Extension algebras of C^* -algebras via canonical *-endomorphisms

大阪教育大学 長田 まりゑ (Marie Choda)

§1. Introduction. Let A be a unital C*-algebra and γ a unit preserving *-endomorphism of A. When γ satisfies a certain condition which are naturally obtained through the index theory, we call the γ canonical. Let ϕ be a faithful state on A with $\phi(\gamma(x)) = \phi(x)$ for all $x \in A$. Using the canonical γ , we define a *-endomorphism ρ of A for which there exists a $\lambda(0 < \lambda < 1)$ so that $\phi(\rho(x)) = \lambda \phi(x)$ for all $x \in A$. From such a *-endomorphism ρ , we have a representation π of A and a non unitary isometry W which satisfy the following conditions :

(1) $W\pi(a)W^* = \pi(\rho(a))$ for all $a \in A$,

and

(2)
$$W^*\pi(A)W \subset \pi(A)$$
.

Let $\langle A, \gamma \rangle$ be the C^{*}-algebra generated by $\pi(A)$ and W. We call $\langle A, \gamma \rangle$ the extension algebra of A by the canonical *-endomorphism γ . We give a condition for $\langle A, \gamma \rangle$ to be simple. We show that the canonical *endomorphism γ of A is always extended to a canonical *-endomorphism $\hat{\gamma}$ of $\langle A, \gamma \rangle$.

The terminology *canonical* is used by Ocneanu for *-endomorphism on some important *-algebras in the classification theory of subfactors of the hyperhinite II₁ factor. For *-endomorphism on the Cuntz algebra O_n , same terminology *canonical* is used by Cuntz. We show that the extension algebra $< A, \gamma >$ is always simple for pairs $\{A, \gamma\}$ due to Ocneanu and that the canonical *-

Typeset by $\mathcal{A}_{\mathcal{M}}\mathcal{S}\text{-}T_{E}X$

endomorphism of Cuntz is the extension $\hat{\gamma}$ of a special shift γ

Our extension algebra $\langle A, \gamma \rangle$ is generated by A and an isometry W with the relation (1) and (2). Paschke([Pa]) proved that if A is strongly amenable and simple, then the C^* -algebra $C^*(A, W)$ generated by A and W with relations (1) and (2) is always simple. We show that the amenable simple C^* algebra O_n (which is not strongly amenable) has two kind of isometries W_1 and W_2 with relations (1) and (2) which give simple $C^*(O_n, W_1)$ and non simple $C^*(O_n, W_2)$.

§2. Crossed product by *-endomorphisms. In this section, we define a crossed product of a C*-algebra A by a *-endomorphism ρ and investigate some properties of the crossed products which we need in the next section. Our method is somewhat similar to the method for von Neumann algebras in [A] and [T]. Related topics are investigated in [D], [Pa] and [S].

Let A be a unitel C*-algebra with a faithful state ϕ and ρ a *-endomorphisms of A which satisfies for some $\lambda(0 < \lambda < 1)$ that

$$\phi(\rho(x)) = \lambda \phi(x), \qquad (x \in A).$$

Let ξ_0 be the image of the unit 1 of A in the Hilbert space $L^2(A, \phi)$. We denote by p_n the projection $\rho^n(1)$. Put

$$H_k = \left\{ \begin{array}{ll} L^2(A,\phi), & (k\leq 0) \\ p_k L^2(A,\phi), & (k\geq 1). \end{array} \right.$$

and

$$H=\sum_{k\in Z}\oplus H_k.$$

Let π be the representation of A on H defined by

$$(\pi(x)\eta)_k = \begin{cases} \rho(x)\eta_k, & (k \le 0) \\ \rho^k(x)\eta_k, & (k \ge 1). \end{cases},$$

where $\eta = (\eta_k)_{k \in \mathbb{Z}}$ for $\eta_k \in H_k$. Let W be the isometry defined by

$$(W(\eta))_{k} = \begin{cases} \frac{1}{\sqrt{\lambda}}\rho(x_{k-1})\xi_{0}, & (k \leq 0)\\ \frac{1}{\lambda}\rho^{2}(x_{k-1})\xi_{0}, & (k \geq 1), \end{cases}$$

where $\eta = (\eta_k)_{k \in \mathbb{Z}}$ and $\eta_k = x_k \xi_0$, for some $x_k \in A$. Then W and π satisfies

$$W\pi(x) = \pi(\rho(x))W$$
 for all $x \in A$

and $W^k W^{*k} = \pi(p_k)$ for all k. We assume that $W^* \pi(A) W \subset \pi(A)$. In the next ection, we show that the *-endomorphism ρ induced by a canonical *-endomorphism γ satisfies this assumption.

Proposition 1. Let $C^*(A, W)$ be the C^* -algebra generated by $\pi(A)$ and the above isometry W. Then there exists a faithful conditional expectation Eof $C^*(A, W)$ onto $\pi(A)$ with $E(aW_k) = 0$, for all $a \in \pi(A), k \ge 1$. The state ϕ is extended to a faithful state ψ of $C^*(A, W)$ which satisfies $\psi(aW^k) = 0, (a \in \pi(A), k \ge 1)$.

Let us consider the following condition (*) for a *-endomorphism γ of A due to Kishimoto[K] in the case of automorphisms.

Condition (*). For an $a \in A$, a finite set S in A, a finite set F in integers N and $\epsilon > 0$, there exists a positive $x \in A$ with ||x|| = 1 such that

$$||xax|| \ge ||a|| - \epsilon, \qquad ||xs\rho^k(x)|| \le \epsilon \ (s \in S, k \in F).$$

Prpposition 2. If ρ satisfies the condition (*), then $C^*(A, W)$ is simple when the only proper ideal J of A for which $WJW^* \subset J$ is the zero ideal.

Remark 3. If the C*-algebra A is strongly amenable, then we dont need the condition (*) for simplicity of $C^*(A, W)$ by [Pa]. However, in the case of A which is not strongly amenable, $\langle A, W \rangle$ is not always simple without any condition like (*). we show in §3 an example of a pair of an amenable C^* -algebra A and a canonical *- endomorphism γ which inplies non simple $C^*(A, W)$.

§3. Canonical *-endomorphisms. In this section we define a canonical *endomorphism γ on C^* -algebras, and applying the method of crossed products in §2 to the *-endomorphism ρ induced from γ , we investigate relations between extension algebras and canonical *-endomorphisms.

Definition 4. Let A be a unital C^* algebra with a faithful state ϕ . Let γ be a *-endomorphism of A with $\phi \cdot \gamma = \phi$. If there exist two projections $e \in \gamma(A)' \cap A$ and $f \in \gamma^2(A)' \cap A$ such that :

(1)
$$eAe = \gamma(A)e, \quad \phi(e) = \phi(f)$$

and the projections $\{e_1(=e), e_2(=f), e_3(=\gamma(e))\}$ satisfies Jones relation for $\phi(e) = \phi(f) = \lambda$, that is,

(2)
$$e_i e_j e_i = \lambda e_i, \ (|i-j|=1), \qquad e_i e_j = e_j e_i, \ (|i-j|\neq 1)$$

then γ is said to be *canonical*. We call the projection *e* a *basic* projection for γ .

Let γ be a canonical *-endomorphism of A and e a baic projection for γ . We define the *-endomorphism ρ on A by

(3)
$$\rho(a) = e\gamma(a), \quad (a \in A)$$

Then ρ satisfies that $\phi(\rho(x)) = \lambda \phi(x)$ for all $x \in A$, where $\lambda = \phi(e)$.

Lemma 5. Let ρ be a *-endomorphism defined by (**) for a canonical *-endomorphism γ of A. Then the isometry W defined by ρ satisfies that

$$W^*AW \subset A.$$

By Lemma 5, we can apply the result in §2 to the ρ defined by (**) and we consider the crossed product $C^*(A, W)$ in §2 which we denote by $\langle A, \gamma \rangle$. We call $\langle A, \gamma \rangle$ the extension algebra of A via a canonical *-endomorphism γ .

Proposition 6. Let A be a unital C^* -algebra with a faithful state ϕ and γ a canonical *-endomorphism of A. Let e and f be projections in Definition 4. Then there exists a canonical *-endomorphism $\hat{\gamma}$ of $\langle A, \gamma \rangle$ which satisfies that

$$\hat{\gamma}(x) = \gamma(x), \; (\in \pi(A)) \qquad \hat{\gamma}(W) = vW,$$

where $v = \lambda^{-1} \gamma(e) f e$.

Many typical canonical *-endomorphisms γ are given as $\gamma = \sigma^2$ for some *-endomorphism σ . Such a sigma is also extended to a *-endomorphism $\hat{\sigma}$ of $\langle A, \gamma \rangle$ which satisfies $\sigma(W) = \lambda^{-1/2} fe$.

§4. Examples. In this section we shall restrict ourselves to the case of concrete C^* -algebras and show relations between canonical *-endomorphisms.

Example 1. Let A_0 be the n by n matrix algebra $M_n(\mathbb{C})$ over the complex numbers \mathbb{C} . Put $A_i = A_0$ for all integer *i*. Let A be the infinite C^{*}-tensor product $\bigotimes_i^{\infty} A_i$. Let γ be the 1-shift translation to the right on A. For a matrix units $e_{i,j}$ of $M_n(\mathbb{C})$. We identify $e_{i,j}$ and $e_{i,j} \otimes 1 \otimes \cdots$. Put $e = e_{1,1}$ and

$$u = \sum_{i=1}^{n} e_{i,i-1}, \qquad f = \sum_{i,j} u^{j-i} \otimes e_{i,j}/n.$$

Then γ, τ, e and f satisfies the conditions in Definition 4 for γ to be canonical.

Cuntz [Cu] defined the simple C^* -algebra O_n which generated by isometries $(S_j)_{1 \le j \le n}$ with $S_i S_j = \delta_{i,j} 1$ and $\sum_i S_i S_i^* = 1$. He obtained interesting results

using basically his "canonical" inner *-endomorphism Φ on O_n defined by

$$\Phi(x) = \sum_{j} S_{j} x S_{j}^{*}$$
 for all $a \in A$.

Proposition 7. Let A and γ be the same as in Example 1. Then the extension algebra $\langle A, \gamma \rangle$ is the Cuntz algebra O_n and the extension $\hat{\gamma}$ of γ to $\langle A, \gamma \rangle$ is Cuntz's canonical inner *-endomorphism Φ .

Remark 8. By Proposition 5 and 6, Cuntz's endomorphism Φ is also canonical. Hence we have the extension algebra $\langle O_n, \Phi \rangle$. By the definition, $\langle O_n, \Phi \rangle$ is generated by $B = \pi(O_n)$ and an isometry $W(=W_{\Phi})$, which comes from Φ) with

$$(4) W BW^* \subset B, W^* BW \subset B$$

Paschke proved that if B is strongly amenable and W is a non unitary isometry with the condition (4) then the C^* -algebra generated by B and W is always simple. By [Cu], O_n is simple and amenable but not strongly amenable. Following Proposition shows that his result does not hold without strong amenability. We also remark that O_n is generated by O_n and W which satisfy the condition (4), and O_n is simple. Hence O_n has two isometries with relation (4) one of which gives a simple C^* -algebra and the other gives a non simple algebra.

Proposition 9. Let Φ be Cuntz's *-endomorphism on O_n . Then $\langle O_n, \Phi \rangle$ is isomorphic to the tensor product $O_n \otimes C^*(u)$. Here u is a unitary with $u^j \neq 1$ for all integer j.

Example 2. Let A, τ and γ be the same as in Example 1. Put

$$\eta(\gamma^m(e_{p,q})) = \sum_j e_{j,j} \gamma^{m+1}(e_{p+j,q+j})$$

for all $m \ge 0$. Then η is extended to the τ preserving *-endomorphism of A. Put

$$e = e_{1,1}, \qquad f = \sum_{i,j} \frac{e_{i,j}}{n}$$

Then η , e and f satisfy the conditions for η to be canonical.

In this case,

$$\rho(x) = e\gamma(UxU^*), \quad \text{for } U = \bigotimes_{i=1}^{\infty} u_i \text{ all } x \in A,$$

where u_i is the unitary u in the example 1. This implies the following :

In [Cu 2], Cuntz defined the *-endomorphism λ_R on O(H) of a finite dimensional Hilbert space H defined by

$$\lambda_R(S) = RS, (S \in H)$$

for R = FV. Here F is the flip symmetry of $H \otimes H$ and V is a multiplicative unitary on $H \otimes H$. Example 2 is generalized to a general finite dimensional Hilbert space H by taking a suitable orthonormal basis. The following shows that Cuntz's λ is also canonical.

proposition 10. Let A, τ and η be the same as in Example 2. Then $\langle A, \eta \rangle$ is O_n and the extension $\hat{\eta}$ of η to $\langle A, \eta \rangle$ is the *-endomorphism λ_R due to Cuntz.

Example 3. Let $N \subset M$ be an inclusion of type II₁ factors with Jones index $[M:N] < \infty$. Put $\lambda = [M:N]^{-1}$. Iterating the basic construction for $N \subset M$, we have the tower of II₁ factors :

 $N \subset M_0 = M \subset M_1 \subset \cdots \subset M_j = \langle M_{j-1}, e_j \rangle \subset \cdots$

Here, e_j is the Jones projection for $M_{j-2} \subset M_{j-1}$. Let τ_0 be the unieque trace of M. Then τ_0 is extended to the trace τ_j of M_j via $\tau(xe_j) = \lambda \tau(x)$ for all $x \in M_{j-1}$. Let

$$A_j = M' \cap M_j$$
 for all integer j .

For an $x \in \bigcup_j A_j$, put $\tau(x) = \tau_j(x)$ when $x \in A_j$ for some j. Let A be the C^* -algebra obtained from the GNS construction of $\bigcup_j A_j$ by τ . Then τ induces a tracial state (which we denote by the same notation τ) on A. The antiautomorphism γ_j of A_{2j} defined by

$$\gamma_j(x) = J_j x^* J_j, \qquad x \in A_{2j},$$

where J_j is the canonical conjugation on $L^2(M_j, \tau_j)$. Then we have ([Ch-H], [O])

 $\gamma_{j+1} \cdot \gamma_j(x) = \gamma_j \cdot \gamma_{j-1}(x)$, for all $x \in A_{2j-2}$ and $j \ge 1$.

Since γ_j is τ_j preserving, there is a τ preerving *-endomorphism Γ on A defined by $\Gamma(x) = \gamma_{j+1}\gamma_j(x)$ for all $x \in A_{2j}$.([O]) This Γ is called Ocneanu's 2-shift. The Jones projection $e = e_1$ and $f = e_2$ satisfy the conditions for Γ to be a canonical *-endomorphism for the pair $\{A, \tau\}$.

Example 6. Let G be a finite bipartite with a Ocneanu's biunitary cannection ([O2]). Then we have the C*-algebra A with a unique trace τ obtained from path algebras on G and a *-endomorphism σ on A induced by the connection. Put $\gamma = \sigma^2$. Then γ is canonical. the first Jones projection e_1 and and the second Jones projection e_2 in the path algebra satisfies the conditions in definition 4.

From these canonical *-endomorphisms γ on C*-algebras A, we obtain simple C*- algebras $\langle A, \gamma \rangle$ because we have always a projection q depending the basic projection for these γ as an element x in the condition (*). M. Izumi told me these C*-algebras are not always Cuntz algebras because they have different $K_0(\langle A, \gamma \rangle$ from $K_0(O_n)$. Any way we have simple amenable but non strongle amenable C^* - algebras $\langle A, \gamma \rangle$ and canonical *-endomorphisms on $\langle A, \gamma \rangle$. Anyway, some results are published in a forsecoming paper. Also related algebras are obtained by Izumi and Katayama in this report.

The termonology "canonical" for *-endomorphisms on infinite factors are used in many papers by Longo (for instance, [L1,L2, L3]). We have similar results as in C^* -algabras for factors, which are descrived in [ch].

References

- [A] H. Araki : Structure of some von Neumann algebras with isolated discrete modular specteum, Publ. RIMS, Kyoto Univ., 9(1973), 1-44.
- [Ch] M. Choda : Entropy for canonical shifts, Trans. Amer. Math. Soc. 334(1992),827-849.
- [Ch-H] M.Choda and F. Hiai : Entropy for canonical shifts II, Publ. RIMS. Kyoto Univ., 27(1991), 461-489.
- [Ch 2] M. Choda : Type III_{λ} factors for a *-endomorphism of II₁ factors with index λ^{-1} . in preparation.
- [Cu 1] J. Cuntz : Simple C*-algebras generated by isometries, Commun. Math. Phys. 57(1977), 173-185.
- [Cu 2] J. Cuntz : Regular actions of Hopf algebras on the C*-algebra generated by a Hilbert space. Preprint.
 - [D] S. Doplicher and J.E. Roberts: Endomorphisms of C^* -algebras, crossed Product and duality for compact groups, Ann. Math. 130(1989), 75-119.
 - [E] G. A. Elliott : Some simple C*-algebras constructed as crossed products with discrete outer automorphism groups, Publ. RIMS, Kyoto Univ., 16(1980), 299- 311.
 - [I] M. Izumi : On subalgebras of non-AF algebras with finite Watatani index.
 I Cuntz algebras, Preprint.

- [J1] V.F.R. Jones : Index for subfactors, Invent. Math., 72(1983), 1-15.
- [K] A. Kishimoto: Outer automorphisms and reduced crossed product of simple C*-algebras, Comm. Math. phys. 81(1981), 429-435.
- [L1] R. Longo : Simple injective subfactors, Advances Math., 63(1987), 152-171.
- [L2] R. Longo : Index of subfactors and statistics of quantum fields I, Commun. Math. Phys., 126(1989), 217-247. Index of subfactors and statistics of quantum fields II. Correspondences, braid group statistics and Jones polynomial, Commun. Math. Phys. 130(1990), 285-309.
- [L3] R.Longo : A duality for Hop algebras and for subfactors. I Preprint
- [O1] A. Ocneanu : Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, vol. II, London Math. Soc., Lecture note series 136, Cambridge Univ. Pres, 136(1988), 119-172.
- [O2] A. Ocneanu : Quantum symmetry, differential geometry of finite graphs and classification of subfactors, note by Kawahigashi.
- [Pa] W. Paschke : The crossed product of a C*-algebra by an endomorphi sm ,Proc. Amer. Math. Soc., 80(1980), 113-118.
- [S] P.J. Stacey : Crossed products of C^{*}−algebras by ^{*}-endomorphisms, J.Austral.
 Math. Soc.(series A) 54(1993), 204-212.
- [T] M. Takesaki : The structure of a von Neumann algebra with homogeneous periodic state, Acta Math., 131(1973), 79-122.