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0. Introduction

In this article, we prove that there is an elegant relation between the conformal
factor and a group 2-cocycle on the formal loop group with valuesin SU(1, N+1),
and show that the trivial central extension of the Hauser group acts transitively
on the space of formal solutions of the Einstein-Maxwell field equations with
N abelian gauge fields. The corresponding 2-cocycle on the Lie algebra of the
formal loop group is the one which describes an affine Lie algebra [K]. This
relation was first found by [BM].

Now we derive the equations, which are our starting point, from the sta-
tionary axisymmetric Einstein-Maxwell field equations with N abelian gauge
potentials.

Let ds? = g,,dz* ® dz” be a metric on R'*3 and A = A,dz* an abelian
gauge potential with values in RY. Then the Einstein-Maxwell field equations
with N abelian gauge fields are given by

R,, =8rT,,, VF*=0 (p,v=0,1,23),
where R, is the Ricci curvature and

F,, =0,A, —0,A,,

1 K 1 Kt
TI“/ = Z;(F”n tFy - ZguyF,w tF )

We adopt the coordinates (2°,z!, 2%, 23) = (29, ¢, 2, p) with 2° being time and
(4, z, p) the cylindrical coordinates of R3. Stationary axisymmetric space-times
amount to the assumption that a metric is of the form

hoo  ho1

hio  h1y
-A 0
0 -



det h = —p?

where A > 0, hoy = hio and h = (h;;). The field A is called the conformal factor.

For abelian gauge potentials, we fix the gauge so as to A; = A3 = 0. Since
we assume that the fields are stationary and axisymmetric, the functions A;;’s,
A and A;’s depend only on z and p. Further, we fix the gauge as follows :

1 0
hl(z,p):(0,0) = (0 0) ’ Al(z,p):(O,O) = 0. (01)

Introducing the Ernst potentials u € R,v € CV constructed from h and A by
the standard method (cf. [DOJ[E]), we obtain

Proposition 0.1. The stationary azisymmetric Einstein-Mazwell field equa-
tions with N abelian gauge fields are equivalent to the following equations :

f(d*du+ p~ldp A xdu) = (du — 2v* dv) A *du
f(d*dv+ p~ldp A *dv) = (du — 2v*dv) A *dv

2= L

— (=0, = 20" 8,0)(Bu = 8. f — 0" 0,)

?((’Lv*apv + 0,0 8,0) (0.4)
22 %L 0 - e

4f2{(5 = 8, f — 20" 8,0)% — (Oyu— 8, f — 20" 8,v)%}

- 7(8,,11*6211 — 0,v*0,v), (0.5)

where v* =9, |v|? = v*v, f = Re u — |v|? and * is the Hodge operator given by
xdz = dp,*dp = —dz.

The first two equations are called the Ernst equations.

Corresponding to the gauge fixing (0.1), we shall consider the solutions under
the conditions

u|(z,p)=(0,0) =1 and vl(z,p):(0,0) = 0. (06)

It is essential to introduce the function 7 = f1/2X and we shall consider 7, in
stead of A, throughout this article.
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1. Ernst Equation

Let 6 be Cartan involution of GL(N + 2,C) defined by g — ¢*~! and G a
subgroup of GL(N + 2, C) defined by

{9€ GL(N +2,C);9"Jg=J, detg =1},

i

where J = ( N ) and 1y denotes the N x N identity matrix. Note that

Gis isomorph;c to SU(1, N +1). Let K be the subgroup of G such that each
element of K is fixed by 4.

We fix subgroups A and N of G as follows :

a
1n ;a>0
()
1 .
v 1n czeRveCVN
z+iv|?/2 @t 1

where |v|? = v*v. Then we have G = KAN (Iwasawa decomposition).

A

N

Let R be a ring of formal power series in z and p over C i.e. R = C[[z, p]].
We extend the complex conjugation * of C to a conjugation of R by defining
z=1z,p=p. Let Gg be a subgroup of GL(N + 2, R) defined by

{9€ GL(N +2,R);g"Jg=J,detg =1}.

Then, corresponding to G = KAN, Gg decomposes as Gg = Kr AgpNpg, where
Kpr, Ar and Npg denote subgroups of G'g consisting of matrices with values in
K, A and N respectively, each of whose components is an element of R.

Now we parametrize an element of Agp N as follows :
12 0 0
P= V2v 1n 0o |, (1.1)
(B +ilo’)/f12 V2ot fH? 2

where f and v are the same ones as in (0.2) and (0.3), and ¥ = Im u.

The following fact is well known.

Proposition 1.1. Under the parametrization of (1.1), we put M = P*P.
Then the Ernst equations (0.2) and (0.3) are equivalent to the following equation:

d(p*xdMM~1) =0. (1.2)



Moreover the function 7 is a solution of (0.4) and (0.5) if and only if it is a
solution of the following equations :

18,7 =-§tr(6,MM‘16pMM‘1) (1.3)
18,7 #%tr((ﬁpMM‘1)2 — (O, MM™1)?). (1.4)

The integrability of 7 follows easily from (1.3) and (1.4). Equation (1.2) is also

called the Ernst equation. We shall consider the solutions satisfying
Plis,0)=(00) = 1,

which corresponds to the gauge fixing condition (0.6).

It is also known that the equation (1.2) can be rewritten as the integrability
condition of a 1-form with values in g each of whose component is an element
of C(z,p) ®¢ C[[t]], where C(z, p) is the quotient field of R = C[[z, p]] and ¢
an indeterminate called “spectral parameter”. Namely, let A and 7 be 1-forms
defined by

A= -;-(dPP‘l —(dPP)*) I= %(dPP‘1 + (dPP)*)

for any P € AgrNg, and put

1-1¢2 2
QP_A+(].+t2_1+t2 *)I,

where * is the Hodge operator given by *dz = dp, xdp = —dz. We extend the
canonical exterior derivative d on C(z, p) to that on C(z, p) ®¢ C[[t]] by defining

t
dt = ——
1+t

Note then that d2¢ = 0. Now we have

(1 —t%)dp + 2td2) . (1.5)

Proposition 1.2. Qp satisfies the integrability condition, i.e.,
dQp - Qp AQp =0 (16)
-if and only if P is a solution of (1.2).
It follows from Proposition 1.2 that if P is a solution of the Ernst equation,

then there exists a potential p = ) -, pnt" such that each entry of p, is an
element of C(z, p) and

dp=SQp-p and pg=P. (1.7)
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2. Hauser Group

We introduce formal loop algebras and formal loop groups, following [T).

Put Fy = R = C[[z,p]] and F,, = p™ R for a nonzero integer n. We intro-
duce a topology in R by declaring that { F,,},>0 forms a fundamental neighbor-
hoods system of 0. Note that F,, F,, C F,4, for m,n 2 0.

Then we define a formal loop algebra Fgl by

}'g[:{X:ZXnt";Xneg[(N-’r?,Fn)}. | (2.1)

neZ
Let * be an anti-involution of Fgl defined by
X*=> Xr(-1/t)"
n€Z

for X = 3 .7 Xat". This is well-defined by the definition of our filtration
{Pk}nel-

We define a formal loop group FGy, following [T], by

FGo= {9 =Y gnt" € Fyl; g*Jg=J, detg =1, go|(z,0)=(0,0) = 1} (2.2)
nel

and its subgroups by

FK = {k = knt" € FGo; 0k = k} (2.3)

neZ
ﬂ’={p= > pat" € FGo; po € ArNr, pn =0if n < 0}. (2.4)
n€l

Since FGy is canonically embedded in Fgl, we can define an involution (>) of
FGo by

8()(g) = (¢*)™" for g € FGo,
which we call Cartan involution of FGL.

Then, using the Birkhoff decomposition ((3.17), [T]), we can decompose
uniquely an element g € G as

g=kp (k€FK, peFP). (2.5)

Let s be another indeterminate. Define an infinite dimensional group G(*),
which we call Hauser group, by

G = {g = gns" € GL(N +2,C[[s]]); g"Jg=J,det g=1,90 = 1},
n20



where C|[[s]] is a ring of formal power series in s over C and g* = )" g7 s".

Let j be a homomorphism of GL(N + 2,C[[s]]) into FGL given by
) n . 1 "
]:g:Egns .——)](g)=zgn(p(;—t)+2z) .

n20 n20

Then it is easy to see that j is injective and that the image of G(°) by j is
in FGo. We denote by FH the image of G(>) by j. The following equations
characterize the elements of #H in FG.

Lemma 2.1. An element g € FG belongs to FH if and only if g satisfies the
following equations :

1
Oig=—0p (BZ + ?0,,) g (2.6)
__f(14L |
Oig = 5 <1 + t2) d.9. (2.7)

This characterization will play an important role in the proof of our main theo-
rem.

Definition. Let FP be as in (2.4). We define SP to be a subset of 7P con-

sisting of elements p = Zn>o pnt™ which satisfy the following conditions :
dp = on p and pOI(z,p):(0,0) = 1. (28)
We call SP the space of potentials.

It follows from (2.8) that pg is a solution of the Ernst equation (1.2) for p =
Y >0 Pnt™ € SP.

Theorem 2.2. Letp € FP. Then p € SP if and only if p*p € FH.

Let p € SP and g € G(*). By (2.5) there exist k € FK and p, € FP such
that

p-ilg)=k""p, | (2.9)
Then, it follows immediately from Theorem 2.2 that p, is in SP. Thus we can
define an action of the Hauser group G(®) on SP to the right by
| SPxG®) — §Pp (p,9) — pg, (2.10)
where p, is given by (2.9).

From the fact that an element g = ano gns™ € G(®) such that g* = ¢

and such that go is positive definite decomposes as g = h*h for some h € G(*),
we have
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Corollary 2.3. The action of G(>) on SP given by (2.10) is transitive.

Remark. As we mentioned in [S], our group G(*) is too small to obtain all
solutions of the Ernst equation (1.2) through the action (2.10).

3. 2-Cocycle on FG,

The formal loop algebra Fgl becomes a Lie algebra with Lie bracket [X,Y] =
XY —YX. The map

exp: Fgl — FGL
given by

XxXn
epr = CX = Z 'n—' (31)
n20

is called the formal ezponential map. Note that for any ¢ € FGy we can find a
unique element X in Fgl such that g = X, since the logarithm given by

log (1+4) =) %An (3.2)
n21

1s well-defined and satisfies
elos(+4) — 1 4 4 (3.3)

for A=3" g ant" € Fglwith ap € gl(N +2, m), where m is the maximal ideal
of R.

For X,Y in Fgl let c,(X,Y) (n =1,2,---) be the elements in Fgl which
are determined by

expvX expvY = exp Z en(X,Y)o",
n20

where v is an indeterminate. Furthermore c,’s are uniquely determined by the
following recursion formulas (see [V]) :

Cl(X,Y) =X+Y
(n+ Densr(X,¥) = 2{X ~ ¥, en(X, V)]

+ Y K Y (X Y)[ e, (X Y), X +Y]] (n21),

p21,2p<n k1, ,k3p>0
ki+--+kap=n

where Kj,’s are determined by

z 1 9
T~ 3r=1+)  Kya®.
p21

We set C(X,Y) = 3 5 en(X,Y). Then C(X,Y) is a well-defined element of
Fglfor X,Y such that Xy, Yy € gl(N + 2, m).




Lemma 3.1. For n 2 2, there ezists a Fgl-valued function L,(-,-) which
satisfies

Cn(X7 Y) = [X’ Ln(X7 Y)] + [Y; Ln(_Y’ _X)] (34)
for X,Y € Fgl.

Note that L,’s are not uniquely determined, however, we fix L,’s so that
there holds

e2dX _14adX 1
L(X,vY) = ( A X (1 = c—2%) - :1-) Y + O(vz), (3.5)

where we put L(X,Y) = }° 5, La(X,Y) for X,Y € Fgl such that Xo,Y, €
gI(N + 2, m). Thus, we obtain

C(X,Y)=X+Y +[X, L(X,Y)] + [V, L(-Y, - X)).

For a series f =Y .5 fat™ € R[[t,t7']], we write
Rest f = f_l € R

Let Ro = R[[z, p]] C R, the formal power series in z and p over R. We define a
Ry-valued 2-cocycle w on Fgl by

w(X,Y) = Res; RetrX§,Y
for X,Y € Fgl. Note that
w(X*,Y*) = -w(X,Y) (3.6)

for X,Y € Fgl
Now we introduce a group 2-cocycle on FGy, following [BM]. Note that,

from (3.3), any element ¢ € FGq can be uniquely written as g = eX for X € Fgl
with Xo € gl(N + 2, m).
Definition. Let = be a Rp-valued function on Gy x FGg defined by
Z(eX,e¥) = w(X, L(X,Y)) + w(Y, L(-Y, —X)).
Then = defines a 2-cocycle on FGo, i.e. satisfies the cocycle condition :
E(eX,e¥) + Z(eXe¥,e?) = E(eY, e?) + E(e*, ¥ %) (3.7)

for X,Y,Z € Fgl.
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4. Central Extension

For any p € SP, we can find an element ¢ € FH which sends the identity
element 1 € SP to p by Corollary 2.2. Then we have p = kg for some k € FK.

Proposition 4.1. Forp=3}_ -,pnt" € SP, let g € FH and k € FK be such
that p = kg. Let 7 be a solution of (1.3) and (1.4) corresponding to P = po.
Then we have the following relations:

7710,7 =0,E(kg,97") - (41)
719,71 =08,Z(kg, g7 ") (4.2)
Now we define a central extension of FGg in terms of the cocycle Z.
Definition. Let (FGg)™ be the set given by
(FGo) ={(9,¢*); 9 € FGo,u € Ro}.
Define a product of any two elements of (FGo)™ by
(g1,€"?) - (g2,€"?) = (glgz,eul+"2+s(g”g2)) (4.3)
for (g1,€e"1),(gs,€*?) € (FGo) . Since Z satisfies the cocycle condition (3.7),
(FGo)™ forms a group with group multiplication given by (4.3). Namely, (FGo)~
is a central extenston of FGg.
Let 6(°) be an involution of (FGo)™ given by
6°)(g, e*) = (61)(g),e™*).

If we denote by (FK)~ the subgroup of (¥Go)™ consisting of elements whish are
fixed by (). then we have

(FKY = {(k,1) € (FGo)"; k € FK}.
Let (FP)™ be a subgroup of (FGo)™ given by
(.7:"P)~ = {(p’eﬂ) € (}-g0)~; P € fp)ﬂ' € RO}

It follows immediately from the decomposition (2.5) of FG that (FGo)™ has a
unique decomposition :

(FGo)” = (FK) - (FP)". (4.4)
Furthermore, we put

(FHY = {(9,¢") € (FGo)"; g € FH, y € R}.



It follows from Lemma 3.2, [HS2] that FH can be regarded as a subgroup of
(FH)™ by
FH — (FH), g+—(g,1).

Let (SP)” be the subset of (FP)™ given by
P ={(®e") € (FPF i p= L pat” €57,
n=20

T = e~ ¥ satisfies (1.3) and (1.4) with P = po}. (4.5)

We call (SP)™ the space of potentials with conformal factor.

Proposition 4.2. Forp € SP, let k € FK andg € FH be as above, i.e.
p=kg. Then we have

2(p*,p) = 2E(kg,97"). (4.6)

Therefore, any element of (SP)” can be written as (p, e~ 32T for p €
SP,vy €R.

Define an action of (FH)™ on the space of potentials with conformal factor
(SP)” to the right through the decomposition (4.4) :

(SP) x (FH)” — (SP)", ((p,e¥),(9,€7)) — (pg, €®)- (4.7)

Namely, we can find a unique element (k,1) € (FK)™ and (py,e*) € (FP) such
that ‘

| (p,e*)(g,€™) = (k, 1)} (pg, €%),
where k and p, are the elements given in (2.9). Since we have

8 ((p, e*)(g,€")) "t - (p, €*)(g,€") = (¢"p"pg, 2 ¥tV FE(".P))

and i )
0 (pg, €)™ - (g, %) = (p}pg, 2*+EFTP9)),

we obtain
1, . —_ %
a=p+7+ 5(E("p) - E(p5, py))
|
= - 525}, ps)

for some 4" € R, where we used Proposition 4.4. Thus (p,, e*) belongs to (SP),
i.e. the action (4.7) of (FH) is well-defined.

Now we state our main theorem :

Theorem 4.3. The group (FH)™ acts transitively on the space of polentials
with conformal factor (SPY by (4.7).
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