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I. INTRODUCTION

A superimposed through flow in Rayleigh-B\’enard convection exerts a pattern selection
mechanism that the convection roll is forced to be aligned in a longitudinal direction, i.e.,
parallel to the flow direction, if the flow field has an infinite extent. A longitudinal roll
sets in for $Ra>Ra_{c}(Re)$ where $Ra$ is the Rayleigh number and $Ra_{c}$ denotes the critical
Rayleigh number latter of which is a function of the Reynolds number, $Re$ . Imagine that
the through flow has a finite critical Reynolds number as is the case in plane Poiseuille
flow. The longitudinal roll can then be critical for $0\leq Re<Re_{LT}^{*}$ whereas a transverse
traveling-wave, which is uniform in the direction perpendicular to the flow, becomes the
critical mode for $Re>Re_{LT}^{*}$ as was clarified by Gage &Reid.1 Here we denote $Re_{LT}^{*}$

as a cross-over Reynolds number between the critical longitudinal roll and the critical
transverse traveling-wave. It is thus natural to expect that a longitudinal roll interacts
with a transverse traveling-wave, non-resonantly, in the neighborhood of the cross-over
point, $(Ra, Re)=(Ra^{*}, Re_{LT}^{*})$ .

Nonlinear interactions between longitudinal rolls and transverse modes have recently
been analyzed in thermal convection systems with mean shears: Rayleigh-B\’enard convec-
tion in plane Couette flow,2 Rayleigh-B\’enard convection in plane Poiseuille flow with an
existence of side walls,3,4 heated concentric annuli with rotation,5 and an inclined heated
slot.6 In refs.3,5, and 6, non-resonant cubic amplitude equations predict an existence of a
stable mixed mode composed of a longitudinal component and a transverse component.
Moreover, in refs.5 and 6, the mixed mode bifurcates from a subcritical region with re-
spect to the longitudinal roll. These seem to be a common feature of the mode interaction
between a supercritical transverse mode and a supercritical longitudinal mode. But very
recently, the mixed mode solution in Rayleigh-B\’enard convection with plane Poiseuille
flow was shown to be unstable in ref.4.

Let us concentrate our attention on the Rayleigh-B\’enard convection in plane Poiseuille
flow. Brand et al.3 considered an interaction between a transverse roll and a longitudinal
roll in the convection with weak through flow under an existence of side walls. The existence
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forces the transverse roll be the critical for small Reynolds number, $0\leq Re\leq Re_{TL}^{*}$

say, while a longitudinal roll becomes critical if $Re$ exceeds $Re_{TL}^{*}$ where $Re_{TL}^{*}$ denotes
another cross-over Reynolds number between the transverse roll and the longitudinal one.
According to Platten&Legros,7 $Re_{TL}^{*}\sim 10$ or less for $1\leq P\leq 453$ and for two aspect
ratios, 2 and 5.2. Brand et al.3 assumed a smallness of $Re_{TL}^{*}$ and introduced coupled
Ginzburg-Landau equations as model which describes the spatio-temporal evolution of
disturbance amplitudes in the neighborhood of $(Ra, Re)=(Ra^{*}, Re_{TL}^{*})$ . They showed the
existence of a stable mixed mode and also demonstrated how two modes switches with
each other spatio-temporally as an initial value problem. M\"uller et al.4 re-examined the
same problem but with more rational fashion. They derived coupled Ginzburg-Landau
equations on a weakly nonlinear basis under a strong assumption about the side-wall
effects and concluded that the mixed mode solution is unstable. They also demonstrated
spatio-temporal evolution of both modes.

In the present paper, we consider a case that the Rayleigh-B\’enard convection with
plane Poiseuille flow is in two horizontal plates with infinite extent. In the case of the
interaction between a longitudinal roll and a transverse traveling-wave in the neighborhood
of $(Ra, Re)=(Ra^{*}, Re_{LT}^{*})$ , the cross-over Reynolds number $Re_{LT}^{*}$ is large enough, i.e.,
$5490<Re_{LT}^{*}<Re_{c}=5772.2218$ for $P\geq 0.001$ . The traveling wave should therefore
be regarded as the Tollmien-Schlichting wave so that the wave itself exhibits a subcritical
feature. An interaction between the transverse traveling-wave and a longitudinal roll is
expected to yield quite different bifurcation characteristics from what have been obtained
in the previous investigations on supercritical/supercritical mode interactions.

The objective of the present paper is to clarify bifurcation characteristics which arise
in mode interactions between a supercritical longitudinal roll and a subcritical transverse
traveling-wave. Our approach to investigate is on a weakly nonlinear basis which is cbn-
sistent with fluid dynamics equations up to the cubic order approximation. Amplitude
equations obtained on this basis cannot predict any existence of stable equilibrium peri-
odic solutions for subcritical Hopf bifurcations. Note however that the local bifurcation
characteristic in the isothermal plane Poiseuille flow helped $us$ substantially to understand
transition processes in shear flows. The local bifurcation characteristics obtained in the
present paper should therefore provide us physically as well as mathematically important
and interesting informations as we will see later.

After deriving nonlinear disturbance equations in \S 2, we reduce the nonlinear distur-
bance equations to two coupled amplitude equations on a weakly nonlinear basis in \S 3,
and examine their bifurcation characteristics in \S 4.

II. MATHEMATICAL FORMULATION
Consider two horizontal parallel plates with infinite extent located at $z^{*}=\pm H$ .

Temperatures on the lower plate and the upper plate are maintained at $T_{0}+\triangle T$ and
$T_{0}-\triangle T$ , respectively, where $T_{0}$ and $\Delta T$ are positive constants. We impose a pressure
gradient in x-direction which drives the plane Poiseuille flow between the plates. Governing
equations of momentum, energy, and continuity are

$\rho[\frac{\partial v^{*}}{\partial l^{*}}+(v^{*}\cdot\nabla^{*})v^{*}]=-\nabla^{*}p^{*}-\rho g[1-\alpha(T^{*}-T_{0})]e_{z}arrow+\mu\nabla^{*2}v^{*}$ ,
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$\frac{\partial T^{*}}{\partial l^{*}}+(v^{*}\cdot\nabla^{*})T^{*}=\kappa\nabla^{*2}T^{*}$, (2.1)

$\nabla^{*}v^{*}=0$ ,

where $\rho$ is the density, $g$ is the acceleration due to gravity, $\alpha$ is the thermal expansion
coefficient, $\mu$ is the viscous coefficient, $\kappa$ is the thermal diffusivity, $v^{*}$ is the velocity
vector, $p^{*}$ is the pressure, and $\tau*$ is the temperature.

We nondimensionalize all the variables as usual : $(x^{*}, y^{*}, z^{*})=(Hx, Hy, Hz),$ $v^{*}=$

$U_{0}v,$ $t^{*}=Ht/U_{0},$ $\tau*=\triangle T\cdot T$ , and $p^{*}=\rho U_{0}^{2}p$ where $U_{0}$ denotes the center velocity of
the plane Poiseuille flow. We further split $v,$ $p$ , and $T$ into the basic state $(\overline{v},\overline{p},\overline{T})$ and
the disturbance $(\hat{v},\hat{p},\hat{T})$ . The basic state has the solution of the form of

$\overline{v}\equiv(\overline{u}, 0,0)=(1-z^{2},0,0)$ , $\overline{T}=-z$ . (2.2)

Elimination of the pressure terms yields the final form of the disturbance equations

$\partial_{t}(\hat{u}_{y}-\hat{v}_{x})+\overline{u}\partial_{x}(\hat{u}_{y}-\hat{v}_{x})+\overline{u}_{z}\hat{w}_{y}$

$=Re^{-1}\nabla^{2}(\hat{u}_{y}-\hat{v}_{x})-\partial_{y}(\hat{v}\cdot\nabla)\hat{u}+\partial_{x}(\hat{v}\cdot\nabla)\hat{v}$

$\partial_{t}\nabla^{2}\hat{w}+\overline{u}\nabla^{2}\hat{w}_{x}-\overline{u}_{zz}\hat{w}_{x}$

$=RaRe^{-2}P^{-1}\nabla_{2}^{2}\hat{T}+Re^{-1}\nabla^{4}\hat{w}$

$-\{\nabla^{2}(\hat{v}\cdot\nabla)\hat{w}-\partial_{z}[\partial_{x}(\hat{v}\cdot\nabla)\hat{u}+\partial_{y}(\hat{v}\cdot\nabla)\hat{v}+\partial_{z}(\hat{v}\cdot\nabla)\hat{w}]\}$ , (2.3)
$\partial_{t}\hat{T}+\overline{u}\hat{T}_{x}+\overline{T}_{z}\hat{w}=Re^{-1}P^{-1}\nabla^{2}\hat{T}-(\hat{v}\cdot\nabla)\hat{T}$,

$\hat{u}_{x}+\hat{v}_{y}+\hat{w}_{z}=0$ ,

where $Ra$ is the Rayleigh number defined by $\alpha g\triangle TH^{3}/\mu\kappa,$ $Re$ is the Reynolds number
defined by $U_{0}H\rho/\mu,$ $P$ is the Prandtl number defined by $\rho\kappa/\mu$ , and suffices attached to
the dependent variables denote the differentiation. Boundary conditions are imposed as

$\hat{u}=\hat{v}=\hat{w}=\hat{w}_{z}=\hat{T}=0$ at $z=\pm 1$ . (2.4)

III. WEAKLY NONLINEAR REDUCTION

We now derive coupled amplitude equations which govern the temporal evolution of
complex amplitude functions for transverse traveling-waves and for longitudinal rolls in
the neighborhood of the cross-over point.

Let

$[\hat{u},\hat{v},\hat{w},\hat{T}]^{T}=(\epsilon\vec{\Psi}_{1}+\epsilon^{3}\vec{\Psi}_{1}^{(1)}+\ldots)E_{1}+(\epsilon\vec{\Psi}_{2}+\epsilon^{3}\vec{\Psi}_{2}^{(1)}+\ldots)E_{2}$

$+ \epsilon^{2}\sum_{m,n=-2}\vec{\Psi}_{mn}E_{m}E_{n}+h.0.t$
. $+c.c$ . (3.1)

where $\epsilon^{2}\equiv 1/Re_{c}-1/Re,$ $E_{n}\equiv\exp[i\alpha_{n}(x-c_{n}t)+i\beta_{n}y]$ , and the suffices 1 and 2
respectively denote the transverse traveling-wave and the longitudinal roll. Therefore,
$\alpha_{2}=c_{2}=\beta_{1}=0$ . We also set $Ra-Ra_{c}\equiv\epsilon^{2}\tilde{R}$ where $\tilde{R}\sim 1$ .
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For later convenience, we introduce the following linear operators:

$L_{mn}=($ $i\alpha_{0^{mn^{mn}}}$
$-\alpha_{m,i\beta_{0}^{n_{mn}}}\mathcal{M}_{mn}0$ $i\beta_{mn}\overline{u}_{z}\mathcal{L}_{\frac{}{T}}^{\partial_{m_{z}^{z}n}}$ $-i(\alpha^{RaRe^{-2}P_{mn}^{-1}}c)_{mn}+i\alpha 0_{(\alpha_{mn}^{2}+\beta_{m}^{2})}0_{\overline{u}-Re^{-1}P^{n_{-1}}S_{mn}}$ ),

$L_{mn,Re^{-1}} \equiv\frac{\partial L_{mn}}{\partial Re^{-1}},$ $L_{mn,Ra} \equiv\frac{\partial L_{mn}}{\partial Ra}$ , $M_{mn}\equiv(\begin{array}{llll}i\beta_{mn} -i\alpha_{mn} 0 00 0 0 00 0 S_{mn} 00 0 0 1\end{array})$ ,

where
$\mathcal{M}_{mn}\equiv(\alpha c)_{mn}-\alpha_{mn}\overline{u}-iRe^{-1}S_{mn}$ ,

$\mathcal{L}_{mn}\equiv-i(\alpha c)_{mn}S_{mn}+i\alpha_{mn}\overline{u}S_{mn}-i\alpha_{mn}\overline{u}_{zz}-Re^{-1}S_{mn}^{2}$ ,

$\alpha_{mn}\equiv\alpha_{m}+\alpha_{n}+\ldots,$ $\beta_{mn}\equiv\beta_{m}+\beta_{n}+\ldots$ ,
$(\alpha c)_{mn}\equiv\alpha_{m}c_{m}+\alpha_{n}c_{n}+\ldots$ , and $S_{mn}\equiv\partial_{zz}-\alpha_{mn}^{2}-\beta_{mn}^{2}$ .

We apply the method of multiple scales by introducing

$t_{n}\equiv\epsilon^{2n}t$ ,
$\partial/\partial t=\sum_{n=0}\epsilon^{2}$

“
$\partial/\partial t_{n}$ . (3.2)

Substitution of (3.1) and (3.2) into (2.3) and equating coefficients of $\epsilon^{j}E_{1}^{m}E_{2}^{n}$ to zero, we
obtain a system of equations for $\tilde{\Psi}_{mn}^{(k)}$ as follow$s$ . At $o(\epsilon)$ , linear equations

$L_{j}\vec{\Psi}_{j}(t_{1},t_{2}, \ldots ; z)=0,$ $j=1,2$ , (3.3)

are obtained. Because the operator $L_{j}$ does not involve an explicit time dependence, the
solution $\vec{\Psi}_{j}$ is expressed as $\vec{\Psi}_{j}=A_{j}(t_{1},t_{2}, \ldots)\vec{\Phi}_{j}(z)$ where $A_{j}$ is a complex amplitude
function whose evolution is governed by coupled amplitude equations derived just below.

At $O(\epsilon^{2})$ , we obtain equations for $\vec{\Psi}_{11},\vec{\Psi}_{12},\vec{\Psi}_{22},\vec{\Psi}_{-11},\vec{\Psi}_{-12},\vec{\Psi}_{-22}$ whose solutions are
expressed as $A_{1}^{2}\vec{\Phi}_{11}(z),$ $A_{1}A_{2}\vec{\Phi}_{12}(z),$ $A_{2}^{2}\vec{\Phi}_{22}(z),$ $|A_{1}|^{2}\vec{\Phi}_{-11}(z),$ $\overline{A_{1}}A_{2}\vec{\Phi}_{-12}(z),$ $|A_{2}|^{2}\vec{\Phi}_{-22}(z)$ ,
respectively.

Finally at $O(\epsilon^{3})$ , we obtain equations for the deformations of the fundamental modes
caused by nonlinear interactions:

$L_{j} \vec{\Psi}_{j}^{(1)}=-M_{j}\vec{\Phi}_{j}\frac{\partial A_{j}}{\partial t_{1}}+L_{j,Re}-\iota\vec{\Phi}_{j}\cdot A_{j}-\tilde{R}L_{j,Ra}\vec{\Phi}_{j}\cdot A_{j}+A_{j}\sum_{k=1}^{2}|A_{k}|^{2}\vec{N}_{-kkj}$ , (3.4)

where $N_{-kkj}$ denotes the nonlinear term whose explicit form is not listed here. The
solvability condition for $\vec{\Psi}_{j}^{(1)}$ yields coupled amplitude equations of the form of

$\frac{dA_{j}}{dt_{1}}=\tilde{\lambda}_{j}A_{j}+\sum_{k=1}^{2}\lambda_{-kkj}|A_{k}|^{2}A_{j},$ $j=1,2$ , (3.5)
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where
$\tilde{\lambda}_{j}\equiv\lambda_{j}^{(Re)}+\tilde{R}\lambda_{j}^{(Ra)}\equiv\langle L_{j,Re^{-1}}\vec{\Phi}_{j}\rangle_{j}-\tilde{R}\langle L_{j,Ra}\tilde{\Phi}_{j}\rangle_{j}$ ,

$\lambda_{-kkj}\equiv\langle\vec{N}_{-kkj}\rangle_{j}$ ,

$\langle\vec{Q}(z))_{j}\equiv\int_{-1}^{1}\tilde{\Phi}_{j}(z)\vec{Q}(z)dz/\int_{-}^{1_{1}}\tilde{\Phi}_{j}M_{j}\overline{\Phi}_{j}dz$ ,

for arbitrary function $Q(z)$ . The adjoint function $\tilde{\Phi}_{j}(z)=[0,0,\tilde{w}_{j},\tilde{T}_{j}]^{T}$ is a solution of
the adjoint equation

$[-i\alpha_{1}(\overline{u}-c_{1})S_{1}+2i\alpha_{1}\overline{u}_{z}d/dz-Re^{-1}S_{1}^{2}]\tilde{w}_{1}+\overline{T}_{z}\tilde{T}_{1}=0$ ,

$RaRe^{-2}P^{-1}\alpha_{1}^{2}\tilde{w}_{1}+[i\alpha_{1}(\overline{u}-c_{1})-Re^{-1}P^{-1}S_{1}]\tilde{T}_{1}=0$,

for transverse traveling-waves while

$-Re^{-1}S_{2}^{2}\tilde{w}_{2}+\overline{T}_{z}\tilde{T}_{2}=0$ , $RaRe^{-2}P^{-1}\beta_{2}^{2}\tilde{w}_{2}-Re^{-1}P^{-1}S_{2}\tilde{T}_{2}=0$,

for longitudinal rolls. Both equations are subject to homogeneous boundary conditions.
Coefficients involved in (3.5) are evaluated numerically for some particular Prandtl

numbers under a constant pressure gradient condition. Numerical accuracy become$s$ worse
as the Prandtl number increases. No reliable numerical coefficient was obtained for $P\geq$

1000.

IV. BIFURCATION CHARACTERISTICS AND DISCUSSIONS

In what follow$s$ , we utilize the original time scale $t$ instead of the slow ones, $t_{n},$ $n\geq 1$

for simplicity. If we set $\epsilon A_{j}=a(j)e^{i\theta_{j}(t)}$ and $\epsilon^{2}\tilde{\lambda}_{j}=\lambda_{j}$ , the amplitude equation (3.5) for
$A_{1}$ and $A_{2}$ are written in the form of

$da_{1}/dt=a_{1}(\lambda_{1r}+\lambda_{-111r}a_{1}^{2}+\lambda_{-221r}a_{2}^{2})$ ,
$da_{2}/dt=a_{2}(\lambda_{2}+\lambda_{-112}a_{1}^{2}+\lambda_{-222}a_{2}^{2})$ , (4.1)

$a_{1}d\theta_{1}/dt=a_{1}(\lambda_{1i}+\lambda_{-111i}a_{1}^{2}+\lambda_{-221i}a_{2}^{2})$ ,

where subscripts $r$ and $i$ respectively denotes the real and the imaginary parts of the
attached quantities. Equilibrium $s$olutions of (4.1) are categorized as follows:
a) pure transverse traveling-wave (PT) :

$a_{1}^{2}=-\lambda_{1r}/\lambda_{-111r}$ , $a_{2}^{2}=0$ , (4.2)

which is stable if $\lambda_{-111r}<0$ and $\lambda_{2}+\lambda_{-112}a_{1}^{2}<0$ ;
b) pure longitudinal roll (PL) :

$a_{1}^{2}=0$ , $a_{2}^{2}=-\lambda_{2}/\lambda_{-222}$ , (4.3)

which is stable if $\lambda_{-222}<0$ and $\lambda_{1r}+\lambda_{-221r}a_{2}^{2}<0$ ;
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c) mixed mode (M) :

$a_{1}^{2}= \frac{\lambda_{2}\lambda_{-221r}-\lambda_{1r}\lambda_{-222}}{\lambda_{-111r}\lambda_{-222}-\lambda_{-112}\lambda_{221r}},$ $a_{2}^{2}= \frac{\lambda_{1r}\lambda_{-112}-\lambda_{2}\lambda_{-111r}}{\lambda_{-111r}\lambda_{-222}-\lambda_{-112}\lambda_{-221r}}$ , (4.4)

which is stable if

${\rm Re}[a_{1}^{2}\lambda_{-111r}+a_{2}^{2}\lambda_{-222}$

$\pm\sqrt{(a_{1}^{2}\lambda_{-111r}+a_{2}^{2}\lambda_{-222})^{2}+4a_{1}^{2}a_{2}^{2}(\lambda_{-221r}\lambda_{-112}-\lambda_{-111r}\lambda_{-222})}]<0$ . (4.5)

We show schematic bifurcation diagrams in $ReRa$-plane in Fig.1 $(a)-(c)$ . Note that
the range of validity of the present analysis is strictly limited in the neighborhood of the
cross-over point $(Ra, Re)=(Ra^{*}, Re^{*})$ . In the figure, we exaggerated an existence region
of each solution exceedingly so as to be able to find each sectors in $ReRa$-plane, easily.
Bifurcation diagrams are distinguished into three types depending on the value of the
Prandtl number : $P\leq 0.44,0.45\leq P\leq 4.6$, and $P\geq 4.7$ . In each diagram, there are
four or five boundaries of different solutions and different stability characteristics. These
boundaries correspond to the linear critical curve for the tran$s$verse traveling-wave, the
critical condition for the longitudinal roll $(Ra_{c}=106.735111),$ $a_{1}=0$ and $a_{2}=0$ in (4.4),
i.e.,

$\lambda_{2}\lambda_{-221r}-\lambda_{1r}\lambda_{-222}=0$, and $\lambda_{1r}\lambda_{-112}-\lambda_{2}\lambda_{-111r}=0$ ,

and the stability boundary obtained from (4.5). The diagram for small $P$ (Fig. $1(a)$ ) differs
from the diagram for intermediate $P$ (Fig. $1(b)$ ) only upon a stability characteristic of the
mixed mode, $M$ , while the diagram for intermediate $P$ differs from the diagram for large $P$

(Fig. $1(c)$ ) upon the existing region of the mixed mode. The different existing region of the
mixed mode is due to a change of the sign of the denominator in (4.4) with the increase
of $P$ . The transverse traveling-wave has the subcritical feature. Indeed, $\lambda_{-111r}$ is positive
for all the values of the Prandtl number. In the case of the isothermal plane Poiseuille
flow, the cubic order Landau equation predicts that the Tollmien-Schlichting wave bifur-
cates subcritically at the linear critical point and the unstable equilibrium amplitude is

given by $\sqrt{-\lambda_{1r}(Re_{\overline{c}}^{1}-Re^{-1})/\lambda_{-111r}}$ whereas all the trajectories started from an initial
condition except for exact zero blow up to infinity for $Re>Re_{c}$ . In the present problem,
the pure transverse traveling-wave solution and the mixed mode solution which is com-
posed of the traveling wave component and the longitudinal one indeed exist as unstable
equilibrium solutions in a subcritical state $Re<Re^{*}$ . Remarkable and unexpected feature
is, however, that a mixed mode solution exists stably in a supercritical state for the small
and intermediate Prandtl number fluids, $P\leq 4.6$ (Fig.1 (a) and $(b)$ ), although the range
of existence in $ReRa$ -plane is relatively narrow.

We show $s$chematic trajectories in $a_{1}a_{2}$ -plane as Fig.2 corresponding to each set of
possible solutions and stability characteristics in Fig.1. In most of the cases, irrespective of
the existence of stable equilibrium solutions, the amplitude equations (3.5) predict another
trajectory, i.e., $a_{1}arrow\infty$ and $a_{2}arrow\infty$ . This suggests an existence of another stable mixed
mode solution with a large norm (hereafter referred to as $M_{\infty}$ ). The $M_{\infty}$ corresponds
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to the two-dimensional stable equilibrium solution in an isothermal plane Poiseuille flow
except for a region along the lower branch of the linear neutral stability curve. (Note
also that there exists stable equilibrium solution bifurcates supercritically along the lower
branch of the neutral stability curve.) Each $a_{1}a_{2}$-plane in Figs.2(a), (c), (e), (g), (h), (i),
(j), and (1) is divided into two basins of attraction. The separator denoted by dashed curve
can be determined only numerically.

We expect that the stable mixed mode, $M$ , bifurcates from the stable pure longitudinal
roll if the Reynolds number is gradually increased from zero while the Rayleigh number is
fixed to be slightly greater than $Ra^{*}$ . Otherwise, the mixed mode $M$ never be achieved.
Instead, any trajectory is attracted by another mixed mode with large norm, $M_{\infty}$ .

In the present paper, we derived the amplitude equations (3.5) on the weakly nonlinear
basis which is consistent with (2.3) up to the cubic order approximation. Even if we
further proceed to higher order weakly nonlinear approximations, unfortunately, the above
problems can never be resolved. Instead, we have to carry out a global analysis based upon
full numerical method, eg., a continuation method based on the Euler-Newton method,
to complete the bifurcation analysis for this physical setup. An evaluation of such global
bifurcated solutions should be complementary to the present work and will form a future
work.
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Fig.1 Schematic bifurcation diagrams. Letters without bracket denote stable equilibrium
solutions while bracketed letters denote unstable equilibrium solutions. “No $s\dot{o}$lution”
denotes that there is no equilibrium solution irrespective of the stability characteristics.
(a), $P\leq 0.44$ ; (b), $0.45\leq P\leq 4.6$ ; (c), $P\geq 4.7$ .
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(a) (b)

(C) (d)

Fig.2 Schematic trajectories for each set of possible solutions and their stability charac-
teristics in Fig.1. (a), PL ; (b), [PL] ; (c), [PT] ; (d), no solution ; (e), $M$ ; (f), [M] ;
(g), PL, [PT,$M$] ; (h), [PT,$M$] ; (i), $M$ , [PL] ; (j), PL, [M] ; (k), [M,PL] ; (1), PL, [PT].
Open circles denote unstable equilibrium solutions while closed circles denote stable ones.
Dashed curve$s$ denote separators dividing two basins of attraction.
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(e) (f)

(g) (h)
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