
102

Open-Endedness of Objects and Types
in Martin-L\"of’s Type Theory

Yasuyuki Tsukada
NTT Basic Research Laboratories

3-9-11 Midori-cho, Musashino, Tokyo 180, Japan
tsukada@ntt-20. ntt. jp

Abstract

This paper presents a comprehensive formulation of open-endedness of types
as well as objects in $Maltin- L\ddot{o}f’ s$ type theory. This formulation is a natural
generalization of Allen’s non-type-theoretical Ieintelpretation of the theory,
and demonstrates a structural extension of Howe’s formulation of compu-
tational open-endedness. Suppose that a language underlying the theory is
specified as a method system, which consists of a preobject system as the
computational part and a pretype system as the structural part. Then types and
their objects are unifoImly and inductively constructed as a type system that is
built from the method system and that can provide a semantics of the theory.
The main theorem shows that the original inference rules concerning objects
or types remain valid in any type system built from a deterministic and regular
extension of the original method system. This result includes a prescription
for the class of types that can be introduced into the theory, which prescription
is useful for checking whether specific new types can be introduced.

1 Introduction

This paper provides a mathematical interpretation of the “open-endedness” property in Martin-
L\"of’s type theory. This semantical property, which has played a vital role in the design of the
theory, is here formulated and studied from the mathematical viewpoint. We begin with an
informal and general definition of open-endedness.

数理解析研究所講究録
第 851巻 1993年 102-126

103

1.1 Informal Definition of Open-Endedness

In general, a theory–that is, a framework composed oflanguages, their semantics, and inference
rules–is called open-ended provided that,

when a programmer or a mathematician using the theory works in a language L_{0} whose
semantics $M(L_{0})$ is given by a mapping M, any possible sequence $L_{0}\subseteq L_{1}\subseteq L_{2}\subseteq\cdots$

of extended languages satisfies the following conditions:1
\bullet semantical anticipation: M also gives the semantics $M(L_{i})$ of L_{i} for every $i\geq 1$

“effectively”;
\bullet validity persistency: every inference rule in L_{0} is valid in $M(L_{i})$ for all $i\geq 0$.

In other words, an open-ended theory is one whose inference rules remain valid under extensions
of its underlying language.

Extensibility of language is one of the most important requirements for a basic theory
for “interactive” proof development systems, which need to support the dynamic and partial
reasoning processes of human thought. It should be possible for newly invented concepts,
such as novel proof techniques and original data types, to be introduced into the current
language. Instead of simply “adding” them from outside the language, we can of course adhere
to “defining” them within the language. However, the flexibility inherent in being able to add
them is more impoltant than the stability resulting from being able to introduce them only by
definitions. This is because such definitions, even though they are possible, often force us to
handle very delicate and complicated encodings. Each concept should be introduced in its most
appropriate form, so we should consider a theory that has the open-endedness property.

Martin-L\"of’s Intuitionistic Type $Theol\gamma$ (ITT) $[14, 15]$, the basis for such interactive proof
development systems as those described in $[8, 18]$, is open-ended and designed to anticipate
the introduction of new objects and types. Open-endedness in IIT can be viewed generally as
follows.

1.2 Open-Endedness in ITT

The open-endedness property comes from self-containedness, which is essential to any fun-
damental theory for constmctive mathematics. In general, we can specify the semantics of a
formal language used in programming or mathematics by means ofmodeling, or synonymously,
translation into another language. So, how many times should we repeat this process? We
would like to obtain an ultimate theory whose languages have no need of further modelings or
translations. It is natural that this theory should based on the most basic concepts explained
only by purely semantical means. As a result of semantical investigations, $I\Pi$ was proposed
as an example of such an ultimate theory [16].

The selected basic concepts in I$T\Gamma$, objects and types, are explained by purely semantical
means in terms of the “primitive” notion, methods.2 In other words, those concepts on which
ITT is built are naturally “open.” This inherent open-endedness of objects and types is the
reason why ITT anticipates the introduction ofnew objects and types. For example, ajudgement
of the form“Atype,”which says thatA isatype, means that the methodA hasa canonical

1These conditions are not trivial because this paper will consider“semantics“ to be “tern models.“
2A similar situation can be found in the Brouwer-Heyting-Kolmogorov (BHK-) interpretation ofthe fundamental

logical connectives; indeed, proofs of the propositions built from such connectives are semantically explained in
terms of the primitive notion, methods. Consequently, open-endedness ofproofs follows.

104

type as its value, where the type denoted by A is defined by prescribing how a canonical object
of the type is formed as well as how two equal canonical objects of the type are formed. There
is no limitation on this prescription except that the equality relation in a canonical type must be
reflexive, symmetric, and transitive. The definition of a canonical type is thus fairly arbitrary,
and this results in open-endedness of types. Another kind of judgement, of the form $a\in A$,

presupposes that A is a type and asserts that a is an object of type A . This means that the
method a has as its value a canonical object of the canonical type denoted by A . There is no
intensional restriction on the method a in this explanation, and this lack of restriction produces
open-endedness of objects.

This type-theoretical semantics is useful for a basic theory for interactive proof development
systems. For example, suppose that a programmer or a mathematician wants to define the
type N of natural numbers. The conventional definition, which says that N consists of
$0,$ $S(O),$ $S(S(0)),$ \ldots , is not sufficient because possible future members such as 10^{10} , 10+10,
10000!, and “a natural number expressed by using some real-valued functions introduced
later” are not considered when N is defined. This problem disappears in the type-theoretical
semantics because open-endedness of objects guarantees that the definition of N anticipates
the introduction of new natural numbers. Open-endedness of objects also supports such
mechanisms as (1) an object of type $Aarrow B$ is applicable to every possible future member of A ,
and (2) a family $D(x)$ of types over C is defined in such a way as to anticipate the introduction
of new objects of C . Furthermore, by virtue of open-endedness of types, a universe of types
is defined so that new, previously unimagined types may later be introduced into the universe.
This feature of IIT is expected to overcome the difficulties of reflecting the dynamism of human
thought, whereas conventional static theories are restricted by the necessity of describing their
entire structure in advance in rigorous detail. There is a need, however, to bring this profound
but rather philosophical open-endedness into sharper relief so that it may be used to design new
systems for programming and mathematics.

1.3 Overview of This Paper

This paper presents a comprehensive formulation of open-endedness of objects and types in
$\Gamma\Gamma\Gamma$; that is, a complete demonstration of the semantical anticipation and validity persistency
conditions with regard to ITT. This requires the formulation of the following notions: (a)
language, (b) extension, and (c) semantics.

a) The class of method systems is introduced to define an open-ended body of languages
underlying the theory. A method system consists of two parts. One–the “computational”
part–is a preobject system, which is the same as a structured lazy computation system
in [12, 13, 6]. It specifies a set of operators, a set of canonical operators, and a set of
evaluation rules. Then the set of tems, the set of canonical terms, and the lazy evaluation
relation between two closed terms, are generated. The other–the ”structural” part–is a

pretype system defined on the preobject system. It grants to special canonical operators
the privileges of type constructors, and it assigns to each of the type constructors the
following:

\bullet the ktnd of the type constructor–any of the type constmctors in ITT can be regarded
as a map that assigns a new canonical type to bundles of “families of types” and
associated “functions,” and the notion of kind is abstracted from the domains of such
maps;

105

\bullet an expression that can serve as a strictly positive inductive definition of the equality
relation in a canonical type formed by the type constructor–the class of such
expressions is systematically defined by using the kind of the type constructor.
(Details are presented in Section 2.)

b) The notion of extension of a method system is defined in such a way as to preserve the
meaning of the original system. (Details are presented in Section 3.)

c) Suppose that a language underlying the theory is specified as a method system L . Then
types and their objects are unifomly and inductively–that is, effectively’ $-consm_{1}cted$

as a type system M^{L} . In fact, Λt^{L} is a partial mapping from the set of closed terms to the
set of binary relations in closed terms, and can provide a semantics of ITT. Statements of
the following forms:

T type, $T=T’,$ $t\in T$, and $t=t’\in T$

will be interpreted, respectively, as

$T\in dom(\mathcal{M}^{L}),$ $\mathcal{M}^{L}(T)=\mathcal{M}^{L}(T’)$, $(t, t)\in/\vee 1^{L}(T)$, and $(t, t’)\in \mathcal{M}^{L}(T)$.

However, to serve as an adequate semantics of ITI’, \mathcal{M}^{L} has to have the property called
extensionality. The construction is done in a more uniform way than in $[3, 4]$ by making
the best use of the kinds of the type constructors introduced in the pretype-system part of
the method system. The validity of the inductive definition of \mathcal{M}^{L} is guaranteed by this
“kind-based” constmction, which is intrinsically due to predicativity in M. (Details are
presented in Section 4.)

The main theorem in this paper uses these notions and shows that the semantical anticipation
and validity persistency conditions hold for $I\Pi$; that is, the oliginal inference rules given in [14]

remain valid in any type system built from a deterministic and regular extension of the original
method system that includes all the type constluctors explicitly presented in [14]. Determinism
guarantees the uniqueness of the result of evaluating a term, and regulality guarantees that the
binary relation generated by the defining expression of each type constructor will be a partial
equivalence relation in closed terms.

From a practical viewpoint, this result includes a prescription for the class of types that
can be introduced into the theory; that is, it prescribes that the class should consist of types
representable in some type system built from a deterministic and regular extension of the
origin$a1$ method system. We can use this criterion to determine whether new types under
consideration can be introduced.

1.4 Comparison with Related Work

This paper’s result is a natural generalization of Allen’s non-type-theoretical reinterpretation of
ITT $[3, 4]$, and it demonstrates a structural extension of Howe’s formulation of computational
open-endedness $[12, 13]^{}$ In fact, Allen’s reinterpretation, which is closely related to such
realizability-like interpretations as in [7, 20, 11], is exactly the same as building the type system
from the original method system. And Howe’s formulation would be obtained by restricting
the present formulation to extensions of the computational part of the method system. Since

3Howe presented a language large enough to create a classical model of $I\Pi$ in which schemas for the law of
the excluded middle are valid. This result corresponds to the fact that the BHK-inteIpretation seIves as a classical
semantics when methods are understood to mean set-theoretical functions.

106

the notion of pretype system is created as the extensible stmctur$a1$ part of a method system,
open-endedness of types is also well-formulated here for the first time. It is notable that
this paper’s result is more explicit and comprehensive than that in [4] because it clarifies the
relevant underlying conditions and includes a prescliption for the class of types that can be
introduced into the theory. This class not only includes all the canonical types formed by the
type constructors originally presented by Martin-L\"of [14], but also seems to be large enough
for practical applications.

In $[17, 2]$, a systematic approach was developed to analyze a series of extended languages
and their semantics: the target example was the Logical Theory of Constmctions (LTC). An
“effective” procedure for extending the semantics as the language advances, however, has not
been presented.4 The formulation presented here for $I\Pi$ provides such a procedure.

A general way of introducing types is also developed in [10], and this way is related to
the treatment of types in $[5, 9]$. Although the method in [10] is developed for a more rigid
variant of ITT based on “typed” languages,5 it gives useful mles for new types, whereas the
present paper gives a semantical condition. This semantical characterization of when a type
can be sensibly added, however, is obtained as a corollary of the main result, which is the
complete demonstration of semantical anticipation and validity persistency in IΠ under the
concrete constmction of type systems. This is very different from the presentation of rather
direct set-theoretical semantics in [10].

2 Method Systems
A method system is denoted by a pair $L=(C, S)$, where C is a preobject system and S is a
pretype system on C .

2.1 Computational Part: Preobject Systems

A preobject $system^{}$ is denoted by a quadruple $C=(0, K, \alpha, R)$, where O is a set of operators,
$K\subset O$ is a set of canonical operators, α is a function from O to $\{(k_{1}, \ldots, k_{n})|n, k_{i}\geq 0\}$, and
R is a set of evaluation rules that will be described later in this subsection. For $\rho\in O,$ $\alpha(\rho)$ is
the arity of ρ and specifies the number and binding structure of the operator’s arguments.

For each $m\geq 0$, fix an infinite set of variables called the second-order variables ofarity m .
In particular, a second-order variable is called a variable if its arity is 0 ; otherwise it is called a

metavariable. The second-order term schemas ofarity m are inductively defined as follows:
1. a second-order variable of arity m is a second-order term schema of arity m ;
2. if ρ is an operator with arity (k_{1}, \ldots, k_{n}) , if $c_{1},$ $\ldots,$

c_{n} are second-order term schemas of
arity $k_{1},$

$\ldots,$
k_{n} respectively, and if \overline{x} is a list of m distinct variables, then $\overline{x}.\rho(c_{1}, \ldots , c_{\eta})$

is a second-order term schema of arity m ;
3. if b is a second-order term schema of arity n , if all of $a_{1},$ $\ldots,$

a_{n} are second-order term
schemas of arity 0 , and if Zi7 is a list of m distinct variables, then Zr. $b(a_{1}, \ldots, a.)$ is a
second-order term schema of arity m .

4This seems to be due to LTC’s lack of semantical explanation.
5For example, [10] does not treat such “valid” statements as $E(Ap(t, t)$, xy.O) $=0\in N$, where $t\equiv$

$\lambda(z.(Ap(z, z),$ 0)). In fact, the present paper deals with richer languages by dividing alanguage into the“untyped“
computational pan and the more rigid structural pan.

6Since a preobject system is the same as a structured lazy computation system developed by Howe $[12, 13]$,
this paper basically follows his detinition.

107

$\ddagger n$ particular, the tem schemas are the second-order term schemas of arity 0 . The second-order
tems ofarity m are the second-order term schemas of arity m including no metavariables, and
in particular, the terms are the second-order terms of arity 0. A simple term schema is a term
schema of the form $\rho(\overline{c})$, where ρ is an operator and \overline{c} is a list of distinct second-order variables.
A term or a simple term schema of the form $\rho(\overline{c})$ is canonical if ρ is a canonical operator;
otherwise it is noncanonical.

Binding structure can be added by specifying that in a second-order term schema $x_{1},$ $\ldots,$
$x_{m}.b$

of arity m , each x_{i} binds in b . And second-order term schemas are assumed to be identical up
to renaming of bound variables. Moreover, if $x_{1},$ $\ldots,$

$x_{m}.b$ is a second-order term schema of
arity m and if $a_{1},$ $\ldots,$

a_{m} is a list of term schemas, then $(x_{1}, \ldots , x_{m}.b)(a_{1}, \ldots, a_{m})$ is identified
with the result of simultaneous substituting in the term schema b the term schemas $a_{1},$ $\ldots,$ a_{m}

for free variables $x_{1},$ $\ldots,$ x_{m} respectively. The set of closed second-order terns of arity m is
denoted by $\hat{T}^{m}(C)$. In particular, the set of closed terms is denoted by $\hat{T}(C)^{7}$

A valuation is a map that assigns an arbitrary element of $\hat{T}^{m}(C)$ to each second-order
variable of arity m . The domain of a valuation is naturally extended to the set of second-order
term schemas.

Consider now a set $R=\{r_{i}\}_{i\in I}$ of evaluation mles, where each r_{i} has the form

$aarrow b\Leftarrow a_{1}arrow b_{1}$ & \cdots $\ a_{n}arrow b_{n}$ $(n\geq 1),$
8

and satisfies the following conditions: (1) a is a noncanonical simple term schema; (2) each
$b_{i}(1\leq i\leq n)$ is a variable or a canonical simple term schema and has neither variables nor
metavariables in common with a or $b_{j}(j\neq i);(3)$ each $a_{i}(1\leq i\leq n)$ is a term schema whose
free variables and metavariables must occur in a or $b_{j}(j<i)$; and (4) b is the same variable
as b_{n} .

Let R^{+} be the set { $aarrow a|$ a is a canonical simple term schema} $\cup R$. The evaluation
$relationarrow c\subset\hat{T}(C)\cross\hat{T}(C)$ is defined by the inductive definition: if V is a valuation, if
$aarrow b\Leftarrow$ $a_{1}arrow b_{1}$ & \cdots $\ a_{n}arrow b_{n}$ is in R^{+} , and if $V(a_{i})arrow cV(b_{i})$ for every i , then
$V(a)arrow cV(b)$.
Lemma 2.1 The evaluation $relationarrow c$ of a preobject system C has the following property:

1. if $tarrow c^{s}$ then s is canonical, and
2. if s is a closed canonical term, then $sarrow c^{u}$ if and only if $s\equiv u$.

Proof. Immediate from the definition $ofarrow c$. \blacksquare

This property shows that the evaluation is lazy. The evaluation relation is deterministic if for
every $t,$ s , and $u,$ $tarrow cs$ and $tarrow cu$ imply $s\equiv u$. A preobject system is deterministic if the
evaluation relation produced by its evaluation mles is deterministic, and a method system is
deterministic if its preobject system is deterministic.

2.2 Structural Part: Pretype Systems

The following specifications will be necessary to introduce a canonic$a1$ type:
\bullet a type constmctor that, with its arguments, will form the canonical type;
\bullet a prescription for the equality relation in the canonical type.

7In general, $a,$ $b,$ $c,$ \ldots are syntactical variables that vary through second-order term schemas; $s,$ $t,$ $u,$ \ldots are
syntactical variables that vary through closed second-order terns; and $x,$ $y,$ $z,$ \ldots are syntactical variables that vary
through variables.

8More generally, the set of premises of a rule can be extended to an infinite set providing it is well-ordered.

108

These are specified as a pretype system $S=(D, \kappa, \varphi)$ defined on a preobject system $C=$

(O, K, α, R) .

2.2.1 Type Constructors and Their Kinds

A set of type $constt\cdot uctors$ is specified as $D\subset K-\{U_{n}|n\geq 0\}$, where the fixed set
$\{U_{n}|n\geq 0\}$ of universes is supposed to be included in the set of canonical operators of every
preobject system. A function9

κ : $D arrow(\bigcup_{m\geq 1}\{1\}\{\square \}^{*}\{2\}\{\square \}^{*}\{3\}\{\square \}^{*}\cdots\{m\}\{\square \}^{*})^{*}$

gives the kind $\kappa(\triangle)$ of \triangle for each $\triangle\in D$.
Some basic operations associated with kinds are introduced: if

$\mathcal{K}(\triangle)\square \cdots\square \cdots m_{1}\bigvee_{1}\sim_{k_{1},\square s}\square \bigvee_{1}\sim_{S}\sim_{k\square }k_{nm}^{\bigvee_{n}}\coprod^{\square ,\cdots\square }s$

for $\triangle\in D$, then
$|\kappa(\triangle)|=n$, $\kappa(\triangle)_{i}=m_{i}$, $\kappa(\triangle)_{i,j}=k_{i,j}$

for every i and j such that $1\leq i\leq n$ and $1\leq j\leq m_{i}$, and

$\beta(\kappa(\triangle))=(\overline{0,0,\ldots,0\ldots,m_{1}-1,m_{1}-1,\ldots,m-1}\ldots,\overline{0,0,\ldots,0\ldots,m_{n}-1,\underline{m_{n}-1,\ldots,m_{n}-1}})\vee’\vee^{1}’\vee’$.
$k_{1,1}0’ s$ $k_{1,m_{1}}m_{1}-1$ ’s $k_{n,I}0’ s$ $k_{n,m_{n}}m_{n}-1$ ’s

In ITT, any of the type constmctors can be regarded as a map that assigns a new canonical
type to bundles of “families of types“ and associated “functions,“ and the notion of kind is
abstracted from the domains of such maps. For example, the kinds of the basic type constmctors
are listed in Table 1.

Table 1: Kinds of the basic type constmctors.

More generally, a type constmctor \triangle will assign a new canonical type to $|\kappa(\triangle)|$ bundles of
”families of types” and associated “functions”:

\bullet for each i such that $1\leq i\leq|\kappa(\triangle)|$, the i-th bundle has $\kappa(\triangle)_{i}$ layers of families of types;
\bullet for each i and j such that $1\leq i\leq|\kappa(\triangle)|$ and $1\leq j\leq\kappa(\triangle)_{i}$, the j-th layer family of

types in the i-th bundle is accompanied by $\kappa(\triangle)_{i,j}$ associated functions.
For the sake of the compatibility of kinds with arities, impose the following condition on κ ;

for every $\triangle\in D$,
$\beta(\kappa(\triangle))=\alpha(\triangle)$.

9When S and $S’$ are sets of symbols, the concatenation of S and $S’$ is denoted by $SS’$, and the Kleene closure
of S is denoted by S“.

109

Because of this condition, a canonical type formed by $\triangle\in D$ will have the form

$\triangle((T_{i,j}, t_{i,j,1}, \ldots, t_{i,j,\kappa(\triangle)_{t,j}});_{\leq^{i\leq|\kappa(\triangle)|)}}\leq_{i\leq\kappa(\triangle)_{i}}$ ’

where all of $T_{i,j},$ $t_{i,j,1},$
$\ldots,$

$t_{i,j,\kappa(\Delta)_{z,j}}$ are closed second-order terms of arity $j-1$ for every i and
j such that $1\leq i\leq|\kappa(\triangle)|$ and $1\leq j\leq\kappa(\triangle)_{i}$.

2.2.2 Prescriptions for Equality Relations

The main difficulty in defining pretype systems is to present a uniform mechanism by which we
can prescribe a large variety of equality relations for various canonical types. Such $unif_{01}mity$

will be necessary to create“effective” semantics for a variety of extended languages. To achieve
uniformity and effectiveness, this paper develops a systematical way to generate a certain large
class $\mathcal{E}(\triangle)$ of expressions from a type constructor \triangle in such a way that any of them may be a

prescription for the equality relation in a canonic$a1$ type formed by \triangle . Now a function

φ : $(\prod\triangle\in D)\mathcal{E}(\triangle)$

is introduced. To specify $\mathcal{E}(\triangle)$ for each $\triangle\in D$, we need a $preliminal\gamma$ formal language. When
V is an arbitrary set of second-order variables, the $\mathcal{E}(\triangle)_{V}$ -terms are inductively defined as
follows:

1. a variable is an $\mathcal{E}(\triangle)_{V}$ -term;

2. if $c\in V$ is a second-order variable of arity m and if all of $a_{1},$ $\ldots,$ a_{m} are $\mathcal{E}(\triangle)_{V}$-terms,

then $c(a_{1}, \ldots, a_{m})$ is an $\mathcal{E}(\triangle)_{V}$ -term;

3. if i and j are such that $1\leq i\leq|\kappa(\triangle)|$ and $1\leq j\leq\kappa(\triangle)_{\dot{x}}$ and if all of $a_{1},$ $\ldots,$ a_{j-1}

$ale\mathcal{E}(\triangle)_{V}$ -terms, then $F_{i,j,1}(a_{1}, \ldots, a_{j-1}),$
$\ldots,$

$F_{i,j,\kappa(\triangle)_{i_{J}}},(a_{1}, \ldots, a_{j-1})$ are also $\mathcal{E}(\triangle)_{V^{-}}$

terms, where all of $F_{i,j,1},$
$\ldots,$

$F_{i,j,\kappa(\triangle)_{i_{f}}}$

, are new symbols.
In particular, the $\hat{\mathcal{E}}(\triangle)_{V}$ -terms are the $\mathcal{E}(\triangle)_{V}$ -terms including no variables other than those in
V.

The $\mathcal{E}(\triangle)_{V}$-fomulas are inductively defined as follows:
1. if a_{1} and a_{2} are $\mathcal{E}(\triangle)_{V}$ -terms, then $P(a_{1}, a_{2})$ is an $\mathcal{E}(\triangle)_{V}$ -formula, where P is a new

symbol;
2. if i and j are such that $1\leq i\leq|\kappa(\triangle)|$ and $1\leq j\leq\kappa(\triangle)_{i}$ and if all of $a_{1},$ $\ldots,$ a_{j+1} are

$\mathcal{E}(\triangle)_{V}$ -terms, then $Q_{i,j}(a_{1}, \ldots, a_{j+1})$ is an $\mathcal{E}(\triangle)_{V}$-formula, where $Q_{i,j}$ is a new symbol;
3. if A and B are $\mathcal{E}(\triangle)_{V}$ -formulas, then $\perp,$ A &B, $A\vee B$, and $A\Rightarrow B$ are also

$\mathcal{E}(\triangle)_{V}$ -formulas;

4. if v is a variable other than those in V and if A is an $\mathcal{E}(\triangle)_{V}$ -formula, then $\forall v.A$ and $\exists v.A$

are also $\mathcal{E}(\triangle)_{V}$ -formulas.
In addition, impose the following conditions on an $\mathcal{E}(\triangle)_{V}$ -formula:

1. its free variables must be among the variables in V ;

2. strictly positive condition: every occurrence of P must be strictly positive;
3. contextual condition: for every i and j such that $1\leq i\leq|\kappa(\triangle)|$ and $1\leq j\leq\kappa(\triangle)_{i}$, if

$Q_{i,j}(a_{1}, \ldots, a_{j-1}, a_{j}, a_{J+1})$ occurs in the formula, then for every k such that $1\leq k\leq j-1$,

there exists its subformula $A_{k}\Rightarrow B_{k}$ such that
(a) B_{k} includes the occurrence of $Q_{i,j}(a_{1}, \ldots, a_{j-1}, a_{j}, a_{j+1})$ and no variable in a_{k} is

bound in B_{k} ;

110

(b) A_{k} has the form $Q_{i,k}(b_{1}, \ldots, b_{k-1}, a_{k}, a_{k}’)$ or $Q_{i,k}(b_{1}, \ldots, b_{k-1}, a_{k}’, a_{k})$.
Let $\theta_{1}\cdots\theta_{h}$ be a string of distinct canonical operators in $K-(D\cup\{U_{n}|n\geq 0\})$, and

suppose that e and $e’$ are $\hat{\mathcal{E}}(\triangle)_{V}$ -terms. An $\mathcal{E}(\triangle)_{V^{1}}^{\theta\cdots\theta_{h}}$ (e , e’)-expression has the form

$\exists\overline{c_{1}}\exists\overline{c_{1}}.earrow\theta_{1}(\overline{c_{1}})\ e’arrow\theta_{1}(\overline{c_{1’}})\ A_{1}$

$\vee\cdots\vee$

$\exists\overline{c_{h}}\exists\overline{c_{h’}}.earrow\theta_{h}(\overline{c_{h}})\ e’arrow\theta_{h}(\overline{c_{h’}})\ A_{h}$,

where for each l such that $1\leq l\leq h$,

1. $\theta_{l}(\overline{c_{l}})$ and $\theta_{l}(\overline{c_{l’}})$ are canonic$a1$ simple term schemas such that all of the second-order
variables in bi or $\overline{c_{l’}}$ are distinct and other than those in V , and

2. A_{l} is either
(a) an $\mathcal{E}(\triangle)_{V_{l}}$ -formula, or
(b) an $\mathcal{E}(\triangle)_{V_{l}^{1}}^{\eta\cdots\eta_{k}}(f, f’)$-expression such that $\eta_{1}\cdots\eta_{k}$ is a string of distinct canonic$a1$

operators in $K-(D\cup\{U_{n}|n\geq 0\})$, and both f and $f’$ are $\hat{\mathcal{E}}(\triangle)_{V_{l}}$-terms,

where V_{l} is the result of removing from $V\cup\{\overline{c_{l}},\overline{c_{l’}}\}$ all the second-order variables in e or
$e’$.

An $\mathcal{E}(\triangle)$-expression has the form

$\mu P.(x, x’).\Psi$,

where x and $x’$ are distinct variables and Ψ is an $\mathcal{E}(\triangle)_{\{x,x\}}^{\theta_{1}\cdots\theta_{h}}(x, x’)$ -expression for some string
$\theta_{1}\cdots\theta_{h}$ of distinct canonical operators in $K-(D\cup\{U.|n\geq 0\})$. In this case, $\theta_{1}\cdots\theta_{h}$ is
called the canonical index of the $\mathcal{E}(\triangle)$ -expression.

Let $\mathcal{E}(\triangle)$ be the set of $\mathcal{E}(\triangle)$-expressions. To guarantee a certain non-overlapping propelty,
impose the following conditions on φ : for every $\triangle,$ $\triangle^{J}\in D$, the canonical indices of $\varphi(\triangle)$ and
$\varphi(\triangle’)$ have no canonical operators in common.

By using valuations, an $\mathcal{E}(\triangle)$-expression ψ of the form $\mu P.(x, x’).\Psi[P, x, x’]$ will be
interpreted as the least relation [$\psi I\subset\hat{T}(C)\cross\hat{T}(C)$ such that

$[\psi I(t,t’)\Leftrightarrow[\Psi J([\psi I, t, t’)$,

where [ΨI is the standard interpretation of Ψ under an appropriate translation of the parametric
symbols $Q_{i,j},$ $F_{i,j,1},$

$\ldots,$
$F_{i,j,\kappa(\triangle)_{i,j}}$ in Ψ . Note that standard intuitionistic theory of inductive

definitions directly allows the definition of [ψI ; the existence of such [ψJ is guaranteed by the
strictly positive condition on Ψ . See [9, 10, 21, 22, 19] for the development of the theory of
inductive definitions.

3 Extensions of Method Systems
A language that includes all the type constmctors explicitly presented in [14] is specified as the
original method system $L_{0}=(C_{0}, S_{0})$.
Lemma 3.1 The method system L_{0} is deterministic.

Proof. Induction on elements $inarrow c_{0}$ shows that for every t and s such that $tarrow c_{0}s,$ $tarrow c_{0}^{u}$

implies $s\equiv u$ for every u . \blacksquare

111

Table 2: Method System $L_{o}=((O_{o}, K_{o}, \alpha_{o}, R_{o}), (D_{o}, \kappa_{o}, \varphi_{0}))$.

$O_{o}=$ {$N,0,$ $S,$ $R,$ $\Pi,$ λ , Ap, U_{n} (for every $n\geq 0$)},
$K_{o}=$ { $N,0,$ $S,$ $\Pi,$ $\lambda,$ U_{n} (for every $n\geq 0$)},

$\alpha_{\langle\rangle}(p)=\{(0)_{0}(0’,1)_{2)}(o(1)_{0)}(o()$ $if\rho isAp^{0}if\rho isNif\rho i_{S}Sif\rho i^{S}\Pi^{if\rho is}ifpisR\lambda’$

,

’
U_{n} for $n\geq 0$,

$R_{o}=\{R(c,d,e)R(c,d,e)Ap(c,a)arrow farrow farrow d\Leftarrow\Leftarrow\Leftarrow cccarrow S(a)\ e(a’, R(a, d, e))arrow 0\ darrow farrow\lambda(b)\ b(a)arrow darrow f,$ $\}$,

$D_{o}=\{N, \Pi\}$,

$\kappa_{o}(\triangle)=\{\begin{array}{l}\epsilon if\triangle isNl2if\triangle is\Pi\end{array}$

$\varphi_{\langle\rangle}(\triangle)=\{\begin{array}{l}\mu P.(x,x’).xarrow 0\ x’arrow 0\vee if\triangle isN\exists a\exists a.xarrow S(a)\ x’arrow S(a’)\ P(a,a’)\mu P.(x,x).\exists b\exists b’.xarrow\lambda(b)\ x’arrow\lambda(b’)if\triangleis\Pi\ \forall v\forall v.Q_{1,1}(v,v^{/})\Rightarrow Q_{1,2}(v,b(v),b’(v’))\end{array}$

The complete descliption of L_{0} is given in Appendix A. Table 2 describes only the subsystem
$L_{\langle\rangle}=((OK\alpha, R_{o}),$ $(D_{o}, \kappa\langle\rangle’\varphi_{0}))$, which includes natural numbers, Cartesianproduct ofa
family oftypes, and universes.

Let $L=$ (($O,$ K , or, R), $(D,$ $\kappa,$
$\varphi)$) and $L’=((O’, K’, \alpha’, R’), (D’, \kappa’, \varphi’))$ be arbitrary

method systems. If the following conditions hold, $L’$ is called an extension of L :
$\bullet O\subset O’$;
$\bullet K=K’\cap O$;
$\bullet\alpha=\alpha’|O$;
$\bullet\forall r$ [$r\in R\Leftrightarrow r\in R’$ &o(r)\in O],

where if r has the form $p(\overline{c})arrow b\Leftarrow a_{1}arrow b_{1}$ $\ \cdots\ a_{n}arrow b_{n}$, then $o(r)=p$;
$\bullet D\subset D’$;
$\bullet\kappa=\kappa’|D$;
$\bullet\varphi=\varphi’|D$;

where $f|Z$ denotes the function f : $Xarrow Y$ whose domain is restricted to $Z\subset X$. It is easy
to see that the binary relation induced by the notion of extension is a partial ordering of method
systems. From the computational viewpoint, the following lemma holds:

Lemma 3.2 [computational conservativeness] Suppose that $L’=(C’, S’)$ is an extension of
$L=(C, S)$. For every t and s such that $tarrow C’s,$ $t\in\hat{T}(C)$ implies $tarrow cs$.
Proof. Suppose that $C’=(O’, K’, \alpha’, R’)$ and $C=(O, K, \alpha, R)$. The lemma is proved
by induction on elements $inarrow C’$. It is trivial when t is canonical, so assume that t and

$\iota _{See}[23]$, for example.

112

Table 3: Method System $L_{n}=((O_{n}, K_{n}, \alpha_{n}, R_{n}), (D_{n}, \kappa_{n}, \varphi_{n}))$.

$O_{n}=O_{o}\cup\{\cap, \iota, B\}$, $K_{n}=K_{o}\cup\{\cap, \iota\}$,

$\alpha_{n}(p)=\{\begin{array}{l}(0,0)(0)(0,1)\alpha_{\theta}(\rho)\end{array}$ $ifpisB_{ise}if\rho isifpis\iota otherw^{\cap}’$

,
$R_{\cap}=R_{o}\cup$ { $B(c,$ $d)arrow e\Leftarrow carrow\iota(a)$ &d$(a)arrow e$},

$D_{n}=D_{o}\cup\{\cap\}$,

$\kappa_{n}(\triangle)=\{\begin{array}{l}11if\triangle is\Pi\kappa_{o}(\triangle)otherwise\end{array}$

$\varphi_{n}(\triangle)=\{\begin{array}{l}\mu P.(x,x’).\exists a\exists a’.xarrow\iota(a)\ x^{/}arrow\iota(a’)\ Q_{1,1}(a,a’)\ Q_{2,1}(a,a’)\varphi\langle\rangle(\triangle)\end{array}$ $if\triangle is\Pi otherwise$

.

s are respectively wlitten as $V(p(\overline{c}))$ and $V(b)$, for an evaluation mle $r\in R’$ of the form
$p(\overline{c})arrow b\Leftarrow a_{1}arrow b_{1}$ $\ \cdots\ a_{n}arrow b_{n}$ and for a valuation V . Since $t\in\hat{T}(C),$

p must be in O ;
hence $r\in R$. So it suffices to prove that $V(a_{i})arrow cV(b_{i})$ for every i . This follows immediately
from induction hypothesis and the definition of evaluation mles. \blacksquare

Along the lines mentioned above, various extensions of L_{o} can be built to obtain licher
languages. The method system L_{0} is a deterministic example of such an extension, and a
large class of inductively defined types can be incorporated successively. Some other examples
follow.

Example 3.3 The method system L_{n} , which is the deterministic extension of L_{o} with “inter-
section” types, is described in Table 3.

Example 3.4 The method system L_{u} , which is the deterministic extension of L_{o} with “union”
types, is described in Table 4.

Example 3.5 The method system L_{\subset} , which is the deterministic extension of $L_{\langle\rangle}$ with “subset“
types, is described in Table 5.

Example 3.6 The method system L_{\star} , which is the nondeterministic extension of L_{o} with the
“Amb” operator, is described in Table 6.

4 Type Systems

This section presents a semantics of ITT whose underlying language is specified as a method
system. Let $L=(C, S)$ be an arbitrary method system, where $C=(O, K, \alpha, R)$ is a preobject
system and $S=(D, \kappa, \varphi)$ is a pretype system on C .

11In [1], the abbreviation A&\Rightarrow B is used for A&[A\Rightarrow B]. Also see the descriptions of $\varphi_{0}(\Sigma)$ and $\varphi_{0}(W)$ in
Appendix A.

113

Table 4: Method System $L_{u}=((O_{u}, K_{u}, \alpha_{u}, R_{u}), (D_{u}, \kappa_{u}, \varphi_{u}))$.

$O_{u}=O_{o}\cup\{u, \iota/, A\}$, $K_{u}=K_{o}\cup\{u, \iota/\}$,

$\alpha_{u}(\rho)=\{\begin{array}{l}(0,0)(0)(0,l)\alpha_{\langle\rangle}(p)\end{array}$ $if\rho isAifpisu_{/}ifpisotherw^{l}ise$

,
$R_{u}=R_{o}\cup$ { $A(c,$ $d)arrow e\Leftarrow carrow\nu(a)$ &d(a)\rightarrow e},

$D_{u}=D_{o}\cup\{u\}$,

$\kappa_{u}(\triangle)=\{\begin{array}{l}l1if\triangle isu\kappa_{o}(\triangle)otherwise\end{array}$

$\varphi_{u}(\triangle)=\{\begin{array}{l}\mu P.(x,x’).\exists a\exists a’.xarrow\nu(a)\ x’arrow\nu(a’)\ [Q_{1,1}(a,a^{/})\vee Q_{2,1}(a,a’)]\varphi_{o}(\triangle)\end{array}$ $otherwiseif\triangle isu,$

.

Table 5: Method System $L_{\subset}=((O_{\subset}, K_{\subset}, \alpha_{\subset}, R_{\subset}), (D_{\subset}, \kappa_{\subset}, \varphi_{\subset}))$.

$O_{C}=O_{o}\cup$ { $\{\cdot|\cdot\}$, sub, L }, $K_{\subset}=K_{o}\cup$ { $\{\cdot|\cdot\}$, sub},

$\alpha_{\subset}(\rho)=\{\begin{array}{l}(0,1)if\rho is\{\cdot|\cdot\}(0)ifpissub(0,l)if\rho isL\alpha_{\langle\rangle}(\rho)otherwise\end{array}$

$R_{\subset}=R_{o}\cup$ { $L(c,$ $d)arrow e\Leftarrow carrow sub(a)$ &d(a)\rightarrow e},
$D_{\subset}=D_{o}\cup\{\{\cdot|\cdot\}\}$,

$\kappa_{\subset}(\triangle)=\{\begin{array}{l}l2if\triangle is\{\cdot|\cdot\}\kappa_{o}(\triangle)otherwise\end{array}$

$\varphi_{\subset}(\triangle)=\{\begin{array}{l}\mu P.(x,x’).\exists a\exists a’.xarrow sub(a)\ x’arrow sub(a’)if\triangle is\{\cdot|\cdot\}\ Q_{1,1}(a,a’)\ Q_{1,1}(a,a)\Rightarrow[\exists b.Q_{1,2}(a,b,b)\ \exists b’.Q_{1,2}(a’,b’,b’)]^{11}\varphi_{o}(\triangle)otherwise\end{array}$

Table 6: Method System $L_{\star}=((O_{\star}, K_{\star}, \alpha_{\star}, R_{\star}), (D_{\star}, \kappa_{\star}, \varphi_{\star}))$.

$O_{\star}=O_{o}\cup$ {Amb}, $K_{\star}=K_{o}$,

$\alpha_{\star}(p)=\{\begin{array}{l}(0,0)\alpha_{o}(\rho)\end{array}$ $ifpisAmbotherwise$

,
$R_{\star}=R_{o}\cup\{Amb(a, b)arrow c\Leftarrow aarrow c, Amb(a, b)arrow c\Leftarrow barrow c\}$,

$D_{\star}=D_{o}$, $\kappa_{\star}=\kappa_{o}$, $\varphi_{\star}=\varphi_{0}$.

114

4.1 Inductive Definitions of Type Systems

A type system τ over L is a subset of $\hat{T}(C)\cross 2^{\hat{T}(C)\cross\hat{T}(C)}$. In this subsection, a certain type
system over L is inductively constructed as the least fixed point of $\mathcal{I}^{L}(\sigma, \cdot)$, where \mathcal{I}^{L} is a
binary function on type systems over L , and σ is an appropriate base. Intuitively, $\mathcal{I}^{L}(\sigma,\tau)$ is
the type system that consists of (1) types in σ , and (2) types constructed by type constmctors
in L with bundles of “families of types” and associated “functions” in τ . More formally, it is
defined by

$\mathcal{I}^{L}(\sigma,\tau)(T, \phi)\Leftrightarrow\sigma(T, \phi)\vee \mathcal{K}^{L}(\tau)(T, \phi)$;

$\mathcal{K}^{L}(\tau)(T, \phi)\Leftrightarrow\exists\triangle\in D\exists\Omega\exists\Phi$. $Tarrow_{C}\triangle(\Omega)$

$\ Bun_{\kappa(\Delta)}^{L}(\tau, \Omega, \Phi)$

&\forall t\forall t’ $[\phi(t,t’)\Leftrightarrow[\varphi(\triangle)I_{\Omega,\Phi}^{L}(t, t’)]$.

Here Ω has the form of a sequence

$(T_{i,j}, t_{i,j,1}, \ldots, t_{i,j,\kappa(\triangle)_{i,j}})_{1\leq_{j\leq\kappa(\Delta)_{i}}}$

such that all of $T_{i,j},$ $t_{i,j,1},$
$\ldots,$

$t_{i,j,\kappa(\triangle)_{i,j}}$ are closed second-order terms of arity $j-1$ for every i

and j , and Φhas the form of a sequence

$(\phi_{i,j})_{1\leq_{j\leq\kappa(\Delta)}}$

such that $\phi_{i,j}$ is a $(j+1)$ -ary relation in $\hat{T}(C)$ for every i and j . Intuitively, $Bun_{\kappa(\Delta)}^{L}(\tau, \Omega, \Phi)$

represents Ω with Φ to be bundles of“extensional families of types” and associated“extensional
functions” in τ . The precise definition of $Bun_{\kappa(\triangle)}^{L}$ is given by

where \overline{u} and $\overline{u}’$ are the abbreviations of the sequences $u_{1},$ $\ldots,$ u_{j-2} and $u_{1}’,$
$\ldots,$

$u_{j-2}’$. Finally,
[$\varphi(\triangle)I_{\Omega,\Phi}^{L}$ is the standard interpretation of $\varphi(\triangle)$ under the following translation: (1) for every
i and j such that $1\leq i\leq|\kappa(\triangle)$ I and $1\leq j\leq\kappa(\triangle)_{i}$, the symbols $F_{i,j,1},$

$\ldots,$
$F_{i,j,\kappa(\triangle)_{i,j}}$ in $\varphi(\triangle)$

are interpreted as the respective second-order terms $t_{i,j,1},$
$\ldots,$

$t_{i,j,\kappa(\Delta)_{i,j}}$ in $\Omega;(2)$ for every i

and j such that $1\leq i\leq|\kappa(\triangle)|$ and $1\leq j\leq\kappa(\triangle)_{i}$, the symbol $Q_{i,j}$ in $\varphi(\triangle)$ is interpreted as
the relation $\phi_{i,j}$ in Φ ; and (3) the $symbolarrow in\varphi(\triangle)$ is interpreted $asarrow c$.

It is easy to see that for each $\sigma,$
$\mathcal{I}^{L}(\sigma, \cdot)$ is a monotone function on type systems over L ;

therefore, the type system $\mu^{L}(\sigma)$ is well-defined12 by

$\mu^{L}(\sigma)(T, \phi)\Leftrightarrow\forall\tau[\mathcal{I}^{L}(\sigma, \tau)\subset\tau\Rightarrow\tau(T, \phi)]$

115

as the least fixed point of $\mathcal{I}^{L}(\sigma, \cdot)$. This can be used to define the type systems S_{n}^{L} and \mathcal{M}_{n}^{L} for
each $n\geq 0$, and also to define the type systems S^{L} and $\mathcal{A}4^{L}$:

S_{n}^{L} $=$ { $(T, =_{\mathcal{M}_{m}^{L}})|0\leq m<n$ &T\rightarrow c
$\ \forall S\forall S’[S=_{\mathcal{M}_{m}^{L}}S’\Leftrightarrow\exists\phi.\mathcal{M}_{m}^{L}(S, \phi)\ \psi t_{m}^{L}(S’, \phi)]\}$;

\mathcal{M}_{n}^{L} $=$ $\mu^{L}(S_{n}^{L})$;
S^{L} $=$ $\bigcup_{n>0}S_{n}^{L}$;

\mathcal{M}^{L} $=$ $\mu^{L}\overline{(}S^{L}$).

4.2 Semantics of ITT

A statement of L has one of the following forms:
$T(x_{1}, \ldots, x_{n})$ type $(x_{1}\in T_{1}, \ldots, x_{n}\in T_{n}(x_{1}, \ldots, x_{n-1}))$;
$T(x_{1}, \ldots, x_{n})=T’(x_{1}, \ldots, x_{n})$ $(x_{1}\in T_{1}, \ldots, x_{n}\in T_{n}(x_{I}, \ldots, x_{n-1}))$;
$t(x_{1}, \ldots, x_{n})\in T(x_{1}, \ldots, x_{n})$ $(x_{1}\in T_{1}, \ldots, x_{n}\in T_{n}(x_{1}, \ldots, x_{n-1}))$;
$t(x_{1}, \ldots, x_{n})=t’(x_{1}, \ldots, x_{n})\in T(x_{1}, \ldots, x_{n})(x_{1}\in T_{1}, \ldots, x_{n}\in T_{n}(x_{1}, \ldots, x_{n-1}))$;

where $x_{1},$ $\ldots,$
x_{n} are distinct variables, and $T,$ $T’,$ $t,$ $t’,$ $T_{1},$

$\ldots,$
T_{n} are closed second-order terms,

respectively, of arity $n,$ $n,$ $n,$ $n,$ $0,$
$\ldots,$ $n-1$. The sequence $x_{1}\in T_{1},$

$\ldots,$
$x_{n}\in T_{n}(x_{1}, \ldots, x_{n-1})$

is called the hypothesis of the statement.
The type system $\mathcal{A}4^{L}$ provides a semantics of IΠ whose underlying language is specified as

L . In fact, the propelty $\mathcal{M}^{L}\models\Theta$ of a statement 0 of L , which expresses that 0 is valid in \mathcal{M}^{L} ,
can be defined as follows:

$\mathcal{M}^{L}\models T(x_{1}, \ldots, x_{n})$ type $(x_{1}\in T_{1}, \ldots, x_{n}\in T_{n}(x_{1}, \ldots, x_{n-1}))$

$\Leftrightarrow\exists(\phi_{j})_{1\leq j\leq n}\exists\phi$. $Bun_{1\cdots n(n+1)}^{L}(\Lambda t^{L}, (T_{j})_{1\leq j\leq n},$ $T,$ $(\phi_{j})_{1\leq i\leq n},$ ϕ);

$\mathcal{M}^{L}\models T(x_{1}, \ldots, x_{n})=T’(x_{1}, \ldots, x_{n})(x_{1}\in T_{1}, \ldots, x_{n}\in T_{n}(x_{1}, \ldots, x_{n-1}))$

$\Leftrightarrow\exists(\phi_{j})_{1\leq j\leq n}\exists\phi\exists\phi’$. $Bun_{1\cdots n(n+\iota)}^{L}(\mathcal{M}^{L}, (T_{j})_{1\leq J\leq n},$ $T,$ $(\phi_{j})_{1\leq j\leq n},$ ϕ) &
$Bun_{1\cdots n(n+\iota)}^{L}(\mathcal{M}^{L}, (T_{j})_{1\leq j\leq n},$ $T’,$ $(\phi_{j})_{1\leq J\leq n},$ $\phi’$) &
$\forall u_{1}\cdots\forall u_{n}$. $\phi_{1}(u_{1}, u_{1})$ & \cdots $\ \phi_{n}(u_{1}, \ldots, u_{n-1}, u_{n}, u_{n})$

$\Rightarrow\forall s\forall s’[\phi(u_{1}, \ldots, u_{n}, s, s’)\Leftrightarrow\phi’(u_{1}, \ldots, u_{n}, s, s’)]$;

$\mathcal{M}^{L}\models t(x_{1}, \ldots, x_{n})\in T(x_{1}, \ldots, x_{n})(x_{1}\in T_{1}, \ldots, x_{n}\in T_{n}(x_{1}, \ldots, x_{n-1}))$

$\Leftrightarrow\exists(\phi_{j})_{1\leq j\leq n}\exists\phi$. $Bun_{1\cdots n(n+1)\square }^{L}(\mathcal{M}^{L}, (T_{j})_{1\leq 4\leq n},$ $T,$ $t,$ $(\phi_{j})_{1\leq i\leq n)}\phi)$;

$\mathcal{M}^{L}\models t(x_{1}, \ldots, x_{n})=t’(x_{1}, \ldots, x_{n})\in T(x_{1}, \ldots, x_{n})(x_{1}\in T_{1}, \ldots, x_{n}\in T_{n}(x_{1}, \ldots, x_{n-1}))$

$\Leftrightarrow\exists(\phi_{j})_{1\leq i\leq n}\exists\phi$. $Bun_{1\cdots n(n+1)\square }^{L}(\mathcal{M}^{L}, (T_{i})_{1\leq j\leq n},$ $T,$ $t,$ $(\phi_{j})_{1\leq j\leq n},$ ϕ) &
$Bun_{1\cdots n(n+1)\square }^{L}(\mathcal{M}^{L}, (T_{j})_{1\leq j\leq n},$ $T,$ $t’,$ $(\phi_{j})_{1\leq j\leq n},$ ϕ) &
$\forall u_{1}\cdots\forall u_{n}$. $\phi_{1}(u_{1}, u_{1})$ & \cdots $\ \phi_{n}(u_{1}, \ldots, u_{n-I}, u_{n}, u_{n})$

$\Rightarrow\phi(u_{1}, \ldots, u_{n}, t(u_{1}, \ldots, u_{n}), t’(u_{1}, \ldots, u_{n}))$.

In particular, the definition for a hypothesis-free statement is simply given as follows:
$\mathcal{M}^{L}\models Ttype$ \Leftrightarrow $\exists\phi.J\backslash \Lambda^{L}(T, \phi)$;
M $L\models T=T’$ \Leftrightarrow $\exists\phi.\Lambda t^{L}(T, \phi)\ \mathcal{M}^{L}(T’, \phi)$;
M $L\models t\in T$ \Leftrightarrow $\exists\phi.\mathcal{M}^{L}(T, \phi)$ &\phi (t, t);
$\Lambda t^{L}\models t=t’\in T$ \Leftrightarrow $\exists\phi.\mathcal{M}^{L}(T, \phi)$ &\phi (t, $t’$).

12As pointed out by Allen [3], the definition of $\mu^{L}(\sigma)$ is not only set-theoreticaUy valid but prob-
ably will be convincing to intuitionists as well because $\mu^{L}(\sigma)$ may be defined as the least τ such that
$\forall T\forall\phi[\mathcal{I}^{L}(\sigma, \tau)(T, \phi)\Rightarrow\tau(T, \phi)]$ and because the relation $\mathcal{I}^{L}(\sigma, \tau)(T, \phi)$ is strictly positive in τ .

116

4.3 Extensionality

To serve as an adequate semantics of ITT, a type system τ over L has to satisfy the following
conditions:

$Fun^{L}(\tau)$ \Leftrightarrow $\forall T\forall\phi\forall\phi’$ [$\tau(T,$ $\phi)$ &\mbox{\boldmath τ}(T, $\phi’)\Rightarrow\phi=\phi’$];
$TrSy^{L}(\tau)$ \Leftrightarrow $\forall T\forall\phi$ [$\tau(T,$ $\phi)\Rightarrow\phi$ is transitive and symmetric] ;
$Va1^{L}(\tau)$ \Leftrightarrow $\forall T\forall\phi$ [$\tau(T,$ $\phi)\Rightarrow\forall t\forall t’[\phi(t,$ $t’)\Leftrightarrow\exists s.tarrow c^{s}$ &\phi (s, $t’)]$] ;
$TyVa1^{L}(\tau)$ \Leftrightarrow $\forall T\forall\phi$ [$\tau(T,$ $\phi)\Leftrightarrow\exists S.Tarrow c$ S&\mbox{\boldmath τ}(S, $\phi)$].

If τ satisfies these four conditions, it is said to be extensional.
If $TrSf(\tau)$ implies $TrSy^{L}(\mathcal{K}^{L}(\tau))$ for every type system τ over L , then L is called regular.14

Lemma 4.1 The method system L_{0} is regular.
Proof. Suppose that $TrSy^{L_{0}}(\tau)$. Since L_{0} is deterministic, [$\varphi_{0}(\triangle)I_{\Omega,\Phi}^{L_{0}}$ is transitive as well as
$symme\mathfrak{U}iC$ for each $\triangle\in D_{0}$ and for every Ω and Φ such that $Bun_{\kappa_{0(\triangle)}}^{L_{0}}(\tau, \Omega, \Phi)$. Use induction
when \triangle is N or W. \blacksquare

Among the examples shown in Section 3, L_{n} and L_{\subset} are regular. On the other hand, neither
deterministic L_{u} nor nondeterministic L_{\star} satisfies regularity.

The strategy shown in [3] is also applicable to prove the following lemmas. Note that the
uniform construction of types in the type systems enables such properties as extensionality to
be proved “uniformly” instead of by case analysis.”
Lemma 4.2 [extensionality lemma] If L is a deterministic and regular method system, then
$S_{n}^{L},$ $M_{n}^{L},$ S^{L} , and Λt^{L} are extensional type systems over L for every $n\geq 0$.
Proof. Suppose that $L=(C, S)$, where $C=(O, K, \alpha, R)$ and $S=(D, \kappa, \varphi)$, is deterministic
and regular. By virtue of the determinism of L , it is straightforward that (1) for each $n\geq 0$, if
$\Lambda\Lambda_{m}^{L}$ is extensional for $evel\gamma m$ such that $0\leq m<n$, then S_{n}^{L} is also extensional; and (2) if
jW_{m}^{L} is extensional for every $m\geq 0$, then S^{L} is also extensional. Hence it suffices to prove that
if σ is an extension$a1$ type system over L and if for every T and $\phi,$ $\sigma(T, \phi)$ implies $Tarrow c^{U_{m}}$

for some m , then $\mu^{L}(\sigma)$ is also extensional.
Define two type systems over L by $\tau_{F\iota\ln}=\{(T, \phi)|\forall\phi’[\mu^{L}(\sigma)(T, \phi’)\Rightarrow\phi=\phi’]\}$ and

$\tau_{TrSy}=$ { $(T,$ $\phi)|\phi$ is transitive and symmetnc}. Then it can be proved that $\mathcal{I}^{L}(\sigma, \tau_{Fun})\subset\tau_{Fun}$

by the determinism of L and by the contextual condition on $\varphi(\triangle)$ for each $\triangle\in D$; therefore,
$Fun^{L}(\mu^{L}(\sigma))$ holds. It is also proved that $\mathcal{I}^{L}(\sigma, \tau_{TrSy})\subset\tau_{TrSy}$ by the regularity of L ; therefore,
$TrSy^{L}(\mu^{L}(\sigma))$ holds. $Va1^{L}(\mu^{L}(\sigma))$ and $TyVa1^{L}(\mu^{L}(\sigma))$ also hold because $Va1^{L}(\mathcal{I}^{L}(\sigma, \tau))$ and
$TyVa1^{L}(\mathcal{I}^{L}(\sigma, \tau))$ for every τ and because $\mathcal{I}^{L}(\sigma, \mu^{L}(\sigma))=\mu^{L}(\sigma)$. \blacksquare

Lemma 4.3 If L is a method system, then $\psi t_{n}^{L}\subset \mathcal{M}_{n+1}^{L}$ and $\Lambda t_{n}^{L}\subset \mathcal{M}^{L}$ for every $n\geq 0$.
Proof. It suffices to prove that $\sigma\subset\sigma’$ implies $\mu^{L}(\sigma)\subset\mu^{L}(\sigma’)$. Since

$\mathcal{I}^{L}(\sigma’, \mu^{L}(\sigma’))\subset\mu^{L}(\sigma’)-$

$\mathcal{I}^{L}(\sigma,\mu^{L}(\sigma’))\subset\mu^{L}(\sigma’)$ holds if $\sigma\subset\sigma’$.

5 Open-Endedness of Objects and Types
The system of inference mles given in [14] can be formalized as the deduction system ITT_{0}^{15}

which is built up in the language L_{0} . When L is an arbitrary extension of L_{0} and 0 is a statement

i3This condition implies that τ is a partial mapping from $\hat{T}(C)$ to $2^{T(C)\cross T(C)}\wedge\wedge$.
14Regularity is the natural formulation ofMarhn-L\"of’s semantical criterion for the equality relation in a canonical

type.
15See Appendix B.

117

of $L,$ $ITT_{0}^{L}\vdash\Theta$ means that a derivation of Θ can be obtained \’in $I\Pi_{0}$ by using a valuation of L

to get instances of inference mles. The following theorem shows that the system of inference
mles given in [14] is built up to meet any selies $\{\mathcal{M}^{L}:\}$ of type systems indexed by a sequence
$\{L_{i}\}_{i\geq 0}$ of extended languages that satisfy both determinism and regularity.

Theorem 5.1 [open-endedness of objects and types] If L is a deterministic and regular
extension of L_{0} , then $I\Pi_{0}^{L}\vdash\Theta$ implies $\Lambda 4^{L}\models\Theta$ for every statement 0 of L .
Proof. Let $L=(C, S)$ be an arbitrary extension of L_{0} , and suppose that L is deterministic and
regular. The theorem is proved by induction on the stmcture of the derivation of 0 . Consider
only the case in which the derivation ends up with an instance

$\frac{c=f\in\Pi(A,B)a=d\in A}{Ap(c,a)=Ap(f,d)\in B(a)}$

of the hypothesis-free second Π -elimination mle . The treatment of the other cases follows a
similar pattern.

By induction hypothesis, we have

$\exists\phi.\mathcal{A}\Lambda^{L}(\Pi(A, B),$ ϕ) &\phi (c, f), and
$\exists\psi.\mathcal{A}\Lambda^{L}(A, \psi)$ &\mbox{\boldmath ψ}(a, d).

Since $\mathcal{I}^{L}(S^{L}, M^{L})=\mathcal{M}^{L},$ $\psi t^{L}(\Pi(A, B),$ ϕ) implies $\mathcal{K}^{L}(\mathcal{M}^{L})(\Pi(A, B),$ ϕ); so there exist
ϕ_{A} and ϕ_{B} such that

$\mathcal{M}^{L}(A, \phi_{A})$

$\ \forall u\forall u’.\phi_{A}(u, u’)\Rightarrow M^{L}(B(u), \phi_{B}(u))$

&M $L(B(u’), \phi_{B}(u’))$

&\forall s\forall s $/[\phi_{B}(u, s, s’)\Leftrightarrow\phi_{B}(u’, s, s’)]$

$\ \phi=[\varphi_{0}(\Pi)I_{A,B,\phi_{A},\phi_{B}}^{L}\cdot$

There also exist b and e such that

$carrow c\lambda(b)$ &f\rightarrow c $\lambda(e)$

$\ \forall u\forall u’.\phi_{A}(u, u’)\Rightarrow\phi_{B}(u, b(u),$ $e(u’))$

because [$\varphi_{0}(\Pi)I_{A,B,\phi_{A},\phi_{B}}^{L}(c, f)$. Since M^{L} is extensional, $\phi_{A}=\psi$; so $\phi_{A}(a, d)$. Hence

$M^{L}(B(a), \phi_{B}(a))\ \phi_{B}(a, b(a),$ $e(d))$.

This $b(a)$ can be replaced with $Ap(c, a)$ because they have the same value and M^{L} is
extensional. For the same reason, $e(d)$ can be replaced with $Ap(f, d)$. This proves that
$jW^{L}\models Ap(c, a)=Ap(f, d)\in B(a)$. \blacksquare

Corollary 5.2 If L is a deterministic and regular extension of L_{0} and if $L’$ is a deterministic
and regular extension of L , then $ITT_{0}^{L}\vdash\Theta$ implies $\Lambda t^{L’}\models\Theta$ for every statement Θ of L .

Corollary 5.2 is contrasted with the nonmonotonicity of a series $\{_{\nu}M^{L}\}$ of type systems:
Claim 5.3 It is not true that if L is a deterministic and regular method system and if $L’$ is a
deterministic and regular extension of L , then $\Lambda t^{L}\models\Theta$ implies $\Lambda t^{L’}\models\Theta$ for every statement
Θ of L .
Proof. A counterexample is simply given by taking

118

Table 7: Method System $L_{\nabla}=((O_{\nabla}, K_{\nabla}, \alpha_{\nabla}, R_{\nabla}), (D_{\nabla}, \kappa_{\nabla}, \varphi_{\nabla}))$.

$O_{\nabla}=O_{0}\cup$ { $Urec_{n}$ (for every $n\geq 0$)}, $K_{v}=K_{0}$,

$\alpha_{\nabla}(p)=\{\alpha(\rho)(0_{0},0,0,4,4,4,4,4,0, \ldots,0)\bigvee_{n}$ $ifpisUrec_{n}otherwise$

,

for $n\geq 0$,

$D_{\nabla}=D_{0}$, $\kappa_{\nabla}=\kappa_{0}$, $\varphi_{\nabla}=\varphi_{0}$.

\bullet as L , the extension L_{v} of L_{0} with the $Urec_{n}$
’ operators for universe elimination, which

extension is described in Table 7,
\bullet as $L’$, an arbitrary extension of L_{v} that includes a fresh type constmctor and satisfies both

determinism and regularity, and
\bullet as $\Theta,$ Π ($U_{0},$ $v.Urec_{0}$ ($v,$ $N,$ N , xyzw.N, xyzw. N , xyzw.N, xyzw. N , xyzw.N)) $\in U_{1}$. \blacksquare

6 Concluding Remarks

This paper has treated ITT as an open-ended framework essentially consisting of
1 flexibly extensible languages,
\bullet their uniform, effectively given semantics, and
1 persistently valid inference mles.

This purely mathematical approach may, of course, not deal with a number of philosophical
aspects of open-endedness. From the mathematical viewpoint, however, deeper analysis and
more general treatment of open-endedness may be based on this formulation. The uniform
constmction of types can also be used theoretically to prove properties of types other than
extensionality “uniformly” instead of “by case analysis.” In addition, a prescription for the
class of types that can be introduced into the theory–that is, the prescription that this class
should consist of types representable in some type system built from a deterministic and regular

119

extension of the original method system–will be practically useful for checking whether new
types under consideration can be introduced.

It will be possible to further extend the class of types that can be validly added. An interesting
extension is to allow types that “grow,” like universes, through the introduction of their new
canonical-object constructors. And, closely related to Corollary 5.2 and Claim 5.3, does the
following conjecture–the conservativeness of a series $\{\mathcal{M}^{L}\}$ of type systems–hold?
Conjecture 6.1 If L is a method system and if $L’$ is an extension of L , then $\mathcal{M}^{L’}\models\Theta$ implies
$\mathcal{M}^{L}\models\Theta$ for every statement Θ of L .

Acknowledgments

The author would like to express his sincere gratitude to Dr. Hirofumi Katsuno, Dr. Shigeki
Goto, Mr. Mizuhito Ogawa, and Dr. Ronald van der Meyden for their encouragement and
helpful advice. The author would also like to thank Professor Masahiko Sato, Mr. Yukiyoshi
Kameyama, and Dr. Makoto Tatsuta for their insights, valuable discussions, and helpful
comments. Special thanks are also due to Mr. Hiroyuki Shirasu for fmitful discussions on the
basic framework underlying this paper. The author also appreciates the excellent comments by
Mr. Lachlan Johnson and Dr. Randall Kaul that have considerably improved this paper.

References
[1] Peter Aczel. Frege stmctures and the notions of proposition, tmth and set. In J. Barwise,

H. J. Keisler, and K. Kunen, editors, The Kleene Symposium, pp. 31-59. North-Holland,
1980.

[2] Peter Aczel, David P. Carlisle, and Nax Mendler. Two frameworks of theories and
their implementation in Isabelle. In G\’erard Huet and Gordon Plotkin, editors, Logical
Frameworks, pp. 3-39. Cambridge University Press, 1991.

[3] Stuart F. Allen. A non-type-theoretic definition of Martin-L\"of’s types. In Proceedings of
the Second Annual Symposium on Logic in Computer Science, pp. 215-221. IEEE, 1987.

[4] Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic Language. PhD
thesis, Cornell University, 1987.

[5] Roland Backhouse, Paul Chisholm, and Grant Malcolm. Do-it-yourself type theory (part
1, 2). BULLETIN ofthe European Association for Theoretical Computer Science, No. 34,
35,, 1988.

[6] David A. Basin and Douglas J. Howe. Some normalization properties of Martin-L\"of’s
type theory, and applications. In Proceedings of the First International Conference on
Theoretical Aspects of Computer Software, volume 526 of Lecture Notes in Computer
Science, pp. 475-494. Springer-Verlag, 1991.

[7] Michael J. Beeson. Recursive models for constmctive set theories. Annals ofMathematical
Logic, Vol. 23, pp. 127-178, 1982.

[8] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W. Harper,
D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall,
1986.

120

[9] ThielTy Coquand and Christine Paulin. Inductively defined types. In Proceedings of the
International Conference on Computer Logic, volume 417 of Lecture Notes in Computer
Science, pp. 50-66. Springer-Verlag, 1988.

[10] Peter Dybjer. Inductive sets and families in Martin-L\"of’s type theory and their set-
theoretic semantics. In G\’erard Huet and Gordon Plotkin, editors, Logical Frameworks,
pp. 280-306. Cambridge University Press, 1991.

[11] Robert Harper. Constructing type systems over an operational semantics. Journal of
Symbolic Computation, Vol. 14, pp. 71-84, 1992.

[12] Douglas J. Howe. Equality in lazy computation systems. In Proceedings of the Fourth
Annual Symposium on Logic in Computer Science, pp. 198-203. IEEE, 1989.

[13] Douglas J. Howe. On computational open-endedness in Martin-L\"of’s type theory. In
Proceedings ofthe Sixth Annual Symposium on Logic in Computer Science, pp. 162-172.
IEEE, 1991.

[14] Per Martin-L\"of. Constmctive mathematics and computer programming. In L. J. Cohen,
J. Los, H. Pfeiffer, and K. P. Podewsky, editors, Logic, Methodology and Philosophy of
Science, pp. 153-175. North-Holland, 1982.

[15] Per Martin-L\"of. Intuitionistic Type Theory. Bibliopolis, 1984.
[16] Per Martin-L\"of. Tmth of a proposition, evidence of a judgement, validity of a proof.

Synthese, Vol. 73, pp. 407-420, 1987.
[17] Paul F. Mendler and Peter Aczel. The notion of a framework and a framework for LTC. In

Proceedings ofthe ThirdAnnual Symposium on Logic in Computer Science, pp. 392-399.
IEEE, 1988.

[18] Bengt Nordstr\"om, Kent Petersson, and Jan M. Smith. Programming in Martin-Lofs Type
Theory: An Introduction. Oxford University Press, 1990.

[19] Masahiko Sato. Adding proof objects and inductive definition mechanisms to Frege
stmctures. In Proceedings of the First International Conference on Theoretical Aspects
of Computer Software, volume 526 of Lecture Notes in Computer Science, pp. 53-87.
Springer-Verlag, 1991.

[20] Jan Smith. An interpretation of Martin-L\"of’s type theory in a type-free theory of
propositions. Journal ofSymbolic Logic, Vol. 49, pp. 730-753, 1984.

[21] Makoto Tatsuta. Program synthesis using realizability. Theoretical Computer Science,
Vol. 90, pp. 309-353, 1991.

[22] Makoto Tatsuta. Monotone recursive definition of predicates and its realizability inter-
pretation. In Proceedings of the First International Conference on Theoretical Aspects
of Computer Software, volume 526 of Lecture Notes in Computer Science, pp. 38-52.
Springer-Verlag, 1991.

[23] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics, volume I, II.
Nolth-Holland, 1988.

121

A Method System L_{0}

The original method system $L_{0}=(C_{0}, S_{0})$, where $C_{0}=(O_{0}, K_{0}, \alpha_{0}, R_{0})$ and $S_{0}=(D_{0}, \kappa_{0}, \varphi_{0})$,

is described below.

1

$O_{0}=\{\begin{array}{llllllll}N_{n},m_{n},R_{n}(forevery n \geq 0and m \in\{0,1 \cdots n -l\})N,0,S,R,I,r,J,+,i,j,D \Pi,\lambda,Ap,\Sigma,(\cdot,\cdot),E,W,\sup,Tr,U_{n}(forevery n \geq 0)\end{array}\}$

$K_{0}=\{\begin{array}{lllll}N_{n},m_{n}(foreveryn \geq 0andm \in\{0,l \cdots n-l\})N,0,S,I,r,+,i,j,\Pi,\lambda,\Sigma,(\cdot),W,\sup,U_{n}(foreveryn \geq 0)\end{array}\}$

1

$D_{0}=$ { N_{n} (for every $n\geq 0$), $N,$ $I,$ $+,$ $\Pi,$ $\Sigma,$ W }

122

$\kappa_{0}(\triangle)=\{\epsilon 1\square \square 1211$ $if\triangle isIif\triangle is\Pi^{+^{n}},’\Sigma if\triangle isif\triangle isN,N_{W}$

.

B Deduction System ITT_{0}

The system of inference mles given in [14] can be foimalized as the deduction system ITT_{0} ,

which is built up in the language L_{0} . The essential part of $IT\Gamma_{0}$ is described below. A slightly
more rigorous description is available in [23], for example.

In this appendix, Latin letters $A,$ $B,$ $C,$ $D,$ $a,$ $b,$ $c,$ $d,$
\ldots denote second-order variables of

appropriate arities.

General rules.
Reflexivity:

$\frac{a\in A}{a=a\in A}\frac{Atype}{A=A}$

Symmetry:
$\frac{a=b\in A}{b=a\in A}\frac{A=B}{B=A}$

Transitivity:
$\frac{a=b\in Ab=c\in A}{a=c\in A}\frac{A=BB=C}{A=C}$

Equality of types:
$\frac{a\in AA=B}{a\in B}\frac{a=b\in AA=B}{a=b\in B}$

123

Substitution:

$\frac{a\in AB(x)type(x\in A)}{B(a)type}\frac{a=c\in AB(x)=D(x)(x\in A)}{B(a)=D(c)}$

$\frac{a\in Ab(x)\in B(x)(x\in A)}{b(a)\in B(a)}\frac{a=c\in Ab(x)=d(x)\in B(x)(x\in A)}{b(a)=d(c)\in B(a)}$

Assumption:
$\frac{Atype}{x\in A(x\in A)}$

Cartesian product of a fanily of types.
Π-formation:

$\frac{B(x)type(x\in A)}{\Pi(A,B)type}\frac{A=CB(x)=D(x)(x\in A)}{\Pi(A,B)=\Pi(C,D)}$

Π-introduction:
$\frac{b(x)\in B(x)(x\in A)}{\lambda(b)\in\Pi(A,B)}\frac{b(x)=d(x)\in B(x)(x\in A)}{\lambda(b)=\lambda(d)\in\Pi(A,B)}$

Π -elimination:

$\frac{c\in\Pi(A,B)a\in A}{Ap(c,a)\in B(a)}\frac{c=f\in\Pi(A,B)a=d\in A}{Ap(c,a)=Ap(f,d)\in B(a)}$

Π -equality:

$\frac{a\in Ab(x)\in B(x)(x\in A)}{Ap(\lambda(b),a)=b(a)\in B(a)}\frac{c\in\Pi(A,B)}{\lambda(x.Ap(c,x))=c\in\Pi(A,B)}$

Disjoint union of a family of types.
Σ -formation:

$\frac{B(x)type(x\in A)}{\Sigma(A,B)type}\frac{A=CB(x)=D(x)(x\in A)}{\Sigma(A,B)=\Sigma(C,D)}$

Σ -introduction:
$B(x)$ type $(x\in A)$ $B(x)$ type $(x\in A)$

$a\in A$ $b\in B(a)$ $a=c\in A$ $b=d\in B(a)$

$\overline{(a,b)\in\Sigma(A,B)}\overline{(a,b)=(c,d)\in\Sigma(A,B)}$

$\Sigma- e\lim\dot{n}ation$:
$C(z)$ type $(z\in\Sigma(A, B))$

$\frac{c\in\Sigma(A,B)d(x,y)\in C((x,y))(x\in A,y\in B(x))}{E(c,d)\in C(c)}$

$C(z)$ type $(z\in\Sigma(A, B))$

$\frac{c=e\in\Sigma(A,B)d(x,y)=f(x,y)\in C((x,y))(x\in A,y\in B(x))}{E(c,d)=E(e,f)\in C(c)}$

Σ -equality:

$\frac{a\in Ab\in B(a)d(x,y)\in C((x,y))(x\in A,y\in B(x))}{E((a,b),d)=d(a,b)\in C((a,b))}$

124

Disjoint union of two types.
$+$ -formation:

$\frac{AtypeBtype}{A+Btype}\frac{A=CB=D}{A+B=C+D}$

$+$ -introduction:
$\frac{a\in ABtype}{i(a)\in A+B}\frac{a=c\in ABtype}{i(a)=i(c)\in A+B}$

$\frac{Atypeb\in B}{j(b)\in A+B}\frac{Atypeb=d\in B}{j(b)=j(d)\in A+B}$

$+$ -elimination:

$C(z)$ type $(z\in A+B)$

$c\in A+B$ $d(x)\in C(i(x))(x\in A)$ $e(y)\in C(j(y))(y\in B)$

$D(c, d, e)\in C(c)$

$C(z)$ type $(z\in A+B)$

$c=f\in A+B$ $d(x)=g(x)\in C(i(x))(x\in A)$ $e(y)=h(y)\in C(j(y))(y\in B)$

$\overline{D(c,d,e)=D(f,g,h)\in C(c)}$
$+$ -equality:

$\frac{a\in Ad(x)\in C(i(x))(x\in A)e(y)\in C(j(y))(y\in B)}{D(i(a),d,e)=d(a)\in C(i(a))}$

$\frac{b\in Bd(x)\in C(i(x))(x\in A)e(y)\in C(j(y))(y\in B)}{D(j(b),d,e)=e(b)\in C(j(b))}$

Identity relation.
I-formation:

$\frac{a\in Ab\in A}{I(A,a,b)type}$ $\frac{A=Ca=c\in Ab=d\in A}{I(A,a)b)=I(C,c,d)}$

I-introduction:
$\frac{a=b\in A}{r\in I(A,a,b)}\frac{a=b\in A}{r=r\in I(A,a,b)}$

I-elimination:
$\frac{c\in I(A,a,b)}{a=b\in A}$

$\frac{C(z)type(z\in I(A,a,b))c\in I(A,a,b)d\in C(r)}{J(c,d)\in C(c)}$

$\frac{C(z)type(z\in I(A,a,b))c=e\in I(A,a,b)d=f\in C(r)}{J(c,d)=J(e,f)\in C(c)}$

I-equality:

$\frac{a=b\in Ad\in C(r)}{J(r,d)=d\in C(r)}$

Finite types.
N_{n} -formation:

N_{n} type $N_{n}=N_{n}$ $(n=0,1, \ldots)$

125

N_{n} -introduction:

$m_{n}\in N_{n}$ $m_{n}=m_{n}\in N_{n}$ $(m=0,1, \ldots, n-1)$

N_{n} -elimination:

$\frac{C(z)type(z\in N_{n})c\in N_{n}.c_{m}\in C(m_{n})(m=0,1,\ldots,n-1)}{R_{n}(c,c_{0},..,c_{n-1})\in C(c)}$

$\frac{C(z)type(z\in N_{n})c=.d\in N_{n}c_{m}=d_{m}\in.C(m_{n})(m=0,1,\ldots,n-1)}{R_{n}(c,c_{0},..,c_{n-1})=R_{n}(d,d_{0},..,d_{n-1})\in C(c)}$

N_{n} -equality:

$\frac{c_{m}\in C(m_{n})}{R_{n}(m_{n},c_{0},\ldots,c_{n-1})=c_{m}\in C(m_{n})}$ $(m=0,1, \ldots, n-1)$

Natural numbers.
N-formation:

N type $N=N$

N-introduction:

$0\in N$ $\frac{a\in N}{S(a)\in N}$ $0=0\in N$ $\frac{a=b\in N}{S(a)=S(b)\in N}$

N-elimination:

$\frac{c\in Nd\in C(0)e(x,y)\in C(S(x))(x\in N,y\in C(x))}{R(c,d,e)\in C(c)}$

$\frac{c=f\in Nd=g\in C(0)e(x,y)=h(x,y)\in C(S(x))(x\in N,y\in C(x))}{R(c,d,e)=R(f,g,h)\in C(c)}$

N-equahty:

$\frac{d\in C(0)e(x,y)\in C(S(x))(x\in N,y\in C(x))}{R(0,d,e)\in C(0)}$

$\frac{a\in Nd\in C(O)e(x,y)\in C(S(x))(x\in N,y\in C(x))}{R(S(a),d,e)=e(a,R(a,d,e))\in C(S(a))}$

Well-orderings.
$W- f_{01}mation$:

$\frac{B(x)\ddagger ype(x\in A)}{W(A,B)type}\frac{A=CB(x)=D(x)(x\in A)}{W(A,B)=W(C,D)}$

W-introduction:

$\frac{a\in Ab\in B(a)arrow W(A,B)}{\sup(a,b)\in W(A,B)}\frac{a=c\in Ab=d\in B(a)arrow W(A,B)}{\sup(a,b)=\sup(c,d)\in W(A,B)}$

W-elimination:
$C(w)$ type $(w\in W(A, B))$

$c\in W(A, B)$

$\frac{d(x,y,z)\in C(\sup(x,y))(x\in A,y\in B(x)arrow W(A,B),z\in\Pi(B(x),v.C(Ap(y,v))))}{Tr(c,d)\in C(c)}$

126

$C(w)$ type $(w\in W(A, B))$

$c=e\in W(A, B)$

$\frac{d(x,y,z)=f(x,y,z)\in C(\sup(x,y))(x\in A,y\in B(x)arrow W(A,B),z\in\Pi(B(x),v.C(Ap(y,v))))}{Tr(c,d)=Tr(e,f)\in C(c)}$

W-equality:

$a\in A$

$b\in B(a)arrow W(A, B)$

$\frac{d(x,y,z)\in C(\sup(x,y))(x\in A,y\in B(x)arrow W(A,B),z\in\Pi(B(x),v.C(Ap(y,v))))}{Tr(\sup(a,b),d)=d(a,b,\lambda(v.Tr(Ap(b,v),d)))\in C(\sup(a,b))}$

Universes.
U_{n} -formation:

U_{n} type $U_{n}=U_{n}$

U_{n} -introduction:

$\frac{A\in U_{n}B(x)\in U_{n}(x\in A)}{\Pi(A,B)\in U_{n}}\frac{A=C\in U_{n}B(x)=D(x)\in U_{n}(x\in A)}{\Pi(A,B)=\Pi(C,D)\in U_{n}}$

$\frac{A\in U_{n}B(x)\in U_{n}(x\in A)}{\Sigma(A,B)\in U_{n}}\frac{A=C\in U_{n}B(x)=D(x)\in U_{n}(x\in A)}{\Sigma(A,B)=\Sigma(C,D)\in U_{n}}$

$\frac{A\in U_{n}B\in U_{n}}{A+B\in U_{n}}\frac{A=C\in U_{n}B=D\in U_{n}}{A+B=C+D\in U_{n}}$

$\frac{A\in U_{n}a\in Ab\in A}{I(A,a,b)\in U_{n}}\frac{A=C\in U_{n}a=c\in Ab=d\in A}{I(A,a,b)=I(C,c,d)\in U_{n}}$

$N_{0}\in U_{n}$ $N_{0}=N_{0}\in U_{n}$

$N_{1}\in U_{n}$ $N_{1}=N_{1}\in U_{n}$

$N\in U_{n}$ $N=N\in U_{n}$

$\frac{A\in U_{n}B(x)\in U_{n}(x\in A)}{W(A,B)\in U_{n}}\frac{A=C\in U_{n}B(x)=D(x)\in U_{n}(x\in A)}{W(A,B)=W(C,D)\in U_{n}}$

$U_{0}\in U_{n}$ $U_{0}=U_{0}\in U_{n}$

$U_{n-1}\in U_{n}$ $U_{n-1}=U_{n-1}\in U_{n}$

U_{n} -elimination:
$\frac{A\in U_{n}}{Atype}\frac{A=B\in U_{n}}{A=B}$

$\frac{A\in U_{n}}{A\in U_{n+1}}\frac{A=B\in U_{n}}{A=B\in U_{n+1}}$

