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Determinantal Ideals and Their Betti Numbers—
A Survey

A JtiE (MiTsuyasu HASHIMOTO) (Nagoya Univ.)

Abstract

This note is an introduction to the ring-theoretical approach to the study of
determinantal varieties, especially to the study of minimal free resolutions of deter-
minantal ideals.

1 Determinantal Rings as ASL’s

Let A be a noetherian ring, I an ideal of A, and M a finitely generated A-module. We
define the I-depth of M to be min{i | Ext',(A/I, M) # 0} and denote it by depth(I, M).

If A is a local ring with the maximal ideal m, then depth(m, M) is sometimes denoted
by depth M. In this case, we have depth M < dim M for M # 0, where dim M is the
Kurll dimension of A/anng M. We say that M is Cohen-Macaulay when the equality
holds, or M = 0. We say that the local ring A is Cohen-Macaulay when so is A as an
A-module. A noetherian ring (which may not be local) A is said to be Cohen-Macaulay
when its localization at any maximal ideal is Cohen-Macaulay local.

Cohen-Macaulay property is one of the most important notion in the modern commu-
tative ring theory.

Lemma 1.1 Let A be a d-dimensional graded K-algebra (K a field) generated by finite
degree one elements. Then, the following hold.

1 A is Cohen-Macaulay if and only if depth(A4, A) = d, where A, is the ideal of A
consisting of all degree positive elements.

2 (K is assumed to be infinite) Let 0,,...,0; be degree one elements such that A is a
finite module over K[f] = K[0,,...,04] C A (such b1,...,04 do exist). Then, A is
Cohen-Macaulay if and only if A is a free K[0]-module (hence, this condition does
not depend on the choice of 6,,...,0,).

3 Let ay,...,a, be the degree one generator of A as a K -algebra so that the map
S=Klzy,...,2,] = Klay,...,a,) = A (z: — a;)

is a surjective map of graded K -algebras. Then, A is Cohen-Macaulay if and only
if pdg A = r — d, where pd denotes the projective dimension.
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Gorenstein property is also important homological property. A noetherian local ring
A is said to be Gorenstein when its self-injective dimension is finite. A noetherian ring
is said to be Gorenstein when its localization at any maximal ideal is Gorenstein. Any
Gorenstein ring is Cohen-Macaulay, but the converse is not true in general.

Lemma 1.2 Let A be a d-dimensional Cohen-Macaulay graded K -algebra (K a field)
generated by finite degree one elements. Then, the following hold.

1 A is Gorenstein if and only if Ext4(A/Ay, A) = K.

2 Let F4(t) = Tiso(dimg Ai)t*. Then, (1 —t)*Fa(t) is a polynomial in t, say, ho + kit +
oo+ het® (hy #£0). If A is Gorenstein, then hy = 1. The converse is true when A
is an integral domain.

3 Let ay,...,a, be degree-one generators of A, and consider A as a module over S =
K(z1,...,2.). Then, the following are equivalent.

a A is Gorenstein.
b Exty %(A,S) is cyclic as an S-module.
b’ Exty %(A,S) = A as an S-module.

For a graded K-algebra A, a graded A-module M is said to be free when M is a direct
sum of modules of the form A(¢), where A(7) is simply A as an A-module, and the grading
is given by A(7); = Aiy;. Clearly, a free module is projective in the category of graded
A-modules. Assume that A is generated by finite elements of positive degree. For a
finitely generated graded A-module M and its subset S = {m4,...,m,}, S generates M
if and only if the image of S generates M/A, M (an analogue of Nakayama’s lemma).
So, S is a set of minimal generators if and only if its image in M/A; M is a K-basis.

Let R be a commutative ring with unity. For a matrix (a;;) € Mat,, ,(R) with coef-
ficients in R and a positive integer ¢, we define the determinantal ideal I;((a;;)) of the
matrix (a; ;) to be the ideal of R generated by all ¢-minors of (a; ;).

We are interested in the generic case here. Let S = R[zij]i<i<m,1<j<n b€ @ polynomial
ring over R in mn variables. We set X = (z;;) € Mat,, »(S). The ideal I; = I,(X) C S
is considered to be a generic determinantal ideal. When we consider S as a coordinate
ring of the affine space Mat,, ,,(R), the ideal I, defines the closed subscheme Y;, the space
of m x n matrices whose rank is smaller than ¢ (because the rank of a matrix is smaller
than ¢ if and only if its all {-minors vanish). The following is a fundamental theorem on
determinantal ideals.

Theorem 1.3 (Hochster-Eagon [HE]) Let R be noetherian. The following hold.
1. dimS/I; =dimR+mn—(m—t+1)(n —t+1).
2. The ideal I, is perfect (of codimension (m —t + 1)(n —t + 1)). Namely, we have

depthg(I,, S) = pdg S/I, = (m —t + 1)(n — ¢ + 1).
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3. S/It is R-ﬂat.
4. If R is a domain, then so is S/I;.
5. If R is normal, then so is S/1,.

Where pd denotes the projective dimension, and depth(I;, S) = min{i | Ext%(S/IL,S) #
0}. There are some different proof ¢f this theorem. In this section, we give a (sketch of a)
purely algebraic (or combinatorial) proof of the theorem which uses the theory of ASL’s.
The lecture note [BV] gives a systematic account on this treatment.

The general theory tells us that it suffices to prove the following provided we have
proved that S/I; is R-flat.

Corollary 1.4 Assume that R is a field. Then, we have S/I; is a Cohen-Macaulay
normal domain of dimension mn — (m —t+1)(n —t + 1).

Definition 1.5 Let R be a commutative ring, and P a finite poset (= partially ordered
set). We say that A is a (graded) ASL (algebra with straightening lows) on P over R if
the followings hold.

ASL-0 An injective map P — A is given, A a graded R-algebra generated by P, and
each element of P is homogeneous of positive degree. We call a product of elements
of P a monomial in P. Formally, a monomial M is a map P — Ny, and we denote
M = [L.ep 2M©) 50 that it also stands for an element of A. A monomial in P of
the form

xil oo le

with z;; <--- < z;, is called standard.

ASL-1 The set of standard monomials in P is an R-free basis of A.

ASL-2 For z,y € P such that z £ y and y £ z, there is an expression of the form
(1.6) zy=> cyM (¢ € R)
M

where the sum is taken over all standard monomials M = 2y---z,,, (z; < --- <
z,,,) with z; < z,y and deg M = deg(zy).

The expression (1.6) in (ASL-2) condition is called the straightening relations of A.
The most simple example of an ASL on P over R is the Stanley-Reisner ring R[P] =
Rlz|z € Pl/(zy|z £ y,y £ z). The (ASL-2) condition is satisfied with letting the
right-hand side zero. The Stanley-Reisner rings play central réle in the theory of ASL.

Theorem 1.7 ([DEP]) Let R be a commutative ring, P a finite poset, and A an ASL on
P over R. Then, there is a sequence of ASL’s on P over R A = Ao, A1,...,Amn = R[P]
and an ideal I; of A; for each i < m such that Ay = G, A; fori <m.
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Here, for a ring A and its ideal I, G1(A) denotes the associated graded ring A[t=11,¢]/(t).
Usually, the associated graded ring G;(A) is worse than A. Hence, by the theorem, if
R[P] enjoys good property, then so does any ASL on P over R.

Corollary 1.8 If R[P] is an integral domain (resp. Cohen-Macaulay, normal, Goren-
stein), then any ASL on P over R enjoys the same property.

As is clear, ASL’s on P over a field have the same Hilbert function provided we give the
same degree to each element in P. So it is completely determined only by the combinato-
rial information on P (because Hg(n, R[P]) = #{standard monomials in P of degree n}).
The corollary is not a good criterion of integrality, normality or Gorenstein property, be-
cause R[P] rarely satisfies these conditions. However, the corollary gives a good criterion
of Cohen-Macaulay property.

Proposition 1.9 If R is Cohen-Macaulay and if P is a distributive lattice, then R[P) is
Cohen-Macaulay.

For the proof of these results, see [DEP].

As a result, the determinantal ring S/I; has a structure of an ASL on a distributive
lattice over R, where S = R[%ij]i<i<m,1<j<n- This shows that S/I; is R-flat (by ASL-1)
and that S/I; is Cohen-Macaulay when so is R.

First, we introduce an ASL structure into S.

We set

Qo = {[li,- -85 J1, - ol [ 1Sl <o < iy Smy 1 <y < -+ < J, < m}

and @ = U™ Q. We introduce an order structure into . For elements d =
[t1,.--y8s5 015+, Js) and d' = [i1,...,0%571,-..,7%] of Q, we say that d < d' if s > &
and if 5 <4, i <jrfor1 <1< §. It is easy to see that (2 is a distributive lattice with
this order structure.

We have a map 2 — S given by

[il, v ,is;jl, ce ,js] — det($ia,jp)lﬁa,ﬁﬁs'

Lemma 1.10 With the structure above, S is an ASL on §) over R with the straightening
relation of the form

ab=(aAb)(aVb)+ > ullcd(+ve) (u%,v € R)
c,d

for each a = [ay,...,a5;4d},...,a)) and b= [by,...,bs; b}, ..., b.], where a Ab=inf(a,b),
aV b = sup(a,b), the sum is taken over all c € O and d € Qy such that ¢ < a A'b
and that | +1' = s+ 8'. If ay,...,a5,b1,...,by are all distinct with its rearrangement
in the increasing order is ci,...,Cops, and if ai,...,a%, by, ..., b, are all distinct with
its rearrangement in the increasing order is ¢y, ...,Csys, then the term ve (v € R) may
appear in the right-hand side, where e = [c1,...,Csys;Chy- -, Coyyr]. The grading of S is
the usual grading (i.e., each z;; is degree one).



This is proved using the Laplace expansion rule. See for example, [ABW2]. The ASL
structure above is good with the determinantal ideals I;.

For a poset P and its subset @), we say that @ is a poset ideal of P when for any z € P
and y € Q, z < y iinplies z € Q.

Lemma 1.11 Let A be an ASL on P over R with the straightening relation (1.6). If
Q is a poset ideal of P, then A/lg is an ASL on P — @ over R with the straightening
relation

zy =Y M (ci € R)
M

where I is the ideal (zz € Q) in A generated by Q) and the sum is taken over all M
that appears in (1.6) such that no element in Q appears in M.

The proof is straightforward. Applying this lemma to the ASL S on Q and the poset
ideal Q5>¢ = U,>: Qs of 2, we conclude that S/1; is an ASL on Q¢; = Q — Q. Thus, S/1,
is R-flat for any R by (ASL-1). Moreover, it is easy to see that Q, is a sublattice of Q,
and hence is a distributive lattice. This shows that S/I; is Cohen-Macaulay when so is
R.

It remains to show that S/I; is a normal domain when R is a field. There is a good
criterion of normality for ASL’s on distributive lattices due to Ito.

Theorem 1.12 ([Ito, Corollary]) Assume that R is a Cohen-Macaulay normal do-
main. Let A be an ASL over a distributive lattice L with the straightening relation

zy=(xAy)zVy)+ > M (cif € R),
M

where the sum is taken over standard monomials M = z;---z,,, which have the same
degree as xy with x; < x Ay. Then, A is a Cohen-Macaulay normal domain.

The determinantal ring S/ 1, satisfies the assumption of this criterion, so it is a normal
domain. It is straightforward to see that rank Qe =mn —(m -t +1)(n —t+1) -1 so
that dim S/I; = dimR + mn — (m —t + 1)(n — ¢ + 1), and the proof of Theorem 1.3 is
completed.

Hibi [Hib] defined the algebra Rg[L] = R[z € L]/(zy — (z Ay)(z V y)) for distributive
lattices, and showed that this algebra is a Cohen-Macaulay normal domain. The algebra
Rr[L] is called the Hibi ring of L over R. It follows that any distributive lattice is
integral. He posed a question that an ASL on L with some good straightening relation
is a normal domain [Hib, p.103]. Ito’s criterion is a good answer to this question.

For the Gorenstein property, Hibi completely determined when Hibi ring is Gorenstein.

Theorem 1.13 ([Hib, p.107}) Let A be as in Theorem 1.12. Then, A is Gorenstein if
and only if R is Gorenstein, and P is pure, where P is the set of join-irreducible elements
in L. That is,

P={zelLl|#{yell#{relly<z<z}=2}=1}
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Note that if the theorem is true for Hibi rings, then the theorem is true in general by
2 of Lemma 1.2. It is obvious that z = [ay,...,a,; by, .., bs] € Q¢ is join-irreducible if
and only if one of the following is satisfied (we assume ¢ < min(m,n)).

lLLz=[1,...,81,...,8] (1 <s<t-2)
2.z=[,...;t,;m—s+i+1,...oml....8) (1<s<t-1,0<:<s—1)
.z=[l,...,81,....i,n—s+i+1,...,n] (1<s<t—-1,0<¢<s—1)

From this, it is not so difficult to show that Q; is pure if and only if t = 1 (Q; = 0)
or m=n.

Corollary 1.14 S/I; is Gorenstein if and only if R is Gorenstein, and t =1 or m = n.

2 A Mininal Free Resolution

There has been much interest in determinantal ideals from the viewpoint of homological
algebra. Among them, the following is an interesting problem.

Problem 2.1 1. Construct a minimal free resolution of S/I; as a graded S-module.

2. Assume that R is a field. Calculate the graded Betti numbers
Bg = dimR[Torf(S/S_l_, S/L);,

where S, = I; = (z;;), and [ ]; denotes the degree j component of a graded
S-module.

Here, a graded S-complex (i.e., a chain complex in the category of graded S-modules)
Fiooo o R%F | o 0 Fy—0

is said to be a free resolution of a graded S-module M when each F; is free, H;(F) = 0
(1> 0) and Ho(F) = M. It is called minimal when the boundary maps of S/S, ® F are
all zero. A graded minimal free resolution is unique up to isomorphism. It exists when
the base ring R is a field. ‘

Since S/1, is free as an R-module, we have Tor®(M,S/I,) = 0 for i > 0 and any R-
module M. Hence, if F is a projective resolution of S/I; over the base ring R, and if R’ is
an R-algebra, then R'®gF is a projective resolution of R'®rS/1;. If F is graded minimal
free, then so is R’ ®g S/I;. So, if 1 of the problem is solved for the ring of integers Z,
then 1 is solved for any R, because we can get the resolution by base change R®z?.

Let F be a graded minimal free resolution of S/I,. Then, H;(S/S+ @sF) = S/S+ ® F;
is an R-free module, and we have

0o > rankg Tor? (S/S,,S/I,) = rankg F;.
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Note that the right hand side is invariant under the base change. In particular, for any
R-algebra K which is a field, we have 8% = rankg F;. Thus, the problem 2 is easier than
1 (for example, if 1 is solved for any field, then 2 is completely solved).

Assume that R is a field. Since S/I; is Cohen-Macaulay of dimension dim S — (m — ¢+
1)(n—t+1), we have pdg S/I; = (m—t+1)(n—t+1). Weset h = (m—t+1)(n—t+1).
Then, we have 3 # 0 and 87 = 0 for 7 > h. The ring S/I, is Gorenstein if and only if
Br =1 by Lemma 1.2. Let F be a graded minimal free resolution of S/I;. Then, we have

H;(Homg(F, S)) = Ext5*(S/I;,S) = 0

unless : = —h by Lemma 1.1, since S/I; is Cohen-Macaulay of codimension h. So the
complex Homg(F, S)[—h] ([ ] denotes the shift of the degree as a chain complex) is a
minimal free resolution of the S-module Ext%(S/I,,S). When S/I, is Gorenstein, we
have Ext%(S/I,,S) = S/I,. This shows that Homg(F, S)[—A] is a graded minimal free
resolution of S/I; (the grading as a graded S-module may be different, so we should say
Homg(F, S)(a)[h] is a graded minimal free resolution of S/I; for some a € Z). This shows
that
Fi = HomS(F,S)[hL(a) = HomS(Fh_,-, S)(a),

and we have 3; = B,_;.

Why is the problem a problem? First, constructing a graded minimal free resolution of
S/I as an S-module (for a homogeneous polynomial ring S = K|[z,,...,z,] over a field
K and its homogeneous ideal I) has been considered as an ultimate aim of homological
study of the algebra S/I—knowing a minimal free resolution yields ample information
on the ring in question. For example, S/I is Cohen-Macaulay if and only if ;(S/I) =0
for ¢ > dimS — dimS/I. It is Gorenstein if and only if it is Cohen-Macaulay and
Baims—aims/1(S/I) = 1. So the Betti numbers j3; of an algebra contain a lot of information
of the algebra (however, nowadays the progress of the theory of commutative algebra
provides us a lot of tools for studying important homological properties (such as Cohen-
Macaulay property) of commutative algebras without constructing a resolution).

Secondly, the theory of the resolution of determinantal ideals is an interaction be-
tween the theory of commutative algebra, combinatorics and the representation theory
of algebraic groups, and is interesting itself.

The number ¥ depends only on the characteristic p of K, so we also write §7.

When there exists a graded minimal free resolution F of S/I, over the ring of integers
so that the resolution is obtained by base change for an arbitrary ring? Clearly, if such
a resolution exists over Z, then 47 is independent of p. The converse is true.

Lemma 2.2 ([Rob, Chapter 4, Proposition 2], [HK, Proposition I1.3.4]) Assume
that R is a noetherian reduced ring such that any finitely generated projective R module
is free. Let A = Rxy,...,z,] be a homogeneous polynomial ring over R, and M a
finitely generated graded A-module which is flat as an R-module. Then, the following are
equivalent for any i > 0.

1 There exists a graded minimal free complex

0; i 17}
O—»Fi+l—+—l)Fi—>-~-—>F1—l—>F0—)0
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such that HoF = M and HF =0 for1 <k <.

2 Forany 0 < k <1 and 5 € Ny, the numbers
BE(M) 2 dimp o[ TorZ/™8R4(R/9M @k A/ Ay, R/M @r M)];

is independent of the mazimal ideal M of R, where []; denotes the degree j compo-
nent of a graded A-module.

3 For any 0 < k < 1, the Betti numbers B (M) = B (R/M ®r M) (over the field |
K = R/9M) is independent of the mazimal ideal M of R.

4 For any 0 < k < i, Tor}(A/A,, M) is a free R-module.
~ Thus, there exists a graded minimal free resolution of S/I, over Z if and only if ﬂ}"(S/ItV)
is independent of p for any .

Problem 2.3 Are the Betti numbers 7(S/1;) independent of the characteristic?

Known approaches to the problem of the resolutions of determinantal ideals more or less
depend on representation theory of GL. Let V = R and W = R™. Then, the polynomial
ring S = R[;]1<i<m,1<j<n 1S identified with the symmetric algebra S(V ® W), on which
G = GL(V) x GL(W) acts. It is clear that I, is invariant under the action of G.

Among various tools in the representation theory of GL, Schur modules and Schur
complexes are very important. ‘

Let R be a commutative ring which contains the field of rationals Q, and C a finite
free R-complex (i.e., bounded R-complex with each term finite free). For n > 0, the
symmetric group &,, acts on C*" by

0'((11 R ® an) = (.._]_)Ei<j,a.‘>aj deg(ai)des(a;‘)aq_11 R - Qa,-1,

foro € G,.

For a partition (i.e., a weakly decreasing sequence of non-negative integers) A =
(M, A2,..., ) with Y, Ay = n, we set L,C := Homg,(s5, C®"), where s; is the Specht
module (see e.g., [Gr]) of A (A = (A1, Ag,...) is the transpose of A, namely, the partition
given by A; = #{j|); > i}). This complex was used effectively, and the resolution
of determinantal ideals over the field of characteristic zero was constructed [Las], [Nls],
[PW1].

It seems to be difficult to extend the definition of Schur complex L,C (with good
property) of a finite free complex to the general base ring R. However, there is a good
extension of the notion of Schur complex of a map (i.e., a complex of length at most
one) to the general base ring [ABW2]. For a map of finite free R-modules ¢ : F — E,
the Schur complex Ly is defined. The definition is compatible with the base extension.
Namely, for any map of commutative rings R — R’, there is a canonical isomorphism of
R'-complexes

R'®r Lyxp = Ly\(R' ®r ¢).
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Moreover, the definition of Ly agrees with that of Nielsen’s when the base ring R
contatins Q.

The characteristic-free Schur complex is used to construct the minimal free resolution of
S/I7 (r 2 1) for ¢ = min(m,n). Using this, Akin, Buchsbaum and Weyman constructed
the minimal free resolution of S/I, for the case t = min(m,n) — 1 [ABW2].

Using characteristic-free representation theory developed by Akin, Buchsbaum and
Weyman, Kurano [Kur] obtained the following result.

Theorem 2.4 The second Betti number X of the determinantal ring S/ 1, is independent
of the base field K.

In the proof of the theorem, the characteristic-free Cauchy’s formula [ABW?2] played
the central role. Cauchy’s formula for the characteristic zero case is stated as follows. Let
R D Q, and V and W be finite free R-modules. Then, for r > 0, we have an isomorphism
of G = GL(V) x GL(W)-modules

S,(VeWw)= @ L,V ® L\W,
X

where the sum is taken over all partitions A = (A1, Aq,...) such that 3°; A\; = r. Note that
each summand of the right-hand side is irreducible as a G-module or 0.

The characteristic-free version is stated using the characteristic-free Schur modules.
After that, Kurano and the author extended the characteristic-free Cauchy’s formula
to the chain complex version [HK], and proved that Problem 2.3 is true for the case
m =n =t + 2. After that, Problem 2.3 was solved negatively.

Theorem 2.5 ([Hasl]) We have 631/31 > B8 when 2 <t < min(m,n) — 3.

After that, the author proved that there exists a graded minimal free resolution of S/1I;
over Z when ¢ = min(m,n) — 2 [Has2]. Thus, we have

Theorem 2.6 There erists a graded minimal free resolution of S/1; if and only if t =1
or t > min(m,n) — 2.

In the proof of the theorem, a certain class of subcomplexes of the Schur complex of
the identity map L,idp, called the ¢-Schur complexes, was studied.

The ¢-Schur complexes are used to calculate the Betti numbers of other class of deter-
minantal ideals [Has3], [Has4].
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