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1. Introduction

The object in this note is to show the validity of the Toeplitz operator method in the
study of index theorems for both (systems of) ordinary and partial differential equations.
Concerning the works on index theorems, we refer the works [5], [6], [7], [8], [9] [11] and [12].
As for the elementary properties of Toeplitz operators and general treatments of Toeplitz
operators we refer [4] and [3], respectively.

In order to show clearly how the Toeplitz operator method is used we first state the
results in the case of ordinary differential equations. Then we consider the case of partial
differential equations. Although the results in the case of ordinary differential equations
do not include essentially new results, our new proof of the index theorem is a very simple
one based on the Fredholm property of Toeplitz operators, which is applicable to partial
differential operators without essential changes. We believe that this shows the usefulness
of the Toeplitz operator method.

2. Index theorems for ordinary differential equations

Let $C[[x]]$ be the set of formal power series $u(x)=\Sigma_{n\in N}u_{n}x^{n}/n!$ of a complex variable
$x$ , where $N$ is the set of nonnegative integers. We say that $u$ is in a (formal) Gevrey space
$\mathcal{G}_{w}^{s}(s\in R, w>0)$ if

$\sum_{n\in N}u_{n}x^{n}/(n!)^{s}\in \mathcal{O}(|x|<w)$
,

where $\mathcal{O}(|x|<w)$ denotes the set of holomorphic functions on the domain $\{|x|<w\}$ . We
denote by $W(C)$ the set of ordinary differential operators with polynomial coefficients, and
we denote by $M_{N}(W(C))$ the set of $N\cross N$ matrices with entries in $W(C)$ for $N\geq 1$ .

For $P\in M_{N}(W(C))$ we want to give an index formula of the mapping

$P(x, D)$ : $(\mathcal{G}_{w}^{s})^{N}arrow(\mathcal{G}_{w}^{s})^{N}$ , (2.1)

where $D:=d/dx$ .
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For $p(x, D)= \sum_{j,k}a_{jk}x^{j}D^{k}\in W(C)$ we define an s- Gevrey order $ord_{s}p$ of $p(x, D)$ by
the maximum of $sk+(1-s)j$ when $j$ and $k$ satisfy $a_{jk}\neq 0$ . The $s$ -Gevrey symbol
$\sigma_{s}(p)(x, \xi)$ and $s$ -Gevrey Toeplitz symbol $p_{s}(z)$ are defined, respectively, by

$\sigma_{s}(p)(x, \xi)=\sum_{ord_{p=sk+(1-s)j}}a_{\dot{J}^{k}}x^{j}\xi^{k}$
, $p_{s}(z)=\sigma_{s}(P)(z, z^{-1})$ . (2.2)

The s-Gevrey order induces a filtration on $W(C)$ in a natural manner, and we denote by
$gr^{s}W(C)$ the associated graded ring which is isomorphic to the set of s-Gevrey symbols.
Because gr$sW(C)$ is a unique factorization ring, we can define $\det_{s}$ the determinant for
matrices over $W(C)$ associated with the s-Gevrey filtration, which is a homomorphism of
multiplicative groups from $M_{N}(W(C))$ to gr$sW(C)$ by the well-known manner (see [1], [2],
[8] and [9])

$\det_{s}$ : $M_{N}(W(C))arrow gr^{s}W(C)$ .

Then an s-Gevrey order $ord_{s}P$ of a matrix $P(x, D)$ is defined in a natural manner from the
determinant of $P(x, D)$ . Now we define the s-Gevrey Toeplitz symbol $P_{s}(z)$ of $P(x, D)\in$

$M_{N}(W(C))$ by $P_{s}(z)=\det_{s}(P)(z, z^{-1})$ . Then we have

Theorem 2.1. $Su$ppose that $P_{s}(z)\not\equiv 0$ . Then the index $\chi(P;\mathcal{G}_{w}^{s})$ of the $m$apping (2.1)
is given by

$- \chi(P;\mathcal{G}_{w}^{s})=\lim_{r\uparrow w}I_{r}(P_{s})$
$:= \frac{1}{2\pi}\lim_{r\uparrow w}\oint_{|z|=r}d\arg P_{s}(z)$ , (2.2)

where $I_{r}(P_{s})_{\sim}$ denotes the winding number of an orien$tedc$ urve $\{P_{s}(z);|z|=r\}$ at the
origin for $r$ such that $P_{s}(z)\neq 0$ on $|z|=r$ .

This theorem was proved by Ramis for single operators at the first time, but the expres-
sion in his paper seems to be somwhat complicated (cf. [11]). We also remark that the
case of general systems was studied by Adjamagbo by use of determinant theory as above,
but his treatment was purely algebraic based on the result of Ramis (cf. [1]).

The following theorem gives an estimate of the dimension of the kernel of the mapping.

Proposition 2.2. We put $\mathcal{G}^{\infty}$ $:=C[[x]]$ and $\mathcal{G}^{-\infty}$ $:=C[x]$ , the set ofpolynomials. Then
we $h$ ave

$\chi(P;\mathcal{G}^{-\infty})=\lim_{s\downarrow-\infty}\chi(P;\mathcal{G}_{w}^{s})=k-j$ , $\chi(P;\mathcal{G}^{\infty})=\lim_{s\uparrow\infty}\chi(P;\mathcal{G}_{w}^{s})=n$
一 $m$ , (2.3)

where $\det_{-\infty}P:=Iim_{s\downarrow-\infty}\det_{s}P=ax^{j}\xi^{k}\neq 0$ , and $\det_{\infty}P:=\lim_{s\uparrow\infty}\det_{s}P=bx^{m}\xi^{n}\neq 0$

are uniq$uely$ determined. And it holds that

$\max\{0, k-j\}\leq\dim_{C}Ker(P;\mathcal{G}_{w}^{s})\leq n\leq ord_{1}P$.
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Remarks. (a) When $s=1$ , the filtration is the usual one given by the order of differenti-
ation, and the determinant is given in the form, $\det_{1}(P)(x, \xi)=a(x)\xi^{m}(a(x)\in C[x]\backslash 0)$ ,
and $P_{1}(z)=a(z)z^{-m}$ . Therefore, under the assumption that $a(z)\not\equiv 0$ we have

$\chi(P;\mathcal{O}(|x|<w))=m-\sum_{z\in Z_{w}}ord_{z}a$
,

where $Z_{w}$ denotes the set of zero points of $a(z)$ in $|z|<w$ and $ord_{z}$ $a$ denotes the order of
zeros of $a$ at the point $z$ .

(b) For a single operator, the s-Gevrey Toeplitz symbol is recognized in a visual way
in terms of a Newton polygone as follows. Let $p(x, D)=\Sigma_{j,k}a_{jk}x^{j}D^{k}\in W(C)$ . For
$(j, k)\in N^{2}$ , we associate the left half line $Q(j, k)$ $:=\{(s,j-k)\in R^{2}; s\leq k\}$ . Then the
Newton polygone $N(p)$ is defined by $N(p)$ $:=ch\{Q(j, k);a_{jk}\neq 0\}$ , where $ch\{\cdot\}$ denotes
the convex hull of points in $\{\cdot\}$ . We draw a line $L_{s}$ with slope $k=1/(s-1)$ so that $L_{s}$

contacts on a side or at a vertex of $N(p)$ , and we put $N_{s}=L_{s}\cap N(p)$ . Then the s-Gevrey
Toephtz symbol $p_{s}(z)$ is given by

$p_{s}(z)= \sum_{(j,k)\in\mathring{N}_{l}}a_{jk}z^{j-k}$

,

where $\mathring{N}_{s}=\{(j, k)\in N^{2},\cdot(k,j-k)\in N_{s}\}=\{(j, k);sk+(1-s)j=ord_{s}p, a_{jk}\neq 0\}$ .

Proof of Theorem 2.1. We shall give the sketch of the proof by restricting to the case
$N=1$ and $s\geq 0$ . Let $\mu\in R$ be fixed. For $u=\Sigma u_{n}x^{n}/n!\in C[[x]]$ , we set $U_{n}=$

$s^{sn}u_{n}/(sn-\mu)!$ , where $(sn-\mu)!=1$ if $sn-\mu\leq 0$ . Then we say that $u$ is in the class
$G_{w}^{s}(\mu)$ if $||u||_{w,\mu}$ $:=\Sigma_{0}^{\infty}U_{n}|w^{n}<\infty$ . By definition $G_{w}^{s}(\mu)$ is a Banach space. Moreover we
can easily see that $\mathcal{G}_{w}^{s}=proj\lim_{r\uparrow w}G_{r}^{s}(\mu)$ for any fixed $\mu$ . We first note

Lemma 2.3. If s-Gevrey order of $P$ is $equal$ to $\mu$ , then $P$ is $a$ $bo$un$dedop$era$tor$ from
$G_{w}^{s},(\mu)$ to $G_{w}^{s},(0)$ . If s-Gevrey order of $Q$ is strictly smaller than $\mu$ , then, $Q$ is a compact
operator from $G_{w}^{s}(\mu)$ to $G_{w}^{s}(0)$ .

The proof of Lemma 2.3 is based on elementary calculations. For the detailed proof we
refer [10].

In what follows, let $\mu$ be the s-Gevrey order of $P(x, D)$ . Because $\mathcal{G}_{w}^{s}=proj\lim_{r\uparrow w}G_{r}^{s}(\mu)$

and since the index is stable under compact perturbations, we may assume, by Lemma 2.3,
that $P(x, D)$ consists of terms corresponding to $N_{s}\circ$ .

In case $L_{s}$ contacts at a vertex of $N(P)$ , that is $N_{s}$ is a single point, $P(x, D)$ is written
in the form $P=bx^{j}D^{k}(b\neq 0)$ and it is easy to see that the index of the mapping
$x^{j}D^{k}$ : $G_{w}^{s}(\mu)arrow G_{w}^{s}(0)$ is equal to $k-j(=-I_{w}(p_{s}))$ , which implies the theorem.
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Next let us consider the case where $N^{o}$ , consists of more than two points. This condition
implies that $s$ is a rational number. Let $s=q/p$ be the irreducible fraction, where we put
$(p, q)=(1,0)$ if $s=0$ . Then $P(x, D)$ is written in the form

$P(x, D)=x^{j}D^{k} \sum_{i=0}^{m}b;x^{qi}D^{(q-p):}=:x^{j}D^{k}L(x, D)$ ,

where $b_{0}\neq 0$ . Here we have to remark that in the case $0\leq s<1$ (i.e., $q<p$), $D^{(q-p)i};=$

$(D^{-1})^{(p-q)i}$ and $D^{-1}$ $:= \int_{0}^{x}$ denotes the formal integration from $0$ to $x$ . The notion of
s-Gevrey order is defined similarly for integro-differential operators, and we see that the
s-Gevrey order of $L(x, D)$ is equal to $0$ . We put $p_{s}(z)=z^{j-k}\Sigma b_{i}z^{pt}=;z^{j-k}q_{s}(z)$ . Since
$x^{j}D^{k}$ : $G_{w}^{s}(\mu)arrow G_{w}^{s}(0)$ is a mapping with an index $k-j$ and $I_{w}(p_{s})=j-k+^{\Gamma}I_{w}(q_{s})$ , it is
sufficient to prove that $L:G_{w}^{s}(0)arrow G_{w}^{s}(0)$ is a mapping with an $index-I_{w}(q_{s})$ under the
assumption that $q_{s}(z)\neq 0$ on $|z|=w$ . In what follows, we always assume this condition,
and we put $G_{w}^{s}$ $:=G_{w}^{s}(0)$ for simplicity.

We consider the equation $Lu=f\in G_{w}^{s}$ . By substituting the expansion of $u,$ $u=$
$\Sigma u_{n}x^{n}/n!$ and $f$ in the equation we have the infinite system of linear equations

$\sum_{i=0}^{m}c_{n,i}b_{i}U_{n-pi}=F_{n}$ , $n\geq 0$ ,

where $U_{n}=s^{sn}u_{n}/(sn)!$ and $F_{n}=s^{sn}f_{n}/(sn)!$ . Here the coefficient $c_{n,i}$ satisfies that
$c_{n,i}arrow 1$ when $narrow\infty$ for each $i$ . We recall that $u\in G_{w}^{s}$ if and only if $\Sigma_{0}^{\infty}U_{n}|w^{n}<\infty$ .
For simplicity, we denote the set of $\{U\}_{n}$ satisfying $\Sigma_{0}^{\infty}|U_{n}|w^{n}<\infty$ by $l_{w}^{1}$ . We set
$\mathcal{M}$ $:=\{U=\{U_{n}\}\in\ell_{w}^{1}, U_{0}=0\}$ the maximal ideal of $\ell_{w}^{1}$ and we consider the following
decomposition

$0arrow \mathcal{M}^{N}arrow\ell_{w}^{1}arrow l_{w}^{1}/\mathcal{M}^{N}arrow 0$ (exact),

for a fixed $N\geq 1$ . From the assumption we can easily see that the matrix representation
of the above infinite system is a lower trianguler matrix of infinite order with a diagonal
element $b_{0}\neq 0$ . Hence $L(x, D)$ is bijective on $l_{w}^{1}/\mathcal{M}^{N}$ for any $N\geq 1$ . Hence it is sufficient
to prove that the index of the mapping $L$ : $\mathcal{M}^{N}arrow \mathcal{M}^{N}$ is equal $to-I_{w}(q_{s})$ for sufficiently
large $N$ under the assumption that $q_{s}(z)\neq 0$ on $|z|=w$ . This means that we consider
the above infinite system of linear equations for $\{U_{n}\}_{n\geq N}$ and $\{F_{n}\}_{n\geq N}$ . Now our result
follows from the following proposition

Proposition 2.3. For $q_{s}(z)=\Sigma_{i=0}^{pm}g_{i}z^{i}$ , let the Toeplitz $m$atrix $T(q_{s})$ be defined by

$T(q_{s})=(g_{j-k;}$ $k^{j\downarrow 0,1,2}arrow 0,1,2_{\text{ヲ}}\cdots)$ .

Suppose that $q_{s}(z)\neq 0$ on $|z|=w$ . Then the operator $T(q_{s})$ on $\ell_{w}^{1}\Lambda$ as an $index-I_{w}(q_{s})$ .
In this case, the mapping is injective.
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3. Partial differential equations

We first consider the case of two independent variables. Let $P\equiv P(t, x;D_{t}, D.)$ be a
partial differential operator of finite order with holomorphic coefficients in a neighbourhood
of the origin of $C_{t}\cross C_{x}$ , and write it in the form,

$P(t, x;D_{t}, D_{x})= \sum_{\sigma\in N}$
$\sum_{f,\alpha\in N}^{inite}a_{\sigma j\alpha}(x)t^{\sigma}D_{t}^{j}D_{x}^{\alpha}$ , (3.1)

where, $N$ denotes the set of non negative integers. For $(\sigma,j, \alpha)\in N^{3}$ , we associate a left
half line $Q(\sigma, j, \alpha)$ in a $(u, v)$-plane defined by

$Q(\sigma,j, \alpha)$ $:=\{(u, \sigma-j)\in R^{2} ; u\leq j+\alpha\}$ .

Then the Newton polygon $N(P)$ of the operator $P$ is defined by,

$N(P)$ $:=ch\{Q(\sigma,j, \alpha);a_{\sigma ja}(x)\not\equiv 0\}$ , (3.2)

where $ch\{\cdot\}$ denotes the convex hull.
For a given $s>0$ , we draw a line $L_{s}$ with slope $k$ $:=1/(s-1)(\in RU\{\infty\})$ which contacts

to $N(P)$ at a vertex or on a side of $N(P)$ . We put $N_{s}$ $:=N(P)\cap L_{s}$ and

$N_{s}^{o}:=\{(j, \alpha)\in N^{2} ; a_{0j\alpha}(0)\neq 0, (j+\alpha, -j)\in N_{s}\}$ . (3.3)

The principal part $P_{s}\equiv P_{s}(D_{t}, D_{x})$ and the Toeplitz symbol $f_{s}(z)$ associated with the
Gevrey index $s$ are defined by,

$P_{s}(D_{t}, D_{x})$

$;= \sum_{(j,\alpha)\in\mathring{N},}a_{0j\alpha}(0)\Pi_{t}D_{x}^{\alpha}$

, (3.4)

$f_{s}(z)$
$;= \sum_{(J^{\alpha)\in\mathring{N},}}a_{0_{\dot{J}}\alpha}(0)z^{-j}$

. (3.5)

We define Gevrey space $\mathcal{G}_{w}^{s}(R)(s, w, R>0)$ as follows. Let $C[[t, x]]$ denote the set
of formal power series of variables $t,$ $x\in C$ , and $\mathcal{O}(\Omega)$ the set of holomorphic functions
on a domain $\Omega\subset C_{t}\cross C_{x}$ . Then the Gevrey space $\mathcal{G}_{w}^{s}(R)$ is defined by the following
isomorphism,

$C[[t, x]]\supset \mathcal{G}_{w}^{s}(R)^{Bore}arrow \mathcal{O}((|t|1transf\sim/w)^{1/s}+|x|<R)$, (3.6)

where the Borel trmansformation is defined by

$\mathcal{G}_{w}^{s}(R)\ni\sum_{l,\eta\in N}u_{l\eta^{\frac{t^{l}x^{\eta}}{l!\eta!}-\sum_{l,\eta\in N}u_{l\eta}\frac{t^{l}x^{\eta}}{(sl)!\eta!}\in \mathcal{O}((|t|}}^{\sim}/w)^{s}+|x|<R)$.
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The factorial is defined by the gamma function, $r!$ $:=\Gamma(r+1)$ for $r\geq 0$ .
We consider the following Goursat problem in $\mathcal{G}_{w}^{s}(R)$ ,

$\{\begin{array}{l}P(t,x\cdot.D_{t},D_{x})u(t,x)=f(t,x)\in \mathcal{G}_{w}^{s}(R)u(t,x)-v(t,x)=O(t^{J}x^{\alpha}),v(t,x)\in \mathcal{G}_{w}^{s}(R)\end{array}$ (3.7)

where $w(t, x)=O(t^{j}x^{\alpha})$ in $\mathcal{G}_{w}^{s}(R)$ means that $w(t, x)t^{-r}x^{-\alpha}\in \mathcal{G}_{w}^{s}(R)$ . Then we can prove
the following,

Theorem 3.1. Assume $\mathring{N}_{s}\neq\phi$ and that $(j, \alpha)\in N^{2}$ belongs to $ch\{N^{o}\}$ the convex hull
of points in $\mathring{N}_{s}$ . Further we assume

$f_{s}(z)\neq 0$ on $|z|=w$ , and $\oint_{|z|=w}d(\arg f_{s}(z)z^{j})=0$ . (3.8)

Then there exists $R_{0}>0$ such that every formal solution $u(t, x)\in C[[t, x]]$ (if it exists)
belongs to $\mathcal{G}_{w}^{s}(R)$ for $0<R<R_{0}$ . Precisely, the problem (3.7) has the Fredholm property,
that is, the mapping $P$ : $t^{J}x^{\alpha}\mathcal{G}_{w}^{s}(R)arrow \mathcal{G}_{w}^{s}(R)$ has the same finite dimension$al$ kernel
and cokernel for suHiciently $sm$all $R>0$ . Furthermore, if one of the following conditions is
satisfied, then the problem (3.7) is uniquely solvable in $\mathcal{G}_{w}^{s}(R)$ for sufiiciently small $R>0$

:
(i) $(j, \alpha)$ is an end point of $\mathring{N}_{s}$ .
(ii) There exists $c>0$ such that $\{f_{s}(z)z^{j}; |z|=c\}$ is a segment.
(iii) Ther$e$ exists $c>0$ such that $0\not\in ch\{f_{s}(z)z^{J} ; |z|=c\}$ .

We remark that whenever $s$ is irrational, $\mathring{N}_{s}$ consists of a point, and the problem (3.7)
is uniquely solvable in $\mathcal{G}_{w}^{s}(R)$ for every $w>0$ for sufficiently small $R>0$ .

4. Equations of $n$ independent variables

In this section we shall consider the Fredholm property of Goursat problems for $n$ inde-
pendent variables. We write $x,$

$=(x_{1}, \ldots, x_{n})$ and, for a multi index $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in N^{n}$

we set $D_{x}^{\alpha}=(\partial/\partial x_{1})^{\alpha_{1}}\cdots(\partial/\partial x_{n})^{\alpha_{\hslash}}$ .
Let $w_{k}>0(k=1, \ldots, n)$ and $s>0$ . We set $w=(w_{1}, \ldots, w_{n})$ . Then we define the

Gevrey space $\mathcal{G}_{w}^{s}$ by the following isomorphism

$C[[x]]\supset \mathcal{G}_{w}^{s}Borearrow \mathcal{O}(\{|x_{1}|1transf\sim.<w_{1}\}\cross\cdots\cross\{|x_{n}|<w_{n}\})$ , (4.1)
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where the Borel trmansformation is defined by

$\mathcal{G}_{w}^{s}\ni\sum_{\eta\in N^{n}}u_{\eta^{\frac{x^{\eta}}{|\eta|!}-\sum_{\eta\in N^{n}}u_{\eta}\frac{x^{\eta}}{|\eta|!^{s}}\in \mathcal{O}(\{|x_{1}|<w_{1}\}}}^{\sim}\cross\cdots\cross\{|x_{n}|<w_{n}\})$ .

Let $P\equiv P(x, D_{x})$ be a partial differential operator of finite order with holomorphic
coefficients in a neighbourhood of the origin of $C_{t}\cross C_{x}$ , and write it in the form,

$P(x, D_{x})= \sum_{\alpha\in N^{n},|\alpha|\leq m}a_{\alpha}(x)D_{x}^{\alpha}$
. (4.2)

We study the following Goursat problem

$\{u(x)-v(x)=O(x),v(x)\in \mathcal{G}_{w}^{s}P(x,D_{x})u(x)=_{\beta}f(x)\in \mathcal{G}_{w}^{s}$ (4.3)

where $\beta\in N^{n},$ $|\beta|=m$ is given and fixed and where $w(x)=O(x^{\beta})$ in $\mathcal{G}_{w}^{s}$ means that
$w(x)x^{-\beta}\in \mathcal{G}_{w}^{s}$ .

We define the Toeplitz symbol associated with (4.3) as follows.

$L(z)$
$:= \sum_{|\alpha|=m}a_{\alpha}(0)z^{\alpha-\beta}$

, $z=(z_{1}, \ldots, z_{n})$ . (4.4)

We note that $L(z)$ is a homogeneous function of $z$ with degree zero. For $|\zeta|=1$ and
$j,$ $(1\leq j\leq n)$ we set

$L_{\zeta}^{J}(z)=L(z)|_{z_{j}=\zeta}$ . (4.5)

Then we can prove the following,

Theorem 4.1. Suppose that ther$e$ exist $\zeta,$ $|\zeta|=1$ and $j,$ $(1\leq j\leq n)$ such that $L_{\zeta}^{J}(z)$

satisfies that the origin is not in the convex $hull$ of the set

$\{L_{\zeta}^{j}(z);|z_{k}|=w_{k}$ , for all $k\neq j\}$ .

Then the problem (4.3) $\Lambda$ as the Fredholm property, that is, the mapping $P$ : $x^{\beta}\mathcal{G}_{w}^{s}arrow \mathcal{G}_{w}^{s}$

$\Lambda$ as the same finite dimensional kernel an $d$ cokernel. Furthermore, if the following condition
is satisfied, then the problem (4.3) is uniquely solvable in $\mathcal{G}_{w}^{s}$ . ;

the origin is not in the convex $hull$ of the set { $L(z);|z_{k}|=w_{k}$ , for all $1\leq k\leq n$ }.

We shall give the proof of this theorem in the forthcoming papers.
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