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1. Introduction

In 1974 Kashiwara-Kawai-Sjostrand showed the sufficient condition for the convergence
of all formal power series solutions for the following linear partial differential operators
of regular singular type with analytic coefficients in some neighborhood of the origin of
C"(n>2)

L(z,D)= Y z%awsD?, (1.1)
la|=1B|<m

where m is a positive integer and a,g’s are complex constants. Here we use the standard
notations of multi indices, Df = (8/dz,)” ---(8/8z,)P" and z* = z{'---z2" for z =
(z1,---z,) € C". They proved the following result.

Theorem 1.1. (cf. [3]) Suppose that the following condition

3 anp2°7f #0, (1.2)

laf=]8]=m

is satisfied for any z € C™ \ {0}, where z* = z® ...z and 3% = 7% ...28  Then,
for any f(z) analytic at the origin all formal power series solutions u(z) of the equation
L(z,D)u(z) = f(z) converges in some neighborhood of the origin.

They proved the result for somewhat more general operators than (1.1) admitting
perturbations. In the following, we call (1.2) as a K-K-S condition.

Inspired from this theorem, we shall study in this paper the Fredholm property in the
space of (formal) Gevrey classes for linear partial differential operators with analytic coef-
ficients in a neighborhood of the origin of C?. We consider regular and irregular singular
type operators including (1.1). We show that such a property is characterized by the
Riemann-Hilbert factorization condition for the Toeplitz symbol on the two dimensional
torus in C?. Here the Toeplitz symbols are introduced in a nautural way in connection
with the filtration with respect to the Gevrey order and it coincides with the symbol given
by Kashiwara-Kawai-Sjostrand in some special cases. (cf. (1.2) and (2.7)). Moreover, we
can give an alternative proof of Theorem 1.1 in case n = 2.

As to the geometrical relations between formal Gevrey spaces and the operators we
refer the reader to [9] and [10].
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2. Statement of the results

Let w; > 0 (j = 1,2) and s > 0. We set w = (wy,w;). Let C[[z]] be the set of all
formal power series

Clle]) = {u(m); we)= ¥ unx"/n!} |
neN?

If we denote by O({|z1] < w1} x {]z2] < wsy}) the set of holomorphic functions on a
domain {|z1| < w1} x {|z2] < wy} C C?, then we define the class of entire and Gevrey
spaces G, by

G2 = {ule) = Ty € Calli Dnglyy € O(flarl <} x flel < wad)f - 2

where factorial is understood as the gamma function, r! := I'(r + 1) for r > 0. G; can be
seen as a Frechét space by the following isomorphism of Frechét spaces

Cllz] > G, P =" O({]z1] < wi} x {|za| < wa}), (2.2)

where the Borel transformation is defined by

HED PSS unl I” O({lz| < w1} x {|z2f < ws}). (2.3)

neN gk neN

We note that G;, is equal to formal Gevrey space, the class of locally analytic functions and

entirely analytic functions with finite order in case s > 1, s = 1 and s < 1, respectively.
(cf. Lemma 3.1 which follows).

Let P = P(z, D,) be a partial differential operator of finite order with holomorphic
coefficients in a neighbourhood of the origin of C? and write it in the form,

P(z,D;)= >  ag(z)D?, (2.4)

BEN? |B|<m

where ag(z) is an analytic function of z in some neighborhood of the origin.

By substituting the Taylor expansion of ag(z), ag(z) = L, aapz® in (2.4) we have the
expression

P(z,D) =Y a.sz°DF. (2.5)
a,p

For % D? we define the s-Gevrey order of z*D? by
ord, z°Df := |B| + (1 - s)(Ja| — |8l). (2.6)
Then the s-Gevrey order of P in (2.5) is defined by

ord, P 1= sup{|] + (1 = 5)(lal = |61} ; aus # 0.



Here and in what follows we always assume that the s-Gevrey order of P(z, D) is finite.
This implies that P is of polynomial coefficients in case s < 1.

We shall define the Toeplitz symbol associated with P(z, D) by

Li(z¢) = > aapz* Pu P, £€R” (2.7)
|8l+(1-s)(Jal-18))=01d, P

We define the two dimensional torus T? by T? = {(zl, 2) € C¥lza| = 1, |20 = 1}. Then
we can prove the following

Theorem 2.1. The operator P : G; — G. is Fredholm of index zero in the sense

that the mapping has the same finite dimensional kernel and cokernel if the following
conditions are satisfied.

L,(Z,g) 71: 0 v(zl)z2) € Tz) V& € R2’ Igl = 1» 52 0- (28)
ind; L, = ind, L, = 0. (2.9)
Here ind, L, (resp. ind, L, ) is defined by
. 1
ind; L, = Y }§41|=1 dlog L (G, 22, 7). (2.10)

Remarks. (a) The conditions (2.8) and (2.9) are equivalent to a Riemann-Hilbert
factorization condition with respect to a certain closed subspace G, (1) of G§,(1) which
is isomorphic to the Hardy space and will be defined in the proof of Theorem 2.1. We have
to note that these conditions are necessary and sufficient condition for the Fredholmness of
a Toeplitz operator T¢ on G, () which will be reduced from the mapping P : G;, — G,
(cf. Theorem 4.1.)

(b) We note that the right-hand side of (2.10) is an integer-valued continuous function

of z; and 7. Because the sets |z,] = 1 and || = 1 are connected the integral (2.10) is
constant. Hence the right-hand side is independent of z, and 7. We write this quantity
by ind; L,. We similarly define ind; L,.

Corollary 2.2. Suppose that the K-K-S condition (1.2) is satisfied. Assume that
n = 2. Then the operator L : G, — G. is a Fredholm operator of index zero. Especially,
for f(z) analytic in a neighbourhood of the origin, if formal power series f(z) satisfies
P(z, D)u(z) = f(z) then u(z) is also analytic in a neighbourhood of the origin.

Proof. We shall show that (2.8) and (2.9) with s = 1. Let px := Zjaj=jgj=m Gapz*Z’.

Suppose that &€, # 0. If we make the change of variables z — wz = (wlfiﬂml, &;lzwzwg)
in the original equation (1.1), then the symbol px in (1.2) can be replaced by
> apz®ZPu P eal2=A12, (2.11)

la}=18l=m

45



46

If we set z — £/22 in (2.11) it follows that

LS(Z,f) =Pk, (212)

if 2 = (21,22) € T?, and € € R? satisfies that || = 1, > 0,£ # (1,0) and (0, 1). Because
both sides of (2.12) are analytic functions of z in some neighborhood of T? and £ in some
neighborhood of £ € R?,|¢| = 1,€ > 0 (2.12) holds in case £ = (1,0) or £ = (0, 1).
Therefore, (2.8) is direct consequence of a K-K-S condition. On the other hand, if we
make the deformation of a path 2y +— €21,z # 0 (¢ > 0) or 2z — €24,27 # 0 (¢ > 0) we
have (2.9). Hence, by Theorem 2.1, £ is a Fredholm operator (with an index zero) on G,
for every w > 0.

Next, let assume for a formal power series u(z) € C[[z]] it holds that Lu(z) = f(z) is
analytic in a neighbourhood of the origin. We may assume f(z) € G, for some w > 0.
Let u,(z) be a homogeneous polynomial of degree n. Then Lu,(z) is also homogeneous
of degree n by the definition of operator £. Hence, the basis of kernel of the mapping
L : GL — G consists of finite numbers of homogeneous polynomials. Therefore for
homogeneous polynomial f,(z) of degree n of sufficiently large n, there exists a unique
homogeneous polynomial u,(z) of degree n satisfying Lu,(z) = f.(z), since the uniquness
of solutions implies the solvability. This implies that the mapping £ : C[[z]] — C[[z]] is
also a Fredholm operator (with an index zero) and has the same dimensional kernel and
cokernel with the operator £ on G;. Therefore, the mapping

L Cll)l/G., — Cll=]}/G.,

is a Fredholm operator with an index zero. The above reasoning shows that this mapping
is surjective, and therefore is injective. This proves the latter half of the corollary.

3. Preliminary lemmas

We define the class G%(u) (u € R) by

qmw=%=§wﬁﬁgﬁwwﬁgw)<w} (3.1)

where factorial is understood as the gamma function, r! := I'(r + 1) for r > 0 and where
we set (|n] — (u/s)) =1if |n| — (1/s) < 0. G%(u) is a Banach space with the norm

nw=(;0m@ﬁgﬁfyﬁ

Lemma 3.1. Let the class G:, be defined by (2.1). Then we have

., = proj lim G (u) (3.2)



for every u € R.

Proof. Suppose that u(z) € G:(u) for any r < w. Then we have |u,| < Mr~7(|n| —
(p/s))t* for some M > 0 independent of n. Therefore we have, for |z,| < ry,

o (Il = )2
Z|UYI|| ‘| <MZT | l ml!s )

Clearly, the right-hand side converges for |z| < r
u€eg,.

Conversely, suppose that u = 3 u,z"/n! € G;. Then we have U(z) := 3, u,z"/|n|"* €
O({|z1]| € p1} x {|z2] < p2}) for any p < w. By Caucy’s formula we have

U(f)
Inl's (27” ?{cxi =p f(ﬂ =02 §n+1

Hence we have the estimate |v,| < Mp~" for some M > 0. Because p < w is arbitrary we
have u € G#(u) for any r < w. O

. Because r < w is arbitray we have

Uy 1=

Let X; (j = 1,2) be a positive number and set X = (X, X;). We denote by O(|z] <
X) the set of holomorphic functions on {z € C?; |z;| < X;,j = 1,2} and continuous on
its closure. For a(z) € O(|z| < X), we put ||a]|x := max, <x, |a(z)|. Then we have

Lemma 3.2. Let s > 1. Assume that a(z) € O(|z| < pw.) (p > 1), then for any

U(z) € G;,(1), we have a(z)U(z) € G;, (1) and there exists a constant C depending only
on u such that

uaUn<c( ) lall 01 (33)

Proof. We put a(z) = ¥ a,27/4! € O(|z| < pw). Then by Cauchy’s integral formula,
we have |a,| < ||allw,7!/(ow)?(y € N?). We put a(z)U(z) = T Vsz?/B!. Then we have

B!
Vs = Ugoyro————.
B8 03725[3% B B =)

Hence we have, for C; > 0

wh 2 ) 1 el w? :
5 (mirey) < WS (E, 0l )

B \0Zv<B

whB= ’
< bl ( 2 el s )

s ol by (Z i (‘Uﬂ"'um == wn)!f)
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) ol h%(lva g ),)2
< (—".ﬁ) Gl Wl ©

p

Lemma 3.3. Let p = |B| + (1 — s)(|a| — |Bl) be the s-Gevrey order of z*D?. Then
the map z°DP : G:(u) — G:,(0) is continuous. Moreover, for every € > 0 the map
z®DP : G (u+e) — G5(0) is a compact operator.

Proof. We first show that for every x < u the injection 4; G2, () — G%,(x) is compact.
Let B C G%(u) be a bounded set of Gf (). If we write u = 3, u,z"/n! € B, then for
each fixed 7 the set {u,; u € B} is bounded. Hence, by the diagonal argument, we can
choose a sequence {u¥} C B, u¥)(z) = T, ulFz"/n! such that for each n, ul — wu,
when k — co. Moreover we have that

u(k)_"_ ’ max(_l’”_“_'ﬁ o\
= (‘ T—or ) < e o & (‘ " ‘(Inl—%)!’)

[nl>N

(In| — &)
< K max -—=2— — 0 (n — ),
T N (ol = $)t

where K > 0 is independent of k and N. This proves that the sequence {u*)} converges
in G, (n).

In order to complete the proof we shall show that the map z*D#? : G2 () — G%,(0)
is continuous. By simple calculations

ghta=p 7

aDﬂzun =) u n - 8) Zuwﬁ—a

e (3.4)

Hence we have
u ﬂ___’?'__ i = w | Bt 1 (n—B8+a) ?
% (' e e G - a>!> 2 (' N BT oy R )] ) - (35)

If n is sufficiently large the term (n — f + «)!/(n — B)! can be estimated from the above
and from the below by n*. Therefore we have

B (= !
(lnl(l—mlﬁl jr)lal)!s (”(n f ;)?) < ClpUA-lab=n|lel _ ClppeBlabtal-n (36

for some constant C' is independent of 7. Because s(|8| —|®|) + || — ¢ = 0 the right-hand
side of (3.6) is bounded when || tends to infinity. By (3.4), (3.5) and (3.6) we see that
the map z*D? : G%,(u) — G2,(0) is continuous. O



Let p(n) be a function on N? such that

lp(n)| < Cn|™,Vn € N? (3.7)

for some C' > 0 and m > 0 indepehdent of . Then we define the Euler type pseudodif-
ferential operator p(8) on G% (1) by

p@)u =Y upp(mz™/nt, u=) u,e"/n! € G, (u), (3.8)

where we set 8 = (0y,3,), 0; = z;(8/0z;),7 = 1,2. We note that if p(n) = n; + n, then
p() =0+ isa so—ca]led Euler type dlfferentla,l operator. Then we have

Lemma 3.4. Let p(n) be a function on N? such that sup,>~ [P(7)] — O when
N — co. Then the map p(0) : G%(1) — G:,(u) is a compact operator for every p.

The proof of this lemma follows exactly the same arguments of the former half of the
proof of Lemma 3.3. Therefore we omit the proof.

4. Proof of Theorem 2.1.

Let m be an s-Gevrey oder of P. In view of Lemma 3.1 it is sufficient to prove that
for any r < w the map P : Gi(m) — G(0) is Fredholm of index 0. For every # we collect
o € N? such that |8] + (1—s)(|a| — |8]) < m and we denote the set by Cj. Since Cp is a
subset of N?, we can choose finite al)’s (j = 1,..., k) from Cj such that Cp is contained
in the union of sets ) + N2 for j =1,... k. We choose the set of )’ (j =1,...,k)
for each 5. By using this grouping of o we can write P in (2.5) in the following form

P(z,D,;) = > aepz®DP + > aagz® DP
1Bl+(1—s)(la|-|BD=m 1Bl+(1=s)(Ja|—|B])<m,a finite
+ > bap(z)z°D? =: Py(z,D) + Py(z,D) + Py(z, D),  (41)

[Bl+(1=s)(a|=|B])<m,a finite
where a,p are complex constants and bng(z) are analytic functions of z. We note that
Py(z, D) = 0if s < 1 by assumption.

Because the s-Gevrey order of terms in P; is small than m, it follows from Lemma
3.3 that the map P, : G5(m) — G%(0) is compact. On the other hand, since s > 1,
it follows from Lemmas 3.2 and 3.3 that the map P, : G:(m) — G%(0) is compact.
Therefore we shall consider the Fredholmness of Py : G¢ (m) — G%,(0).

By using the identity of ordinary differential equations

d* d({ d d
k _ —
thoy = t—dt(—dt—1> (ta—lsﬁ-l) k=1,2,...,

we have
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By substituting (4.2) into (4.1) we have

Py(z,D) = > aapz®DP =

aupe®Ppe(d).  (43)
|Bl+(1=5)(|a|—|B)=m 1Bl+(1=s)(ja]=|B)=m

We set <n>:= (14 |n|>)*/? and we denote by < 3> the Euler type pseudodifferential
operator with symbol <7 > given by (3.8).

Let v € Z* and let u = T u,z"/n! € G5, (). We set v, := u,w"/(|n| — (#/s))!*. Then
we have

n
27 <d>=hl Zu ol —m" <d>6- 1)|7|ZU w(|n| — __) E'_
n!

- Bys =1y 27
= 3w (il - By <ot 2
nt g
= Uy 1Y n ~| - _)|‘ <n-— fy>(1 )l m .
2 Un—y (Inl = =i
On the other hand, we see that u € G} (u) if and only if the sequence {v,} is in

£, := £5(Z?), the set of square summable sequences on Z*, where we set v, = 0 if ¢ N>.
By this identification, z7 < 3>~V induces the map

g¥ <d>Ch fy Y e py —s
(Inl = = (p/s))t (s-1) Ul
Vg W < -y Sl € L. 4.4
{ ’” (Inl = (u/s))te (n—tf =~ (44)
If we set £ = n/|n| and if we let || tends to infinity we see that

(Il = vl = (w/s))

(Il = (/) <n—n>6-h (77—';5-' = A\, (n) + r(n), (4.5)

where \,(n) = £7,€ = n/|n| and where r,(n) consists of term such that r,(n) — 0 when
n tends to infinity. We define the shift operator S, by

Sy {vn}ty € &a — {vy—y}, € Lo, (4.6)
It follows from (4.4), (4.5) and (4.6) that
27 <3 >0h= g ) (8)w” + R,(9) (4.7)
where R,(9) := S,r,(d)w".

Next we consider the operator <8>1P! ps(8). Because we have

s - zn
<0>H py(0) T w0 T = Y v (] - D <> pgln)



<8>"18l pg(8) induces the map

<8>7 P pg(8) : {vy} € by — {v, <n>"¥ pg(n)} € . (4.8)
We note that
<> py(n) = €8 +7(n), (4.9)
where 7(n) satisfies that supy,5, |#(n)| — 0 when 7 tends to infinity. Therefore we have
<8>7W pg(8) = As(8) + 7(D). (4.10)
We set
Qo =P, <o>"". (411)

Clearly, Qo : G () — G%(p) is bounded for every u. We want to show that @ is

Fredholm if and only if Py : G, (1) — Gi,(¢ + m) is Fredholm. Indeed, let R; and the
compact operator K;(j = 1,2) satisfy that

RiQo=1+K,, QoR,=I+K,, (4.12)

where I denotes the identity operator. Let us for the moment suppose that
Qo =<0>"" P+ K (4.13)
for some compact operator K. Because the map < 8 >™™: G} {(u) — G (u + m)

is bijective it follows from (4.12) and (4.13) that P, is a Fredholm operator. We can
similarly prove the converse.

It remains to prove (4.13). In view of (4.3), we shall consider the commutator
[27,<0>™™]:i=2"<0>™™ — <3>"™ 17,
where v = o — . We have, for u = 3, u,z"/n! € G, (1)
[27,<0>""u=12") u,z” (<n>"’” —<v+ n>‘m) /nl. (4.14)
1

By Taylor’s formula we have

1
<> —<y4+n>""= m/o - (n+sy)<n+sy>"™"2ds =: C,(n). (4.15)
It follows that A, (n) :=<n>™ C,(n) satisfies

sup <7>7 [Ay(n)] = 0, (4.16)
ini>N

when N — oco. Here the limit is uniform with respect to v when |y| — co. Therefore we
have

[27,<8>""] = 2" <3>"™ A,(9) (4.17)
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where A, () is the Euler type operator with symbol given by A,(n). It follows from (4.16),
(4.17) and Lemma 3.4 that [z7,<d>"™] is a compact operator. In order to show (4.13)
we note that the summation in P with respect to o and £ is a finite sum in case s # 1.
Hence the assertion is trivial. If s = 1, one may assume that |a,s| < Cp!*! for some p < 1
and C > 0 independent of o and . Because aqg is the Taylor coefficients of ag(z), which

is, by a scaling of z, analytic in a larger domain. This implies that we can assume p < 1.
Therefore it follows from (4.16) and lemma 3.4 that

3 Gaplz®F,<0> " pa(8) = 3 aapz® P <o — B>< 0> pa(8) <o — B> Aup(d)
a, B a, B

is a compact operator.

Next we want to show that the Fredholmness of the operator Qg given by (4.10) is
equivalent to that of a certain Toeplitz operator. To this end, we define the projection «
by

Tu= Y u.g’/nt for u= ) wu,z"/nl. (4.18)
neN’ neZ?

It follows from the definition of pg(8) in (4.2) that 2 Pps(8) < @ >~™ maps G (u) into
itself. Hence we have

Qo= Z anpz* Ppp(8)<0>"" =1 > anpz® P <d> (=1el=18) < 5 > ‘lﬁ‘pﬁ(a),
(4.19)
where the summation is taken for o and f such that || + (1 — s)(la| = |8]) = m. By
substituting (4.7) with v = o — 8 and (4.10) into (4.19) we have

QO = WZaaﬁ (Sa_ﬁ)\a_ﬂwa—ﬁ + Ra_g) (/\3 + 7‘) = WZ aagSa_ﬂw“"ﬁAa_ﬁ)\g

+ WZKQ/; = wzaaﬁsa_ﬂ)\aw“”ﬁ + ’N'Eaagl(qﬂ, (420)
where

Kop = Sa—pra—pW® PF + Rophp + Ra—st. (4.21)

We want to show that the second term in the right-hand side of (4.20) is a compact
operator. To this end, we note that for each « and 8, K,p is a compact operator by the
definition of the symbols R,—s and # and Lemma 3.4. Because the sum in the second
term in the right-hand side of (4.19) is a finite sum except for the case s = 1, the desired
compactness follows if s # 1. In case s = 1 we may assume that |a,s| < Cpl*! for some
C > 0 and 0 < p < 1 without loss of generality. In view of (4.21), it is sufficient to show
that the sum ¥, g aq 3 Ro—p is a compact operator. In view of the definition of R,_s in
(4.7) (v = o — ), the inequality, |(|n| — |v)!n!/(In|'(n — 7))| < 1 and (4.4) the symbol
@q,8Ta-p(n) tends to zero uniformly with respect to a and § when n — co. Hence we
have the assertion by Lemma 3.4.

The operator

Tw=m > g Sampha(8) : Gi (k) — G (k) (4.22)
181+(1=s)Jal~l8D=m



is called a Toeplitz operator. Here S,_g is considered as an operator on G%,(u) by the
isomorphism between £2 and G¢ (u). The function (2.7) is called the symbol of a Toeplitz
operator T'.

It follows from (4.19) that Q, is a Fredholm operator if and only if the Toeplitz operator
T is a Fredholm operator. By the obvious identification between G (1) and £,(N?) used in
(4.4) one may think T as an operator on £,(N?). Moreover, by the isomorphism between

£,(N?) and the Hardy space H 2('T?) one can also think T' as an operator on H2(T?). If
we take the cordinate (e, e®) € T? T is given by

T=m 2 Bapw®Pe @A) (D) : HY(T?) — H*(T?), (4.23)
1B1+(1=s)(le|-1B)=m

where )\,(D) is a pseudo-differential operator with the symbol A,(&) where £ is a covariable
of 8 = (64, 65).

In view of the arguments above, one may assume that 7" is a Fredholm operator. We
shall microlocalize T in the following way. Let ¢ > 0 and let £ € R?,|€| = 1. We define
the convex cone C(€,¢) and the projection ¢ respectively, by

C(¢,e) = {ne R | L ¢

In|
We define the closed subspace G, ((u) by

< e} , Ty upa/nti= > ur/nt. (4.24)
n

n€C(¢,e)nZ?

Goe(p) = {muu € G, (1)} (4.25)

+,¢(11) is a Banach space with the norm of G}, (). We define the microlocalized Toeplitz
operator T; of T in the direction £ by

Ty = mTme : Gy () — G (). (4.26)
We want to show that T : G5 (u) — G¢,(u) is a Fredholm operator if and only if, for

every £ €R2 € >0 T; is a Fredholm operator. We first show the necessity. In order to

see this, we take a finite number of (’s (|¢| =1, ¢ € R? ¢ > 0) and ¢ > 0 in such a way
that

N? = U, C(¢,e) NN (4.27)
and C((,e) N N? are distinct. It follows that we can decompose u € G¢,(u) into a direct

sum u = ), mu. Let n be one of (’s in the decomposition above. Then the equation
Tu = h can be written in the form

T Tmu+ Y, mTrou = m,h, vn. (4.28)
(#n

We decompose the space G;(u) into the direct sum G (1) = T G, (). Similarly we
decompose u = T, u¢ and h = T, h¢, where u¢ := m,u and h¢ := mh. If we define the
vector U and H by U := *(ut), and H := !(h¢), then (4.28) can be written in the form

Al = H. (4.29)
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Here the (1, () component of A is given by =, T'm.
Because T is a Fredholm operator it follows that

A: ECBG;,((N) - EB G, (1)
(

is a Fredholm operator. By setting u¢ = 0 if ( # n and u" = m,u in (4.29) we have, for
some compact operator K and ¢ > 0

[l T || + C; I Trgu|| + (| KuTl] 2 efje|]- (4.30)

Let ¢ be a vector in the interior of C(n, ) with integral components and let us define the
shift operator U, in the direction e by U. T, unz"/n! := T, up+.2"/n!. By replacing "
by Uru" for sufficiently large n in (4.30) we have

lm T UZu|| + 3l Ty U || + | KUZ | 2 el U2 7). (4.31)
{#n
We note that ||[Uru"|| = ||u?|| because U. is an isometry.

On the other hand, recalling that m, and U commute each other we have
T Ty Ulu" = UlmyTrgu” + [T, Ul mpu”. (4.32)

We easily see that [T, U?] is a compact operator by exactly the same arguments as in the
proof of (4.17). Next we shall estimate the term ||, T'm, UZw"|| for { # n. By the definition
of U, we see that the distance between the support of m,Uu" and the cone C((,¢) is
bounded from the below by c¢;n for some ¢; > 0 independent of n. It follows from (4.22)
that if 7, T, U™u" does not vanish, oo — § in (4.22) should satisfy that |o — B| > can for
some c; > 0. Because  moves on a finite set and a,g tends to zero when o tends to

zero, it follows that the norm |7 T'm,U™u?|| can be absorbed in ||u?|| when n is sufficiently
large. We fix such an integer n. Then, we have

i Trau”l] + | K" w7 2 &l]]] (4.33)

for some constant ' > 0 and a compact operator K'. Because 7 is arbitrary we see that
the localized operator m,T'm, : G3, . (u) — G, (1) is a Fredholm operator for every 7.

We shall show the sufficiency. Let us suppose that (4.33) is valid for every . We want
to show that, for every (

llme Tl + 3 llm Tl + WKWl 2 e 3 ]l (4.34)
n#{ 1 n

To this end, let us define the shift operators Uy by Ug =, unz/n! 1= T, tUnte(e)2" /1!,

where e(€) is a vector in the interior of the cone C(€,¢) with integral components. Let n

be an integer. We first prove the following, for some compact operator K and ¢ > 0

i T Uzué || = 3 W Ty Up|| + DI KUZ || 2 ¢ 30 |l (4.35)
n#( n n



We recall that U( is an isometry. We have n,T7 Ul = Uln Tn; + K; for some compact
operator K;. Hence it follows from (4.33) that

lIme T Ugu | 2 WU Treutl] = || Ky

2 |l Treul || = | Kyl > &'|fufl] — | K wf]| = [ K]l (4.36)

On the other hand, we can easily see by the argument in the proof of the necessity that
|7 Tm,Uru?|| for ¢ # n can be absorbed in ||u?|| if we take n sufficiently large. We fix
such an integer n. In view of (4.33) we have (4.35).

We can remove Uy and U7 in (4.35) by replacing K if necessary because the commu-
tators with T' and U["’s are compact and U["’s are isometries. If we take the summation
with respect to ¢ in (4.35) we see that the operator A is a Fredholm operator.

We define the freezed operator T, by

Tn =Ty Z aaﬁwa—ﬁsa_ﬁ/\a(?’]) : G:U,n(#’) N G:u,n(ﬂ)- (4.37)
1Bl+(1=3s)(|a|=|B])=m

We want to show that T, : G}, (1) — G, (k) is a Fredholm operator if and only if

Ty = Gy, (1) — G, (1) is a Fredholm operator. Indeed, suppose that m,T'7, is a
Fredholm operator. It follows from (4.33) that

I Toe”l| + 1K || 2 8[| = (T = m Ty )7

for some constant § > 0. In view of the definition of A,(9) in (4.22) and (4.37) we see
that the operator norm of T, — 7, T'w, tends to zero if ¢ — 0. This implies that the term

(T, = myT'my)u|| can be absorbed in é'||u”||. This implies that T, is a Fredholm operator.
The converse part will be proved similarly.

Now our theorem is the consequence of the following theorem.

Theorem 4.1. For every ¢ the map T; : G}, (1) — G, ¢(n) is a Fredholm operator if
and only if the conditions (2.8) and (2.9) are satisfied.

The proof of this theorem is purely based on the arguments of the theory of Toeplitz
operators. In oder to make the presentation selfcontained, it is necessary to prepare many
concepts, which would make this note considerably long. Hence we would like to omit

the proof and we refer the readers to [2] for the necessary tools in proving this type of
theorems.
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