terms
from untyped terms. Tlze construction also illuminates how typable terms differentiate from untypable
terms. We first define the syntax of untyped terms.

Let us be given the set of (untyped) names, again ranged over $a,$ $b,$ $c,$ \ldots and $x,$ $y,$ $z,$ \ldots . We assume
an irreflexive, bidirectional mapping over names, written \overline{a}, denoting the co-name of a name in the
untyped setting. Then the set of untyped terms are given as follows. As in $t1_{1}e$ explicitly typed system,
we let $P,$ $Q,$ $R,$

\ldots range over tbe untyped terms. $c(\tilde{x})$ is a constant in the calculus, with a distinct
arity (here a $nunle\iota\cdot al$) for each constant symbol.

P $::=$ a : $\mathcal{V}|$ P. $Q||x|P|!P|\Lambda$

\mathcal{V} $::=$ $c(\grave{x})|\triangleleft\prime\prime|\triangleright\tau’|$. $P|\mathcal{V}_{1}$; $\mathcal{V}_{2}|[\mathcal{V}_{1}]\ [\mathcal{V}_{2}]|inl(\mathcal{V})|inr(\mathcal{V})$

The notions of bindings. the induced syntactic constraint on branching actions, substitution, and
α-conversion are defined as in 2.3 except we do not care about type compatibility of names. Among
others, the naming convention in Convention 2.2 is again assumed. Starting from axioms for constants,
\sim and \equiv are ba.sed on the same definition, except $for\sim\rangle$ we omit all type annotations. We have at
most one rule for each combination of constant actions in the form:

$c(\tilde{x})c(\tilde{y})\sim P$

Then reduction relation is defined as follows.

(com) $\frac{\mathcal{V}_{1}\mathcal{V}_{2}\sim P}{|\tilde{w}|(\partial,a:\mathcal{V}_{1},\overline{a}:\mathcal{V}_{2},\partial’)-|\tilde{w}|(\partial,P,\partial’)}$ (struct) $\frac{P_{1}’\equiv P_{1}P_{1}arrow P_{2}P_{2}\equiv P_{2}’l}{P_{1}arrow P_{2}l}$

Thus when two prime ternis with complementary names and complementary actions meet together,
reduction can take place. One essential fact in the untyped setting is that it is possible to have an
incompatible pair of $prin$)e terms, even with complementary names. This we define in the following.

DEFINITION 4. 1 $P\in$ ERR, read $Pconta\uparrow 71S$ a possible run-time error. if there is Q such that
$Parrow Q\equiv|\tilde{w}|(\partial, a:\mathcal{V}, \overline{a}:\mathcal{V}’.\partial’)$ u)$1teretl_{1}ere$ is no R such that $\mathcal{V}\mathcal{V}’\sim*R$.

One example of a terlll with error is: $(a : \triangleleft n, \overline{a} : \triangleright xy.P, a : 3)$. Later the notion becomes
important in the context of $t1\iota()$ typing system for untyped terms.

Given typed terms. we can strip off t,ype annotation from them, while preserving the original
operational behaviou r . The following $:$: ‘ function specifies this.

(i) Erase$(a^{\delta})=a,$ $Erase(c(\overline{x})^{C})=c(\tilde{x})$. $E_{7}\cdot ase(\triangleleft v^{\uparrow\delta})=\triangleleft\tau’,$ $Erase(\triangleright v^{\downarrow\delta})=\triangleright v$, and Erase $(.P^{1})=$

.Erase (P) .

70

(ii) Erase $(\mathcal{V}_{1} ; \mathcal{V}_{2^{\delta_{1};b_{2}}})=Erase(\mathcal{V}_{1}^{\delta_{1}});Erase(\mathcal{V}_{2^{\delta_{2}}}),$ $Erase(in1(\mathcal{V})^{\delta\oplus\delta’})=in1(Erase(\mathcal{V}^{\delta}))$,
Erase $(inr(\mathcal{V})^{\delta\oplus\delta’})=inr(Erase(\mathcal{V}^{\delta’}))$, and Erase $(\mathcal{V}_{1}\ \mathcal{V}_{2}^{[\delta_{1}]\ [\delta_{2}]})=[Erase(\mathcal{V}_{1}^{\delta_{1}})]\ [Erase(\mathcal{V}_{2^{\delta_{2}}})]$.

(iii) Erase $(a : \mathcal{V}^{\delta})$ $=$ a : Erase (\mathcal{V}^{δ}) , Erase $((P, Q))=(Erase(P), Erase(Q))$, Erase$(|x|P)=$
$|x|Erase(P),$ $Erase(!P)=!Erase(P)$, and Erase $(\Lambda)=\Lambda$.

The following holds $\subset\sqrt most$ by definition. We assume that rules for (untyped) constant actions coincide
with those in the explicitly typed system.

PROPOSITION 4. 2 Let P and Q be explicitly typed.

(i) If $Parrow Q$ then Erase $(P)arrow E\tau ase(Q)$.
(ii) If Erase $(P)arrow R$ th en th ere is some Q such that $Parrow Q$ and Erase $(Q)\equiv R$.

In the present exposition we will not go intO detailed study of untyped transition relation and untyped
bisimilarity. Nevertheless it is wortb noting that tlze property which holds in the case of reduction
relation as stated in the above proposition does not bold in the case of (untyped) transition, since e.g.
b : $\triangleright xy$.(\overline{x} : 2, \overline{y} : succ(z))

$\underline{b:\downarrow c}c\rangle$ (c : 2, c : succ(z)) where $t1_{1}e$ left-hand side is typable while the
right-hand side is not. Typing labels solves the issue, as discussed in [10].

4. 2. Type schemes. Inferring types of an untyped term is to find the universe in which the term
can safely reside. Actually it suffices to find a portion of a universe which is in harmony with the given
term structure. No specialty arises in the formulation of the type inference system in comparison with
those for functional $types-i_{1}\downarrow$ fact we only have multiple name-type pairs in conclusion in stead of
multiple variable-type pauirs in assumptton6. Nevertheless the construction makes the essential idea of
concurrency types (multiplicity of interfaces) explicit, and gives us additional information about the
type discipline of the present system as shown in the next section.

We extend the syntax of types with type variables, ranged over by $\rho,$
$\rho’\ldots$ To each type variable

another (different) type variable corresponds to, called co -nariable, written $\overline{\rho}$. We set $\overline{\overline{\rho}}=\rho$ always.
Then

$\alpha;;=\rho|C|1|$ $\downarrow\alpha|$ $\uparrow\alpha|\delta;\delta’|\delta\ \delta’|\delta\oplus\delta’$

gives the set of type schemes. a : α (resp. (a) : α) stands for assignment of a type to a free (resp.
bound) name. The notion of co-types is defined as before. A finite set of such assignments, without
collision between free names and bound names, is called a typing, $w\iota\cdot itten\Gamma,$ $\Delta,$ Θ etcetera. Intuitively
a typing denotes assignment oi types to names occurring in a term. $\mathcal{N}(\Gamma)$ denotes the set of names
occurring in Γ . Several definitions $co\iota 1cer1\iota i_{1)}g$ typings follow.

(i) A typing Γ is consisfent. written $\Gamma\in$ Con, if names in Γ does not denote incompatible
$operatio\iota lS$. $Tl\iota at$ is, $\Gamma\in$ Con iff $a:\alpha\wedge a$: β implies $\alpha=\beta$ and a : a A $\overline{a}:\beta$ implies $\alpha=\overline{\beta}$,
similarly for bound names.

(ii) Relatedly two typings are compa tible, written $\Gamma_{\wedge}^{\vee}\Delta$, if a common name in two predicates does
not denote incompatible operations, i.e. $a:\alpha\in\Gamma$ and $b:\beta\in\Delta$ implies $\{a;\alpha, b:\beta\}\in Con$

where a and b are the same or dual, and similarly for bound names.
(iii) Finally, since $a:\alpha$ and $\overline{a}:\overline{\alpha}$ are essentially equivalent, we define the notion of normal forms

of typings. We write $|\Gamma|$ for a normal form of Γ , defined by: $\{[a];\overline{\alpha}|[a]:\alpha\in\Gamma\}\cup\Gamma$ where
$[a]$ may be a or (a) .

4. 3. Typing rules. Now we are reacly to define the type inference system. It deals with two kinds
of sequents. The main sequent is in the forn) $\vdash P\succ\Gamma$, which reads: the statement $P\succ\Gamma$ is
derivable. The subject and tbe predic: $atr^{}$ of the sequent are respectively P and Γ . Then the auxiliary
sequent is in the $fo\iota\cdot n\tau$ Γ $\vdash \mathcal{V}$: α . which reads: an auxiliary statement V : α is derivable under
the assumption Γ . The subject. the l) $rr\prime d\dot{?}cate$, and tbe assumption of tbe sequent are $\mathcal{V},$ α and Γ,

6The sequent form was presented $i_{1}\iota$ itidly by $t1\iota e$ an $t1\iota 01$ in MFPS 1992, Oxford, England.

71

respectively. Now we give rules for typing terms. Rule (A) are for typing of terms. Rule (B) are for
typing oi actions. $\Gamma(\grave{x})$ denotes names in (\tilde{x}) occur bound. Relatedly we have a notation Γ/\tilde{x} , which
denotes the result of taking away prime statements with subjects or their conames in \tilde{x} , from Γ ; they
are used to eliminate names which occur bound from type expressions. Note, in the rules below, we
are working under Convention 2.27.

RULE (A)

(prime) $\frac{\Gamma(\tilde{x})\vdash \mathcal{V}:\alpha}{\vdash a:\mathcal{V}\succ a:\alpha,\Gamma/\overline{x}}(\{a:\alpha\}_{\wedge}^{\vee}\Gamma/\tilde{x})$ (parallel) $\frac{\vdash P_{1}\succ\Gamma\vdash P_{2}\succ\Delta}{\vdash P_{1},P_{2}\succ\Gamma,\Delta}(\Gamma_{\wedge}^{\vee}\Delta)$

(scope) $\frac{\vdash P\succ\Gamma}{\vdash|x|P\succ\Gamma/x}$ (nil) $\overline{\vdash\Lambda\succ}-$ (weak) $\frac{\vdash P\succ\Gamma\Gamma\subset\Delta\in Con}{\vdash P\succ\Delta}$

RULE (B)

$(\mathcal{V}\uparrow)\overline{x:\alpha\vdash^{-}\triangleleft x:\uparrow\alpha}$ $(\mathcal{V}\downarrow)\overline{(x):\alpha\vdash^{-}\triangleright x:\downarrow\alpha}$

(V;) $\frac{\Gamma\vdash \mathcal{V}_{1}:\alpha_{1}\triangle\vdash \mathcal{V}_{2}:\alpha_{2}}{\Gamma,\Delta\vdash \mathcal{V}_{1};\mathcal{V}_{2}:\alpha_{1};\alpha_{2}}(\Gamma_{\wedge}\Delta)$ (V&) $\frac{\Gamma(\tilde{x})\vdash \mathcal{V}_{1}:\alpha_{1}\Delta(\tilde{x})\vdash \mathcal{V}_{2}:\alpha_{2}}{\Gamma,\Delta\vdash[\mathcal{V}_{1}|\ [\mathcal{V}_{2}]:\alpha_{1}\ \alpha_{2}}$

$(\mathcal{V}\oplus_{l})\frac{\Gamma\vdash \mathcal{V}:\alpha}{\Gamma\vdash in1(\mathcal{V}):\alpha\oplus\beta}$ $(\mathcal{V}\oplus_{f})\frac{\Gamma\vdash \mathcal{V}:\beta}{\Gamma\vdash inr(\mathcal{V}):\alpha\oplus\beta}$

In addition, for each constant, we $asstlU$) e a rule of the form: $\Gamma\vdash c(\tilde{x})$: C where $\mathcal{N}(\Gamma)=\{\tilde{x}\}$, all
names in \tilde{x} are distinct and Γ consistent. If a sequent $\vdash P\succ\Gamma$ can be inferred by the above rules,
then the sequent is said to be $deri_{I)}a1_{J}\downarrow\rho$, and P is $1l$ell-typed under a typing F. Examples of derivable
sequents and untypable terms follow.

(i) $\vdash u:3\succ u$: nat.
(ii) $\vdash u:\triangleright xu’.x$: $suc\cdot c(u’)\succ u:\downarrow(\downarrow nat)\downarrow\overline{nat}$.
(iii) Neitber $(u:2, u:succ(x))$ nor $a:\triangleleft a$ are typable.

4. 4. Basic syntactic properties. As said, the basic scheme oi the type inference is an extension
of the type inference for $fi_{111}ction_{c}\sqrt{}$ types in many aspects (except the duality notion), and the system
we formulated in the previous subsection enjoys the syntactic properties quite similar to what we find
in typing systems for functional types. Two essential results in this regard are presented below.

The first one is the subject reduction (cf. Theorem 2.6), which says that reduction does not change
its potential interface. We assume tliat all reduction rules for constant actions are well-typed, i.e. if we
have $c(\tilde{x})c’(\tilde{y})\sim P$, then $\Gamma\vdash c(\overline{x})$: $C,$ $\Delta\vdash c’(\tilde{y})$: Z7 , $\vdash P\succ\Theta$, and $\Gamma\cup$ A $\cup\Theta\in$ Con.
Then we have:

THEOREM 4. 3 (Subject reduction) $\vdash P\succ\Gamma\wedge Parrow Q$ \Rightarrow $\vdash Q\succ$ F.

The proof proceeds by induction on the type derivation, where substitution of names poses a mild dif-
ficulty. We omit the details. The theorem operationally assures invariance of interface, and is tightly
coupled with the lack of $rm1$ time error8. On the latter point, we have the following, which is immediate
from subject reduction.

COROLLARY 4.4 If $\vdash P\succ\Gamma$ th en $P\not\in ERR$.

7Strictly speaking, we do not need tlte elimination of bound names under the conveution; however, if we want more
liberal assumption in $tl\iota e$ binding, tbe distinction between free and bound names in typing becomes indispensable (this
relates to tlle notion of assigning types to the potential interface points of the term), so $t1\iota$at we still keep the idea.

8Note if we are witbout the (weak) rule in Rule (A), the property becolnes weaker tban the above since free names
will be lost during tbe red n ction. Since typing represents potential interface of terms, tlte difference is not essential.

72

Another important property is that $tl\downarrow c$ typing problem is essentially computed by unification, as in
the usual systems for functional types. Let a substitution $oi\alpha$ for ρ in Γ be the result of substituting
α for all occurrences $oi\rho$ in Γ simultaneously, written $\Gamma[\alpha/\rho]$.

THEOREM 4. 5 (Principal typing [6, 14]) Let a substitution instance of Γ be a result of applying substi-
tutions zero or more times to Γ . Suppose P is well-typed. Then there is Γ such that $\vdash P\succ\Gamma$ where,
for any $\Gamma’$ with $\vdash P\succ\Gamma’,$ Γ

‘ is a substitution instance of F. Moreover such Γ can be found effectively.

The proof uses the most common type scheme between two schemes and checks each inference rule.
In [21], an algorithm which efficiently computes the most general type scheme for a restricted sys-
tem, which is essentially Milner’s polyadic π-calculus in [18], is presented and proved to be correct
with respect to its typing system. The algorithm is easily adaptable to the system in the present paper.

4. 5. Relationship with explicitly typed system. We now explicate how implicitly typed terms
relate to explicitly typed terms. Given a universe \mathcal{U} , let $|\mathcal{U}$ I be the whole set of assignments of types to
names (in the form $\{a_{1}$: δ_{1} . a_{2} : δ_{2} , . . .}). Then, by easy induction on the structure oi typed terms,
we get:

PROPOSITION 4.6 Suppose P (resp. V^{δ}) is a term (resp. an action) in \mathcal{U} . Then for some $\Gamma\subset|\mathcal{U}$ I
we have $\vdash Erase(P)\succ\Gamma$ (resp. $\Gamma\vdash Erase(\mathcal{V})$: δ).

For correspondence in another direction, we first establish that if a term or an action is typable
under Γ which contains no type variables, there exists a corresponding typed term or action in the
explicitly typed system, which is easy under our present naming convention. But then, given $\vdash P\succ\Gamma$,
by suitably choosing a substitution oi type variables (write it ζ), we can always have $\vdash P\succ\Gamma\zeta$ where
$\Gamma\zeta$ contains no type variables. The proposition follows, which tells us, together with Proposition 4.6,
that typable terms essentially coincide in both systenus9 .

PROPOSITION 4. 7 Let P be an untyped ferm. Then $if\vdash P\succ\Gamma$ for some Γ , there exists a universe
\mathcal{U} and a term $P’$ in \mathcal{U} such thaf, for some substitution ζ with $\Gamma(\subset|\mathcal{U}|$, we have Erase $(P’)^{d}=^{ef}P$.

5 Syntactic and Behavioural Counterpart of Typability
5. 1. Preliminaries. Types for interaction we introduced above form a simple hierarchy of types,
reminiscent oi the simple type hierarchy in functional types. How this hierarchy is reflected in a
syntactic as well as $behavioll\cdot c\sqrt{}$ properties oi terms, is studied below.

We first need some auxiliary notions regarding syntax. For simplicity, definitions are given for
untyped terms, but it $sl_{1}oulc1$ be understood that similar notions are also given for explicitly typed
terms.

(i) Subexpressions, which are terms and actions occurring in an action or in a term, are defined
in a stalldal\cdotd way. The notation is Sub(P) or Sub(V). For example, Sub$(a:\triangleright x.\Lambda)=\{a$:
$\triangleright x.\Lambda,$ $\triangleright x.\Lambda,$ $\triangleright x,$

Λ }.
(ii) We say V and V’ are compatible if their structure oi interaction is syntactically the same mod-

ulo difference in name occurrences, i.e. $\ovalbox{\tt\small REJECT} and\triangleleft b$ are compatible, $\triangleright aand\triangleright b$ are compatible,
P and.Q are compatible, and these extend to the composed actions.

(iii) Similarly we define tbe dual notion. co-compatibility. \mathcal{V} and V’ are co-compatible, when V and
V’ own a complementary syntactic structure, starting from $\triangleright vand\triangleleft w$. Specifically $[\mathcal{V}]\ [\mathcal{V}’]$

and inl(V”) are co-compatible iff V and \mathcal{V}
“ are co-compatible, and. P and.Q are always

co-compatible. Details naturally follow.

9Without the present naming convcntion, $tl\iota etl\iota eo\iota e\iota n1\iota 01d\epsilon$ modulo α-convertibility.

73

(iv) x is actine $in\triangleleft\prime c$ and $\triangleright x$. If x is active in \mathcal{V} so it is in $\mathcal{V};V’,$ $[V]\ [V’],$ $[\mathcal{V}’]\ [V],$ $inl(\mathcal{V})$, and
$inr(\mathcal{V})$. Similarly, . P is active in. P , and if. P is active in \mathcal{V} , so it is in $\mathcal{V};\mathcal{V}’,$ $V’;\mathcal{V},$ $[V]\ [V’]$,
[V’]&[V], inl(V), $a\iota ldinr(\mathcal{V})$.

Another essential notion is co-occurrence. Two names co-occur in P if they are used in the same
way in actions in P . We write the co-occurrence by $\vee p$, or simply $arrow$ when P is understood from the
context. Relatedly $-P$ ($-$ when P is understood) denotes that the co-name oi a name co-occur with
another name. Both relations are together generated by the following rules. Let the underlying term
be P .

(i) \vee is equivalence relation over the set of subexpressions of P , together with names occurring
in P and their co-names ($tl\iota e$ latter not necessarily occurring in P). Also let us have $a-b$ iff
$\overline{a}arrow b$ iff $aarrow\overline{b}$.

(ii) If $aarrow b$ and both a : \mathcal{V} and $b:\mathcal{V}’$ are elements $oiSub(P)$, then $\mathcal{V}\sim \mathcal{V}’$. If $a-b$ and both
$a:V$ and $\overline{b}:V’$ are elements $oiSub(P)$, then $V\wedge \mathcal{V}’$.

(iii) If $\triangleright v-\triangleright w$ or $\triangleleft’arrow\triangleleft w$ or $\triangleright v\wedge\triangleleft\overline{w}$ then $varrow w$.
(iv) If $[\mathcal{V}_{1}]\ [\mathcal{V}_{2}]arrow[\mathcal{V}_{1’}]\ [\mathcal{V}_{2}’]$ or \mathcal{V}_{1} ; $\mathcal{V}_{2}arrow \mathcal{V}_{1}’$; $\mathcal{V}_{2}’$ then $V_{1}-V_{1}’$ and $\mathcal{V}_{2}arrow \mathcal{V}_{2’}$. Also if $in1(\mathcal{V})arrow in1(V’)$

or $inr(\mathcal{V})arrow inr(\mathcal{V}’)$ tben $\mathcal{V}arrow \mathcal{V}’$. If $[\mathcal{V}]\ [\mathcal{V}’’]\sim in1(V’)$ or $[V”]\ [\mathcal{V}]\sim inr(V’)$ then $\mathcal{V}-V’’$.
By easy induction, proven simultaneously with the fact that \mathcal{V} and $\mathcal{V}’$ have the same type if they
co-occur in P , we can get the following result. We state the result for explicitly typed terms (since
the statement involves restricted names), but by Propositions 4.6 and 4.7, we have the corresponding
result in the untyped $tel\cdot lns$.

PROPOSITION 5. 1 If P is a term i_{71} some uninerse, $a^{\delta}arrow Pb^{\delta’}$
\Rightarrow

$\delta=\delta’$ and $a^{\delta}-Pb^{\delta’}$
\Rightarrow

$\overline{\delta}=\delta’$.

Now the first important syntactic notion $1^{\cdot}elated$ with our typing discipline, is the “static” counter-
part of the lack of $1^{\cdot}l\ln- ti\iota ne$ error, which we call safety.

DEFINITION 5. 2 We say P is safe if, uhenener $a\sim b$ (resp. $a-b$) and a : $\mathcal{V}\in Sub(P)$ and b : $\mathcal{V}’\in$

$Sub(P)$, then V and V’ are compatible (resp. co-compatible).

Safety structurally ensures the operational compatibility of names which would possibly interact to-
gether. Then by Proposition 5.1 we can easily infer:

COROLLARY 5. 3 If P is a term in a certain universe, then it is safe.

Safety itself, however, does not $co\iota npletely$ differentiate typable terms from untypable terms. As an
example, take simply a $:\triangleleft a$. This is safe since a is equipped with only one action. But clearly the
term is untypable.

5. 2. Simplicity. Actually there is a clean characterization oi typability based on name reference
relation in a $te\iota\tau n$ (cf. Abramsky [1]). Tbe concerned name reference relation is defined as follows.

DEFINITION 5. 4 We say a name a carries a name b in P , written $a\succ_{P}b$, or simply $a\succ b$ if P is
understood from the con.texf, $\tau r’ henfhefollov\dot{\uparrow}ng$ conditions hold.

(i) $a:\mathcal{V}\in Su1$) (P) and b is active in \mathcal{V} .
(ii) $a’\succ b$ and, moreover. $aarrow a’$ or $a-a’$. Or, $a\succ b’$ and, moreover, $barrow b’$ or $b\wedge b’$.

$Let\succ^{+}sta\iota lds$ for tbe transitive closure $of\succ$. Given the notion, we define the essential syntactic notion
corresponding to the simple type discipline.

74

$\frac{DEFINITION5.5}{wehavea\succ a+}$
We say a term P is simple if it is safe, and, moreover, for no name occurring in P

The simplicity denotes tbe lack of self-reference on names, considering co-occurrences and hereditary
references. A clean characterization oi tbe order $\succ+$ follows.

LEMMA 5.6 In the explicitly typed system, if $a^{\delta}\succ+b^{\delta’}$ in P , then $\delta’$ occurs in δ as its proper
subexpression.

The proof is easy, based on induction on the structure oi (typed) term formation. Now the syntactic
structure oi a type always forms a finite tree, so the lemma implies name reference relation can never
have a circular structure, so that we obtain:

PROPOSITION 5. 7 Suppose P is a term $i7|$, a certain universe \mathcal{U} . Then P is simple. Equivalently, if
$\vdash P\succ\Gamma$ for some $\Gamma,$ $t’\iota enP$ is sinlple .

To prove the converse, i.e. simplicity $i_{1}nplies$ typability, we need to analyse the inference procedure.
For the purpose, a syntactic transformation is convenient. We define the relation \gg as follows. $C[]$

denotes an arbitrary context, except in the second rule we assume $C[]$ is not null, i.e. not $[]$. In the
first rule we assume $P^{d}g_{\Lambda}$. The elimination of “!” in the last rule is harmless by the rule (rep) in
Rules (A) in 4.3.

$C[$. $P]\gg(C[.\Lambda], P)$, $C[|x|P]\gg|x|C[P]$, $C[!P]\gg C[P]$

It is easy that \gg does not change typability nor the resulting types. In addition we easily have, ii

$P\gg P’$ and not $P’\gg Q$ for any Q. then $P’$ takes a form:

$P^{;d}=^{ef}|\overline{x}|(a_{1} : \mathcal{V}_{1} , a_{n} : \mathcal{V}_{n})$

where all \mathcal{V}_{n} does not include $\dot{\zeta}n\downarrow$ action of the $f_{01}\cdot mtP$ ’ with $P\not\equiv\Lambda$.
Given the construction, we now sbow tlie essential reasoning to establish the desired result. Suppose

$P’$ above is simple (ltence also safe). Then we can easily arrange, without changing typability, the prime
terms in $P’$ as follows: if the sequence can be written a_{1} : \mathcal{V}_{1} , a_{n} : \mathcal{V}_{n} , then in a_{1} : \mathcal{V}_{1} , no names in
\mathcal{V}_{1} occur elsewhere, and all names in \mathcal{V}_{i+1} occur in the preceding terms a_{j} : \mathcal{V}_{j} , with $j=1..k\leq i$, and
$a^{(k+1)},$

$..,$
a^{i} co-occur with a_{i+1} ; moreover if a_{i} and a_{i+k} co-occur above, all names $a;..a_{i+k}$ co-occur.

Then we type the term. Froni the structure of a term, the only significant case is the rule “parallel“.
Then we prove that, by induction on i and on structure of actions, if the term $(a : V_{1}, .., a_{i} : V_{1})$ is
typable, then the term $(a:\mathcal{V}_{1}, \ldots a_{i+1} : \mathcal{V}_{i+1})$ is typable. By tbe side condition, we only have to check
the case when a_{i+1} occur as a_{k}. witb $A\cdot<;$ $+1$, and we can hand-calculate, using the safety condition
and order relation among names, the type scheme for a_{i+1} . The main theorem follows.

THEOREM 5.8 (Characterization of typability) $\vdash P\succ\Gamma$ for some Γ iff P is simple.

5. 3. Simplicity and deadlock-free property. Simplicity in name reference structure may not
result in meaningful behavioural characterisation immediately (in contrast to e.g. strong normalization
in typable terms of simply typed λ-calculus). However for a subset oi terlns with a certain regular
condition, the simplicity ensures one important property in concurrent computing, e.g. deadlock-free
property. Construction below is inspired by Lafont’s type discipline in [13].

We naturally work in the untyped calculus. Tbe restricted set oi terms is characterised by the
regular way of generating new terms in relationship with communicating names.

DEFINITION 5. 9 A term P is regular if, $ul_{4}ene\iota$) $era:\mathcal{V}\in Sub(P)$ and.Q is active in \mathcal{V} , then we can
write $Q\equiv$ $(b_{1} : \mathcal{V}_{1}, .., b_{n} : V_{n})$ uhere. for each b_{i} , either itself or its co-name occurs active in V.

75

Thus newly generated terms are in some way related with communication structure oi the prime term.
As a consequence, we have:

PROPOSITION 5. 10 Suppose $a:\mathcal{V}$ is regular. Then, if b or \overline{b} occurs in \mathcal{V} , we have $a\succ b$.

The proof is easy by definition oi regularity. Note this implies ii a or \overline{a} occurs in V with $a:V$ being
regular, then P is not simple.

Now a regular term P is under uniqueness constraint of names if each name in P occur exactly
once except by binding occurrences of scope $rest\iota\cdot iction$. Given the notion, a regular term is said to be
name complete if, whenever $Parrow P’$, there is some $P”\equiv P’$ such that (1) P“ is under uniqueness
constraint, and (2) for each names occurring in $P”$, there exists its co-name also occurring in $P^{\prime\prime 10}$.
In other words, iiP is name complete, all names are compensated by their co-names in any $arrow-$

derivative of P^{11} . B ut if P is name-complete, it should be possible that the term always reduces by
itself; if this does not happen when $so\iota nep\iota\cdot i\iota ne$ terms are ready to interact, this may be regarded as
deadlock.

DEFINITION 5. 11 Suppose P is name complete. Then if $Parrow P’$ and not $P’arrow$ but $P’$ contains
a prime term as its subterm, we say P is in deadlock.

Tbe simplest example oi deadlock is $a:<\varpi$. One will see that examples in deadlock all involve some
kind of circular name references. Can this be proved?

To show tl) at a name complete and typable term never has a deadlock, we first note that a name
complete term only reduces to a name complete term. Thus we only have to show that if P is typable,
name complete and not structurally equal to Λ or similar $te\iota\cdot lns$ (i.e. those which contain no prime
term), then it is always the case t hat $P-arrow$.

But suppose not. Then wc can write, by assumption,

$P\equiv|\tilde{u})|(a_{1} : \mathcal{V}_{1}, \ldots, a_{n} : \mathcal{V}_{n}, !Q_{1}, \ldots, !Q_{m})\succ$

where, in the right hand side, all nantes occur exactly once and are compensated with each other,
and either $n\geq 1$ or else $?n\geq 1$ with some Q ; containing a prime term. Then it is easy to eliminate
replications from P without cbanging name reference structure and occurrences, to gain:

$P^{\prime d}=^{cf}|\tilde{w}’|(a_{1} : \mathcal{V}_{1}, \ldots, a_{n}’ : \mathcal{V}_{n}’)\neq-\rangle$

But by Proposition 5.11, the co-name of, say, a_{1} cannot occur in \mathcal{V}_{1} nor as a subject of another prime
term which is not a subexpression of an action, hence it is in, say, \mathcal{V}_{2} . But then we have, by Proposition
5.11 again, $a_{2}\succ a_{1}$. Hence the co-name of a_{2} cannot occur in \mathcal{V}_{1} . Then it occurs somewhere in
actions. In this way, we know that there is no place for $\overline{a_{n}’}$ to occur in. But by name completeness this
is contradiction. Hence:

THEOREM 5. 12 Suppose for some name complete P , we have $\vdash P\succ\Gamma$. Then P never deadlocks.

The result can be extended to terms wbich can be made name complete by composing another term.
The characterisation is only for a rcstricted set of terms, but the reasoning above shows the import
of name reference structure $whe\iota\downarrow$ uniqueness of names is assumed. Moreover, as suggested at the
beginning, the restricted set oi terms (without typability assumption) provides a term representation
oi Lafont’s interaction net. though the translation is somewhat cumbersome12. We do not know,
however, whether the result can generalise into less restricted set of terms, nor ii significant behavioural
properties other than deadlock can be associated with the present type discipline or not.

1_{We} need $\equiv to$ deal witlt replicated terms. Note also tbat we are working under Convention 2.2.
11We note tlzat untyped name $conll$) $lete$ terlns can encode the $w1_{1}ole$ scheme of partial recursive functions up to weak

bisimilarity so the restricted set of $tel\iota ns$ still has non-trivial computing power.
12A direct way of typing Lafon $t’ s$ net exists and a variation of our type system can type them.

76

6 Discussions
6. 1. Related work. The notion of typing for names in the name passing framework was already
studied by Milner as sorting [18], and subsequently several related work including $[5, 20]$ appeared.
Our work can be seen as a further development of Milner’s idea in the sense that operational structure
associated with names and naule passing is one of essential elements of the notion of types. The main
difference lies in that the sorting discipline is not equipped with type constructors as such, basically
because it only tries to capture operational structure oi multiple name passing. The departure oi

our construction from $t1_{1}e$ plauin structure of sorting lies in identification of three basic types, input,
output, and term generation, and the way of composing these types by arbitrary type constructors,
among which we presentcd sequentialization and branching as two prominent constructs. Another, but
related, point is $tl\downarrow e$ introduction of $C07l$ stct nts. The construct was naturally born when we identified
the syntactic domain which represent compositional interaction patterns. But the notion is essential
to form a simple hierarchy oi types in the explicit setting and elegantly transplants the functionality
of “constant functions“ in tbe interaction setting, as we saw in Section 3. As constant functions are
essential in pragmatic sequential languages, they would also get essential in the concurrent program-
ming languages based on interaction. Such further significance of the construct will be treated in our
coming exposition.

Other related work includes Abramsky’s process interpretation of Linear Logic [1], from which we
got essential suggestions regarding compositional type structure for interaction and its materialization
as terms, Lafont’s construction in [13], which treats a type discipline as discussed in Section 5. Our
work differs from theirs in formulating a typed formalism in the general framework oi process calculi
(e.g. Church-Rosser is not assumed), and integration of various elements which we believe to be essen-
tial for typed concurreucy into a single framework, such as abstract type constructors for interaction,
constants, typed behavioural equivalences, and etcetera.

6. 2. Further issues. We have only started the study of type notion in concurrent computation,
constructing what ntay be compared to a simple hierarchy of types in the functional setting. Many
remaining issues arise naturally. First, in relationship with functional types from which we got im-
portant suggestions at many stages of formal development, a systematic incorporation of various type
disciplines developed in tlze context of functional types (cf. e.g. [2, 19]) into the present framework,
is one of important subjects to study. Specifically, $clal\cdot ifications$ of behavioural consequences oi such
incorporation in the line of our result in 5.3 should be pursued. In this regard the work by Pierce
and Sangiorgi [20] incorporates subtyping notion into Milner’s sorting discipline based on refinement
of usage of names in communication, and shows an interesting step in this direction. We also note
that we have not touched any computability issue in the present paper. We suspect that it would
be impossible to have a satisfactory encoding of general recursive functions under the simple type
discipline we developed in the present papel; the verification (or negation) oi the conjecture is left
to further study.

Another theme is $en\iota\cdot ichment$ of the type constructors themselves, adding such construct as parallel
composition and nondeterministic branching. Some ramification of type structures would be needed
to make the constructors well-suited for realistic concurrent programming, but we hope the present
simple scheme would provide the basis for such development.

In the final remark of Section 3, we noted that, while we may have semantics of universe, we may
not have semantics oi types in tbe present setting. This is (essentially) due to the nature of parallel
composition, which is not as “tight” as e.g. functional composition in composing behaviour oi two
terms. Note the lack of semantics oi types means that types tell us very little about semantic (or
computational) consequence of (well-typed) composition. A question is, thus, whether there is any
possible framework oi typed concurrency where we $1_{1}ave$ actually significant semantic interpretation oi

each type. The issue is deep and we leave the question open.
Clearly more investigation, both theoretical and practical, is necessary to acquire sound under-

standing oi types in concurrency. We wish that our present work will turn out to be useful as a basis

i3If we allow recursively defined types tbe representation becomes possible.

77

oi further study of typed concurrent colnp\iota ting.

Acknowledgements. Many thanks to Samson Abramsky, Rod Burstall, Robin Milner, Atsushi
Ohori, Prakash Panangaden, Vasco Vasconcelos and Nobuko Yoshida, for enlightenment, criticism,
advice, and suggestions. I also thank anonymous referees who provided valuable comments and pointed
out several errors. My deep gratitude to Mario Tokoro for his long-lasting encouragement. A generous
support from JSPS Fellowships for Japanese Junior Scientists is gratefully acknowledged.

References
[1] Abramsky, S., Computational interpretations oi linear logic. Technical Report DOC 90/20, Impe-

rial College, Department oi Computing, October 1990. to appear in Theoretical Computer Science.

[2] Barendregt, H. and Henierik, K., Types in lambda calculi and programming languages. In Pro-
ceeding of ESOP 90, 1990.

[3] Boudol, G., Asynchrony and π-calculus. Manuscript. 1992.
[4] Engberg, U. and Nielsen, M., A Calculus of Communicating Systems with Label Passing. Research

Report DAIMI PB-208, Computer Science Department, University of Aarhus, 1986.
[5] Gay, S. J., A sort inference algorizm for the poliadic π-calculus. POPL, 1993.
[6] Hindley R., Th e Principal Type-Schem e in Objects in Combinatory Logic, Trans. American. Math.

Soc. 146.

[7] Honda, K. and Tokoro, M., An Object Calculus for Asynchronous Communication, In: Proc. of
European Conference on Object-Oriented Programming, LNCS, Springer-Verlag, July 1991.

[8] Honda, K., Represe γ } $ti_{71}g$ Functions in an Object Calculus, a typescript, 19pp, October 1991. Re-
vised version as Keio CS Report 92-005, 1992.

[9] Honda, K., Two Bisimilarities in v-calculus, September 1992, submitted. Revised version as Keio
CS Report 92-002, 1992.

[10] Honda, K., Types for Dyadic Interaction (the full version), Keio CS Report 92-003, 1993.

[11] Honda, K., Types for Dyadic Interaction, in CONCUR ’93, LNCS, Springer-Verlag, August 1993.
[12] Honda, K., and Yoshida, N., On Reduction-Based Process Semantics, in Foundation of Software

Technology and Theoretical Computer Science, LNCS, Springer-Verlag, December 1993.
[13] Lafont, Y., Interaction Nets, POPL 1990.
[14] Milner, R., A Theory of Type Polymorphism in Programming, Joumal of ACM, 1978.
[15] Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobife Processes. Part I, Π. ECS-LFCS-

89-85/86, Edinburgh University, 1989.
[16] Milner, R., Functions as Processes. In Automata, Language and Programming, LNCS 443, 1990.
[17] Milner,R. and Sangiriorgi,D., Barbed Bisimulation, ICALP, 1992.
[18] Milner, R., Polyadic π -calculus, LFCS report, Edinburgh University 1992.
[19] Mitchell, J., Type Systems for Programming Languages, Handbook of Theoretical Computer Sci-

ence, P $367- 458$. Elsevier Science Publishers B.V., 1990.
[20] Pierce, B. and Sangiorgi, D., Typing and Subtyping for Mobile Processes.

[21] Vasco, V. and Honda, K., Principal typing scheme for polyadic π -Calculus, in CONCUR 93,
LNCS, Springer-Verlag, August 1993.

