A Central Extension of a Formal Loop Group

Takashi Hashimoto¹ and Ryuichi Sawae²

1. Department of Mathematics, Faculty of Science, Hiroshima University, Higashi-Hiroshima, 724, Japan

e-mail: r3104@ math.sci.hiroshima-u.ac.jp

2. Department of Management and Information Science, Shikoku University,

Tokushima, 771-11, Japan

e-mail: sawae@ keiei.shikoku-u.ac.jp

0. Introduction

In this article, we prove that there is an elegant relation between the conformal factor and a group 2-cocycle on the formal loop group with values in SU(1, N+1), and show that the trivial central extension of the Hauser group acts transitively on the space of formal solutions of the Einstein-Maxwell field equations with N abelian gauge fields. The corresponding 2-cocycle on the Lie algebra of the formal loop group is the one which describes an affine Lie algebra [K]. This relation was first found by [BM].

Now we derive the equations, which are our starting point, from the stationary axisymmetric Einstein-Maxwell field equations with N abelian gauge potentials.

Let $ds^2 = g_{\mu\nu} dx^{\mu} \otimes dx^{\nu}$ be a metric on \mathbb{R}^{1+3} and $\mathbf{A} = \mathbf{A}_{\mu} dx^{\mu}$ an abelian gauge potential with values in \mathbb{R}^N . Then the Einstein-Maxwell field equations with N abelian gauge fields are given by

$$R_{\mu\nu} = 8\pi T_{\mu\nu}, \quad \nabla_{\kappa} \mathbf{F}^{\mu\kappa} = 0 \quad (\mu, \nu = 0, 1, 2, 3)$$

where $R_{\mu\nu}$ is the Ricci curvature and

$$\mathbf{F}_{\mu\nu} = \partial_{\mu}\mathbf{A}_{\nu} - \partial_{\nu}\mathbf{A}_{\mu},$$

$$T_{\mu\nu} = \frac{1}{4\pi}(\mathbf{F}_{\mu\kappa}{}^{t}\mathbf{F}_{\nu}{}^{\kappa} - \frac{1}{4}g_{\mu\nu}\mathbf{F}_{\kappa\iota}{}^{t}\mathbf{F}^{\kappa\iota}).$$

We adopt the coordinates $(x^0, x^1, x^2, x^3) = (x^0, \phi, z, \rho)$ with x^0 being time and (ϕ, z, ρ) the cylindrical coordinates of \mathbb{R}^3 . Stationary axisymmetric space-times amount to the assumption that a metric is of the form

$$g = \begin{pmatrix} h_{00} & h_{01} & & \\ h_{10} & h_{11} & & \\ & & -\lambda & 0 \\ & & 0 & -\lambda \end{pmatrix}$$

$$\det h = -\rho^2,$$

where $\lambda > 0$, $h_{01} = h_{10}$ and $h = (h_{ij})$. The field λ is called the conformal factor.

For abelian gauge potentials, we fix the gauge so as to $A_2 = A_3 = 0$. Since we assume that the fields are stationary and axisymmetric, the functions h_{ij} 's, λ and A_i 's depend only on z and ρ . Further, we fix the gauge as follows:

$$h|_{(z,\rho)=(0,0)} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{A}|_{(z,\rho)=(0,0)} = 0.$$
 (0.1)

Introducing the Ernst potentials $u \in \mathbb{R}$, $v \in \mathbb{C}^N$ constructed from h and A by the standard method (cf. [DO][E]), we obtain

Proposition 0.1. The stationary axisymmetric Einstein-Maxwell field equations with N abelian gauge fields are equivalent to the following equations:

$$f(d*du + \rho^{-1}d\rho \wedge *du) = (du - 2v^*dv) \wedge *du$$
(0.2)

$$f(d*dv + \rho^{-1}d\rho \wedge *dv) = (du - 2v^*dv) \wedge *dv$$
(0.3)

$$\frac{\partial_{z}\lambda}{\lambda} = -\frac{\partial_{z}f}{2f} + \frac{\rho}{2f^{2}}(\partial_{z}f\partial_{\rho}f)
- \frac{\rho}{2f^{2}}(\partial_{\rho}u - \partial_{\rho}f - 2v^{*}\partial_{\rho}v)(\partial_{z}u - \partial_{z}f - 2v^{*}\partial_{z}v)
+ \frac{\rho}{f}(\partial_{z}v^{*}\partial_{\rho}v + \partial_{z}v^{*}\partial_{\rho}v)
+ \frac{\partial_{\rho}\lambda}{\lambda} = -\frac{\partial_{\rho}f}{2f} + \frac{\rho}{4f^{2}}\{(\partial_{\rho}f)^{2} - (\partial_{z}f)^{2}\}
+ \frac{\rho}{4f^{2}}\{(\partial_{z}u - \partial_{z}f - 2v^{*}\partial_{z}v)^{2} - (\partial_{\rho}u - \partial_{\rho}f - 2v^{*}\partial_{\rho}v)^{2}\}
- \frac{\rho}{f}(\partial_{z}v^{*}\partial_{z}v - \partial_{\rho}v^{*}\partial_{\rho}v),$$
(0.5)

where $v^* = {}^t \bar{v}$, $|v|^2 = v^* v$, $f = \text{Re } u - |v|^2$ and * is the Hodge operator given by $*dz = d\rho$, $*d\rho = -dz$.

The first two equations are called the Ernst equations.

Corresponding to the gauge fixing (0.1), we shall consider the solutions under the conditions

$$u|_{(z,\rho)=(0,0)} = 1$$
 and $v|_{(z,\rho)=(0,0)} = 0.$ (0.6)

It is essential to introduce the function $\tau = f^{1/2}\lambda$ and we shall consider τ , in stead of λ , throughout this article.

1. Ernst Equation

Let θ be Cartan involution of $GL(N+2,\mathbb{C})$ defined by $g\mapsto g^{*-1}$ and G a subgroup of $GL(N+2,\mathbb{C})$ defined by

$$\{g \in GL(N+2,\mathbb{C}) ; g^*Jg = J, \det g = 1\},\$$

where $J = \begin{pmatrix} 1_N \\ -i \end{pmatrix}$ and 1_N denotes the $N \times N$ identity matrix. Note that G is isomorphic to SU(1, N+1). Let K be the subgroup of G such that each element of K is fixed by θ .

We fix subgroups A and N of G as follows:

$$A = \left\{ \begin{pmatrix} a & & \\ & 1_N & \\ & & 1/a \end{pmatrix}; a > 0 \right\}$$

$$N = \left\{ \begin{pmatrix} 1 & & \\ v & 1_N & \\ x + i|v|^2/2 & iv^* & 1 \end{pmatrix}; x \in \mathbb{R}, v \in \mathbb{C}^N \right\},$$

where $|v|^2 = v^*v$. Then we have G = KAN (Iwasawa decomposition).

Let R be a ring of formal power series in z and ρ over \mathbb{C} i.e. $R = \mathbb{C}[[z, \rho]]$. We extend the complex conjugation * of \mathbb{C} to a conjugation of R by defining $\bar{z} = z, \bar{\rho} = \rho$. Let G_R be a subgroup of GL(N+2, R) defined by

$$\{g \in GL(N+2,R); g^*Jg = J, \det g = 1\}.$$

Then, corresponding to G = KAN, G_R decomposes as $G_R = K_R A_R N_R$, where K_R , A_R and N_R denote subgroups of G_R consisting of matrices with values in K, A and N respectively, each of whose components is an element of R.

Now we parametrize an element of $A_R N_R$ as follows:

$$P = \begin{pmatrix} f^{1/2} & 0 & 0\\ \sqrt{2}v & 1_N & 0\\ (\psi + i|v|^2)/f^{1/2} & \sqrt{2}iv^*/f^{1/2} & f^{-1/2} \end{pmatrix},$$
 (1.1)

where f and v are the same ones as in (0.2) and (0.3), and $\psi = \text{Im } u$.

The following fact is well known.

Proposition 1.1. Under the parametrization of (1.1), we put $M = P^*P$. Then the Ernst equations (0.2) and (0.3) are equivalent to the following equation:

$$d(\rho * dMM^{-1}) = 0. (1.2)$$

Moreover the function τ is a solution of (0.4) and (0.5) if and only if it is a solution of the following equations:

$$\tau^{-1}\partial_z \tau = \frac{\rho}{4} \operatorname{tr}(\partial_z M M^{-1} \partial_\rho M M^{-1}) \tag{1.3}$$

$$\tau^{-1}\partial_{\rho}\tau = \frac{\rho}{8} \text{tr}((\partial_{\rho}MM^{-1})^{2} - (\partial_{z}MM^{-1})^{2}). \tag{1.4}$$

The integrability of τ follows easily from (1.3) and (1.4). Equation (1.2) is also called the Ernst equation. We shall consider the solutions satisfying

$$P|_{(z,\rho)=(0,0)}=1,$$

which corresponds to the gauge fixing condition (0.6).

It is also known that the equation (1.2) can be rewritten as the integrability condition of a 1-form with values in \mathfrak{g} each of whose component is an element of $\mathbb{C}(z,\rho)\otimes_{\mathbb{C}}\mathbb{C}[[t]]$, where $\mathbb{C}(z,\rho)$ is the quotient field of $R=\mathbb{C}[[z,\rho]]$ and t an indeterminate called "spectral parameter". Namely, let \mathcal{A} and \mathcal{I} be 1-forms defined by

$$A = \frac{1}{2}(dPP^{-1} - (dPP)^*)$$
 $I = \frac{1}{2}(dPP^{-1} + (dPP)^*)$

for any $P \in A_R N_R$, and put

$$\Omega_P = \mathcal{A} + \left(\frac{1-t^2}{1+t^2} - \frac{2t}{1+t^2} *\right) \mathcal{I},$$

where * is the Hodge operator given by $*dz = d\rho$, $*d\rho = -dz$. We extend the canonical exterior derivative d on $\mathbb{C}(z,\rho)$ to that on $\mathbb{C}(z,\rho) \otimes_{\mathbb{C}} \mathbb{C}[[t]]$ by defining

$$dt = \frac{t}{(1+t^2)\rho} \left((1-t^2)d\rho + 2tdz \right). \tag{1.5}$$

Note then that $d^2 t = 0$. Now we have

Proposition 1.2. Ω_P satisfies the integrability condition, i.e.,

$$d\Omega_P - \Omega_P \wedge \Omega_P = 0 \tag{1.6}$$

if and only if P is a solution of (1.2).

It follows from Proposition 1.2 that if P is a solution of the Ernst equation, then there exists a potential $p = \sum_{n \ge 0} p_n t^n$ such that each entry of p_n is an element of $\mathbb{C}(z, \rho)$ and

$$dp = \Omega_P \cdot p \quad \text{and} \quad p_0 = P.$$
 (1.7)

2. Hauser Group

We introduce formal loop algebras and formal loop groups, following [T].

Put $F_0 = R = \mathbb{C}[[z, \rho]]$ and $F_n = \rho^{|n|}R$ for a nonzero integer n. We introduce a topology in R by declaring that $\{F_n\}_{n\geqslant 0}$ forms a fundamental neighborhoods system of 0. Note that $F_m F_n \subset F_{m+n}$ for $m, n \geqslant 0$.

Then we define a formal loop algebra $\mathcal{F}\mathfrak{gl}$ by

$$\mathcal{Fgl} = \left\{ X = \sum_{n \in \mathbb{Z}} X_n t^n ; X_n \in \mathfrak{gl}(N+2, F_n) \right\}. \tag{2.1}$$

Let * be an anti-involution of $\mathcal{F}\mathfrak{gl}$ defined by

$$X^* = \sum_{n \in \mathbb{Z}} X_n^* \left(-1/t\right)^n$$

for $X = \sum_{n \in \mathbb{Z}} X_n t^n$. This is well-defined by the definition of our filtration $\{F_n\}_{n \in \mathbb{Z}}$.

We define a formal loop group \mathcal{FG}_0 , following [T], by

$$\mathcal{FG}_{0} = \left\{ g = \sum_{n \in \mathbb{Z}} g_{n} t^{n} \in \mathcal{Fgl}; \ g^{*} J g = J, \ \det g = 1, \ g_{0}|_{(z,\rho)=(0,0)} = 1 \right\}$$
 (2.2)

and its subgroups by

$$\mathcal{FK} = \left\{ k = \sum_{n \in \mathbb{Z}} k_n t^n \in \mathcal{FG}_0; \ \theta^{(\infty)} k = k \right\}$$
 (2.3)

$$\mathcal{FP} = \left\{ p = \sum_{n \in \mathbb{Z}} p_n t^n \in \mathcal{FG}_0; p_0 \in A_R N_R, p_n = 0 \text{ if } n < 0 \right\}.$$
 (2.4)

Since \mathcal{FG}_0 is canonically embedded in \mathcal{Fgl} , we can define an involution $\theta^{(\infty)}$ of \mathcal{FG}_0 by

$$\theta^{(\infty)}(g) = (g^*)^{-1}$$
 for $g \in \mathcal{FG}_0$,

which we call Cartan involution of $\mathcal{F}GL$.

Then, using the Birkhoff decomposition ((3.17), [T]), we can decompose uniquely an element $g \in \mathcal{FG}$ as

$$g = kp \quad (k \in \mathcal{FK}, \ p \in \mathcal{FP}).$$
 (2.5)

Let s be another indeterminate. Define an infinite dimensional group $\mathcal{G}^{(\infty)}$, which we call Hauser group, by

$$\mathcal{G}^{(\infty)} = \left\{ g = \sum_{n \geq 0} g_n s^n \in GL(N+2, \mathbb{C}[[s]]) \; ; \; g^* J g = J, \det g = 1, g_0 = 1 \right\},$$

where $\mathbb{C}[[s]]$ is a ring of formal power series in s over \mathbb{C} and $g^* = \sum g_n^* s^n$.

Let j be a homomorphism of $GL(N+2,\mathbb{C}[[s]])$ into $\mathcal{F}GL$ given by

$$j: g = \sum_{n \geqslant 0} g_n s^n \longmapsto j(g) = \sum_{n \geqslant 0} g_n \left(\rho(\frac{1}{t} - t) + 2z \right)^n.$$

Then it is easy to see that j is injective and that the image of $\mathcal{G}^{(\infty)}$ by j is in \mathcal{FG}_0 . We denote by \mathcal{FH} the image of $\mathcal{G}^{(\infty)}$ by j. The following equations characterize the elements of \mathcal{FH} in \mathcal{FG} .

Lemma 2.1. An element $g \in \mathcal{FG}$ belongs to \mathcal{FH} if and only if g satisfies the following equations:

$$\partial_t g = -\rho \left(\partial_z + \frac{1}{t} \partial_\rho \right) g \tag{2.6}$$

$$\partial_t g = -\frac{\rho}{2} \left(1 + \frac{1}{t^2} \right) \partial_z g. \tag{2.7}$$

This characterization will play an important role in the proof of our main theorem.

Definition. Let \mathcal{FP} be as in (2.4). We define \mathcal{SP} to be a subset of \mathcal{FP} consisting of elements $p = \sum_{n \geq 0} p_n t^n$ which satisfy the following conditions:

$$dp = \Omega_{p_0} \cdot p$$
 and $p_0|_{(z,\rho)=(0,0)} = 1.$ (2.8)

We call SP the space of potentials.

It follows from (2.8) that p_0 is a solution of the Ernst equation (1.2) for $p = \sum_{n \geq 0} p_n t^n \in \mathcal{SP}$.

Theorem 2.2. Let $p \in \mathcal{FP}$. Then $p \in \mathcal{SP}$ if and only if $p^*p \in \mathcal{FH}$.

Let $p \in \mathcal{SP}$ and $g \in \mathcal{G}^{(\infty)}$. By (2.5) there exist $k \in \mathcal{FK}$ and $p_g \in \mathcal{FP}$ such that

$$p \cdot j(g) = k^{-1} \cdot p_g. \tag{2.9}$$

Then, it follows immediately from Theorem 2.2 that p_g is in \mathcal{SP} . Thus we can define an action of the Hauser group $\mathcal{G}^{(\infty)}$ on \mathcal{SP} to the right by

$$\mathcal{SP} \times \mathcal{G}^{(\infty)} \longrightarrow \mathcal{SP} \quad (p,g) \longmapsto p_g,$$
 (2.10)

where p_g is given by (2.9).

From the fact that an element $g = \sum_{n \geqslant 0} g_n s^n \in \mathcal{G}^{(\infty)}$ such that $g^* = g$ and such that g_0 is positive definite decomposes as $g = h^*h$ for some $h \in \mathcal{G}^{(\infty)}$, we have

Corollary 2.3. The action of $\mathcal{G}^{(\infty)}$ on \mathcal{SP} given by (2.10) is transitive.

Remark. As we mentioned in [S], our group $\mathcal{G}^{(\infty)}$ is too small to obtain all solutions of the Ernst equation (1.2) through the action (2.10).

3. 2-Cocycle on \mathcal{FG}_0

The formal loop algebra $\mathcal{F}\mathfrak{gl}$ becomes a Lie algebra with Lie bracket [X,Y]=XY-YX. The map

$$\exp: \mathcal{F}\mathfrak{gl} \longrightarrow \mathcal{F}GL$$

given by

$$\exp X = e^X = \sum_{n \ge 0} \frac{X^n}{n!} \tag{3.1}$$

is called the formal exponential map. Note that for any $g \in \mathcal{FG}_0$ we can find a unique element X in \mathcal{Fgl} such that $g = e^X$, since the logarithm given by

$$\log (1+A) = \sum_{n \ge 1} \frac{(-1)^{n-1}}{n} A^n \tag{3.2}$$

is well-defined and satisfies

$$e^{\log(1+A)} = 1 + A \tag{3.3}$$

for $A = \sum_{n \in \mathbb{Z}} a_n t^n \in \mathcal{F} \mathfrak{gl}$ with $a_0 \in \mathfrak{gl}(N+2, \mathfrak{m})$, where \mathfrak{m} is the maximal ideal of R.

For X, Y in $\mathcal{F}\mathfrak{gl}$, let $c_n(X, Y)$ $(n = 1, 2, \cdots)$ be the elements in $\mathcal{F}\mathfrak{gl}$ which are determined by

$$\exp vX \exp vY = \exp \sum_{n\geqslant 0} c_n(X,Y)v^n,$$

where v is an indeterminate. Furthermore c_n 's are uniquely determined by the following recursion formulas (see [V]):

$$c_{1}(X,Y) = X + Y$$

$$(n+1)c_{n+1}(X,Y) = \frac{1}{2}[X - Y, c_{n}(X,Y)]$$

$$+ \sum_{p \geqslant 1, 2p \leqslant n} K_{2p} \sum_{\substack{k_{1}, \dots, k_{2p} > 0 \\ k_{1} + \dots + k_{2p} = n}} [c_{k_{1}}(X,Y), [\dots, [c_{k_{2p}}(X,Y), X + Y] \dots] \quad (n \geqslant 1),$$

where K_{2p} 's are determined by

$$\frac{x}{1-e^{-x}}-\frac{1}{2}x=1+\sum_{p\geqslant 1}K_{2p}x^{2p}.$$

We set $C(X,Y) = \sum_{n \ge 1} c_n(X,Y)$. Then C(X,Y) is a well-defined element of $\mathcal{F}\mathfrak{gl}$ for X,Y such that $X_0,Y_0 \in \mathfrak{gl}(N+2,\mathfrak{m})$.

Lemma 3.1. For $n \ge 2$, there exists a $\mathcal{F}\mathfrak{gl}$ -valued function $L_n(\cdot, \cdot)$ which satisfies

$$c_n(X,Y) = [X, L_n(X,Y)] + [Y, L_n(-Y, -X)]. \tag{3.4}$$

for $X, Y \in \mathcal{F}\mathfrak{gl}$.

Note that L_n 's are not uniquely determined, however, we fix L_n 's so that there holds

$$L(X, vY) = \left(\frac{e^{-\text{ad}X} - 1 + \text{ad}X}{\text{ad}X(1 - e^{-\text{ad}X})} - \frac{1}{4}\right)vY + O(v^2),\tag{3.5}$$

where we put $L(X,Y) = \sum_{n \geq 2} L_n(X,Y)$ for $X,Y \in \mathcal{F}\mathfrak{gl}$ such that $X_0,Y_0 \in \mathfrak{gl}(N+2,\mathfrak{m})$. Thus, we obtain

$$C(X,Y) = X + Y + [X, L(X,Y)] + [Y, L(-Y, -X)].$$

For a series $f = \sum_{n \in \mathbb{Z}} f_n t^n \in R[[t, t^{-1}]]$, we write

$$\operatorname{Res}_t f = f_{-1} \in R.$$

Let $R_0 = \mathbb{R}[[z, \rho]] \subset R$, the formal power series in z and ρ over \mathbb{R} . We define a R_0 -valued 2-cocycle ω on $\mathcal{F}\mathfrak{gl}$ by

$$\omega(X,Y) = \operatorname{Res}_t \operatorname{Re} \operatorname{tr} X \partial_t Y$$

for $X, Y \in \mathcal{F}\mathfrak{gl}$. Note that

$$\omega(X^*, Y^*) = -\omega(X, Y) \tag{3.6}$$

for $X, Y \in \mathcal{F}\mathfrak{gl}$.

Now we introduce a group 2-cocycle on \mathcal{FG}_0 , following [BM]. Note that, from (3.3), any element $g \in \mathcal{FG}_0$ can be uniquely written as $g = e^X$ for $X \in \mathcal{Fgl}$ with $X_0 \in \mathfrak{gl}(N+2,\mathfrak{m})$.

Definition. Let Ξ be a R_0 -valued function on $\mathcal{FG}_0 \times \mathcal{FG}_0$ defined by

$$\Xi(e^X, e^Y) = \omega(X, L(X, Y)) + \omega(Y, L(-Y, -X)).$$

Then Ξ defines a 2-cocycle on \mathcal{FG}_0 , i.e. satisfies the cocycle condition:

$$\Xi(e^X, e^Y) + \Xi(e^X e^Y, e^Z) = \Xi(e^Y, e^Z) + \Xi(e^X, e^Y e^Z)$$
 (3.7)

for $X, Y, Z \in \mathcal{F}\mathfrak{gl}$.

4. Central Extension

For any $p \in \mathcal{SP}$, we can find an element $g \in \mathcal{FH}$ which sends the identity element $1 \in \mathcal{SP}$ to p by Corollary 2.2. Then we have p = kg for some $k \in \mathcal{FK}$.

Proposition 4.1. For $p = \sum_{n \geq 0} p_n t^n \in \mathcal{SP}$, let $g \in \mathcal{FH}$ and $k \in \mathcal{FK}$ be such that p = kg. Let τ be a solution of (1.3) and (1.4) corresponding to $P = p_0$. Then we have the following relations:

$$\tau^{-1}\partial_z \tau = \partial_z \Xi(kg, g^{-1}) \tag{4.1}$$

$$\tau^{-1}\partial_{\varrho}\tau = \partial_{\varrho}\Xi(kg, g^{-1}). \tag{4.2}$$

Now we define a central extension of \mathcal{FG}_0 in terms of the cocycle Ξ .

Definition. Let $(\mathcal{FG}_0)^{\sim}$ be the set given by

$$(\mathcal{FG}_0)^{\sim} = \{(g, e^{\mu}); g \in \mathcal{FG}_0, \mu \in R_0\}.$$

Define a product of any two elements of $(\mathcal{FG}_0)^{\sim}$ by

$$(g_1, e^{\mu_1}) \cdot (g_2, e^{\mu_2}) = (g_1 g_2, e^{\mu_1 + \mu_2 + \Xi(g_1, g_2)}) \tag{4.3}$$

for $(g_1, e^{\mu_1}), (g_2, e^{\mu_2}) \in (\mathcal{FG}_0)^{\sim}$. Since Ξ satisfies the cocycle condition (3.7), $(\mathcal{FG}_0)^{\sim}$ forms a group with group multiplication given by (4.3). Namely, $(\mathcal{FG}_0)^{\sim}$ is a *central extension* of \mathcal{FG}_0 .

Let $\tilde{\theta}^{(\infty)}$ be an involution of $(\mathcal{FG}_0)^{\sim}$ given by

$$\tilde{\theta}^{(\infty)}(g,e^{\mu}) = (\theta^{(\infty)}(g),e^{-\mu}).$$

If we denote by $(\mathcal{FK})^{\sim}$ the subgroup of $(\mathcal{FG}_0)^{\sim}$ consisting of elements which are fixed by $\tilde{\theta}^{(\infty)}$, then we have

$$(\mathcal{FK})^{\sim} = \big\{ (k,1) \in (\mathcal{FG}_0)^{\sim} \, ; \, k \in \mathcal{FK} \big\}.$$

Let $(\mathcal{FP})^{\sim}$ be a subgroup of $(\mathcal{FG}_0)^{\sim}$ given by

$$(\mathcal{FP})^{\sim} = \{(p, e^{\mu}) \in (\mathcal{FG}_0)^{\sim}; p \in \mathcal{FP}, \mu \in R_0\}.$$

It follows immediately from the decomposition (2.5) of \mathcal{FG} that $(\mathcal{FG}_0)^{\sim}$ has a unique decomposition:

$$(\mathcal{FG}_0)^{\sim} = (\mathcal{FK})^{\sim} \cdot (\mathcal{FP})^{\sim}. \tag{4.4}$$

Furthermore, we put

$$(\mathcal{FH})^{\sim} = \{(g, e^{\gamma}) \in (\mathcal{FG}_0)^{\sim}; g \in \mathcal{FH}, \gamma \in \mathbb{R}\}.$$

It follows from Lemma 3.2, [HS2] that \mathcal{FH} can be regarded as a subgroup of $(\mathcal{FH})^{\sim}$ by

$$\mathcal{FH} \longrightarrow (\mathcal{FH})^{\sim}, \quad g \longmapsto (g,1).$$

Let $(SP)^{\sim}$ be the subset of $(FP)^{\sim}$ given by

$$(\mathcal{SP})^{\sim} = \left\{ (p, e^{\mu}) \in (\mathcal{FP})^{\sim}; \ p = \sum_{n \geqslant 0} p_n t^n \in \mathcal{SP}, \right.$$

$$\tau = e^{-\mu} \text{ satisfies (1.3) and (1.4) with } P = p_0 \right\}. \tag{4.5}$$

We call $(SP)^{\sim}$ the space of potentials with conformal factor.

Proposition 4.2. For $p \in \mathcal{SP}$, let $k \in \mathcal{FK}$ and $g \in \mathcal{FH}$ be as above, i.e. p = kg. Then we have

$$\Xi(p^*, p) = 2\Xi(kg, g^{-1}).$$
 (4.6)

Therefore, any element of $(SP)^{\sim}$ can be written as $(p, e^{-\frac{1}{2}\Xi(p^*,p)+\gamma})$ for $p \in SP, \gamma \in \mathbb{R}$.

Define an action of $(\mathcal{FH})^{\sim}$ on the space of potentials with conformal factor $(\mathcal{SP})^{\sim}$ to the right through the decomposition (4.4):

$$(\mathcal{SP})^{\sim} \times (\mathcal{FH})^{\sim} \longrightarrow (\mathcal{SP})^{\sim}, \quad ((p, e^{\mu}), (g, e^{\gamma})) \longmapsto (p_g, e^{\alpha}).$$
 (4.7)

Namely, we can find a unique element $(k,1) \in (\mathcal{FK})^{\sim}$ and $(p_g, e^{\alpha}) \in (\mathcal{FP})^{\sim}$ such that

$$(p, e^{\mu})(g, e^{\gamma}) = (k, 1)^{-1}(p_g, e^{\alpha}),$$

where k and p_g are the elements given in (2.9). Since we have

$$\tilde{\theta}^{(\infty)}((p,e^{\mu})(g,e^{\gamma}))^{-1} \cdot (p,e^{\mu})(g,e^{\gamma}) = (g^*p^*pg,e^{2(\mu+\gamma)+\Xi(p^*,p)})$$

and

$$\tilde{\theta}^{(\infty)}(p_g, e^{\alpha})^{-1} \cdot (p_g, e^{\alpha}) = (p_g^* p_g, e^{2\alpha + \Xi(p_g^*, p_g)}),$$

we obtain

$$\alpha = \mu + \gamma + \frac{1}{2} (\Xi(p^*, p) - \Xi(p_g^*, p_g))$$

$$= \gamma' - \frac{1}{2} \Xi(p_g^*, p_g)$$

for some $\gamma' \in \mathbb{R}$, where we used Proposition 4.4. Thus (p_g, e^{α}) belongs to $(\mathcal{SP})^{\sim}$, i.e. the action (4.7) of $(\mathcal{FH})^{\sim}$ is well-defined.

Now we state our main theorem:

Theorem 4.3. The group $(\mathcal{FH})^{\sim}$ acts transitively on the space of potentials with conformal factor $(\mathcal{SP})^{\sim}$ by (4.7).

REFERENCES

- [BM] P. Breitenlohner and D. Maison, On the Geroch group, Ann. Inst. Henri Poincaré 46 (1987), 215-246.
- [BMG] P.Breitenlohner, D.Maison and G.Gibbons, 4-Dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988), 295-333.
- [DO] H. Doi and K. Okamoto, A survey of the generalized Geroch conjecture, Adv. Stud. in Pure Math. 14 (1988), 379-393.
- [E] F.J. Ernst, New formulation of the axially symmetric gravitational field problem II, Phys. Rev. 168 (1968), 1415-1417.
- [G] R. Geroch, A method for generating new solutions of Einstein's equations II, J. Math. Phys. 13 (1972), 394-404.
- [GX] M.Gürses and B.C.Xanthopoulos, Axially symmetric, static self-dual SU(3) gauge fields and stationary Einstein-Maxwell metrics, Phys. Rev. D 26 (1982), 1912-1915.
- [HS1] T. Hashimoto and R. Sawae, A linearization of $S(U(1) \times U(2)) \setminus SU(1,2) \sigma$ -model, Hiroshima Math. J. 22 (1992), 445-459.
- [HS2] T. Hashimoto and R. Sawae, The conformal factor in the SAS Einstein-Maxwell field equations and a central extension of a formal loop group, Commun. Math. Phys. (to appear).
- [HE] I. Hauser and F.J. Ernst, *Proof of a generalized Geroch conjecture*, in "Galaxies axisymmetric systems and relativity edited by M.A.H. MacCallum," Cambridge Univ. Press 115, Cambridge, 1985.
- [K] V.G. Kac, "Infinite dimensional Lie algebras," Birkhäuser, Boston, 1983.
- [Ki] W. Kinnersley, Symmetries of the stationary Einstein-Maxwell field equations I, J. Math. Phys. 18 (1977), 1529-1537.
- [Kn] A.W. Knapp, "Representation theory of semisimple groups An overview based on examples," Princeton Univ. Press, Princeton, 1986.
- [N] K. Nagatomo, The Ernst equation as a motion on a universal Grassmann manifold, Commun. Math. Phys. 122 (1989), 423-453.
- [S] R. Sawae, The conformal factor and a central extension of a formal loop group with values in PSL(2,R), Hiroshima Math. J. 23 (1993), 249-303.
- [T] K. Takasaki, A new approach to the self-dual Yang-Mills equations II, Saitama Math. J. 3 (1985), 11-40.
- [V] V.S. Varadarajan, "Lie groups, Lie algebras, and their representations," Springer-Verlag, 1984.
- [W] H. Weyl, Zur Gravitationstheorie, Ann. der Phys. 54 (1917), 117-145.