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Interpolation in Analytic Crossed Products

Kichi-Suke Saito (Niigata Univ.)

1. Introduction

Nonselfadjoint operator algebras have been studied since the
paper of Kadison and Singer in 1960. In [1], Arveson introduced the
notion of subdiagonal algebras as the generalization of
weak#-Dirichlet algebras and studied the analyticity of operator
algebras. After that, we have many papers about nonselfadjoint
algebras in this direction: nest algebras, CSL algebras, reflexive
algebras, analytic operator algebras, analytic crossed products and
so on. Since the notion of subdiagonal algebras is the analogue of
weak#-Derichlet algebras, subdiagonal algebras have many fruitful
properties from the theory of function algebras. Thus, we have
several attempts 1in this direction: Beurling—Lax-Halmds theorem for
invariant subspaces, maximality, factorization theorem and so on.

Our aim in this note is to study the interpolation theory of
subdiagonal algebras, 1in particular, analytic crossed products. In
[15], Sarason studied the theory of generalized,interpolation in H”
over the unit circle and proved two classical interpolation theorems
due to Caratheodory and Pick. In fact, the interpolation is an
operator dilation. In this note, we 1introduce the notion of
interpolation in finite maximal subdiagonal algebras, 1in particular,

analytic crossed products.
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Our setting is the following. Let 2 be a von Neumann algebra
with a faithful normal tracial state <t. Let H  be a finite
maximal subdiagonal algebra of U with respect té ® and T, where
® 1is the faithful normal conditional expectation of 2 onto the
diagonal of bﬂfﬂ We consider the noncommutative Lz—space Lz(ﬂ,r)
associated with <t and define the noncommutative Hardy space Hz by
the closure of H” in Lz(ﬂ,t). For every a € N, we define

operators La and Ra by LaX = ax and RaX = xa for x € Lz(ﬂ,t).

For every subset S c U, we put L(S) = {La}aES and R(S) =

ao

{Ra}aES’ respectively. If H is an analytic crossed product
determined by a finite von Neumann algebra N and an automorphism
@ on N, then we study the invariant subspace structure under Hm
(cf. [6], [7], [13] énd so on). As in [6], we proved that if H® is
an anlytic cfossed product and the diagonal N of Hm is a factor,
then every two-sided invariant subspace of Mz is of the form LWHZ

0
for some unitary operator w in H . Thus, we now consider a

two-sided invariant subspace of Hz which is of the form LWHZ for

some unitary operator w in H”. Put K = MZGLWHZ. The orthogonal
projection in Lz(ﬂ,t) with range K will be denoted by PK' For
any operator A in L(Hm) or R(Hm), we define the operators SA on
K by SAf = PK(Af), f € K. When an operator T on K  can be
written SA for some A in L(H°) or R(H"), we shall say that
this operator A interpolatesr T. We now set ﬂ+(K) = {SA: A €
L(H")} and R,(K) = {SA: A € R(H”)}, respectively. Then we show

that £ _(X) and R _(K) are weakly closed subalgebras of B(K)

a0

and B+(K) commutes with ﬁ+(K). Furthermore, 1if H is an

analytic crossed product determined by a finite von Neumann algebra
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and a #-automorphism, then we prove that, if T 1is a bounded linear
operator on K that commutes with R+(K), then there exists an
operator A in L(Hw) such that T = SA and 0TI = [IAll. That is,
E+(K)' = ﬂ+(K) and m+(K)' = 9+(K) (Theorem 3.2). As the corollary,

we prove that the generalization of Caratheodory-Fejer Theorem

(Theorem 4.1).

2. Interpolation in finite maximal subdiagonal algebras

Let U be a von Neumann algebra with a faithful normal tracial
state t. First, we recall the definition of finite subdiagonal
algebras of .

Definition 2.1. Let H~ be a subalgebra of M containing the
unit and let @® be a faithful normal expectation from % onto D
(= Hmﬂﬁw*). Then H° is callgd a finite subdiagonal algebra of ¥
with respect to ¢ and T in case the following conditions are
satisfied: (1) H”+H™* is o-weakly dense in q;  (2) o(xy) =
®(x)®(y), for all x, y € H'; (3) ted® = t.

Let Hm be a o-weakly closed finite subdiagonal subalgebra of
U with respect to Q and Tt. By [3, Theorem 71, then H> is
maximal among those subalgebras of ¥ satisfying (1) and (2) of
Definition 2.1. We shall denote the noncommutative Lp—spaces
associated with # and <t by Lp(ﬂ,r), 1 £ p <o, For 1 £ p < o,
the closure of H in LP(%,t) 1is denoted by HP and the closure

(¢4

of HO = {XEHM: P(x) = 0} is denoted by Hg. We refer for the

properties of HP and Hg to [9, 10].

We denote the operators in the left regular representation of

U on Lz(ﬂ,t) by LX, x € U, and those in the right regular
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representaion by Rx’ X € Y. Put £ = {LX: x € U}, R = {RX: x € U},
Q+ = {LX: x € H°} and m+ = {RX: x € H”}, respectively.

Definition 2.2. Let M ©be a closed subspace of Lz(ﬂ{r). We
shall say that M is: left-invariant, if B+M c f; left-reducing,
if ﬁw-c M; left-pure, if M contains no left-reducing subspaces;
and left-full, if the smallest left-reducing subspace containing N
is all of Lz(ﬂ,r). The right-hand versions of these concepts -are
defined similarly, and a subspace which is both left-invariant and
right-invariant will be called two-sided invariant.

In this note{ we consider a two-sided invariant subspace T of
Hz which ié of the form LWHZ (= WHZ) for some unitary operator w
in H”. At first, we study the interpolation for LWHZ. Let K Dbe

the subspace HZQLWHZ of Hz. The orthogonal projection in Lz(ﬂ,t)

with range K will denoted by P,. Then, for every a € Hm, the

K
operators SL and SR is defined by
a a
SL f = PK(Laf) and SR f = PK(Raf), f € K.
a a
When an operator T on K can be written as S for some operator

A

A 1in B+ or ﬁ+, we shall say that this operator A interpolates

T.
Proposition 2.3. If A € ﬁ+ and B € M+, then SASB = SBSA'
Proof. Let X Dbe the o-weakly closed subalgebra of B(Lz(ﬂ,t))
génerated by ﬂ+ and %+. Since M 1is two-sided. invariant, M 1is

Z-invariant. By [14, Lemma 0], K is semi-invariant under X in the

sense that the projection PK satisfies PKAlPKAZPK = PKAlAZPK for
all Al’ A2 € Z. Therefore, we have for every A € B+ and B € m+,
SASBf = PKAPKBPKf = PKABPKf = PKBAPKf = PKBPKAPKf = SBSAf,
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where f € K. This completes the proof.

We now put £ _(K) = {S a € H'} and R,(K) = {SR a € H'},

a a

L
respectively. Since K is semi-invariant as 1in the proof of
Proposition 2.3, E+(K) and ﬂ+(K) are subalgebras of B(K).
Further, we define the map ¢ from H® onto ﬁ+(K) by e¢(a) =

SL , a € H”. Then we have
a

Proposition 2.4. The map 0] from Hm onto ﬁ+(K) is a
homomorphism with kere = wH”

Proof. Since K 1is semi-invariant under % as in the proof of
Proposition 2.3, it is clear that ¢ 1is homomorphic. Take any a €
Hm such that ¢(a) = 0. Then PKLaf = 0 for every f € K and so
Laf = af € LWHZ c Hz. On the other hand, since LWHZ is two-sided
invariant, L _L HZ c L Hz. Thus, L Hz c L Hz. This implies that a €

a’'w W a ‘W
Lwﬁznm = Lme by [10, Theorem]. Hence we have kere c wH™.
. © 2 2
Conversely, taking any a € wH , we have LaH c LWH and so LaK c
Lwﬁz. This implies that ¢(a) = 0. This completes the proof.
By Proposition 2.4, the map @ induces the isomorphism $
from ]Hm/w]HOD onto £ _(K). By [9, Proposition 3], we have
o L a
Hy = ()" = (£ e LY (@,0): t(fa) = 0, a € H"}.
Thus M~ is isomorphic to the dual of Ll(ﬂ,t)/H1L Further, it is
0
o L 1 =
clear that (wH ) = How . By [11, Lemma 5.5], we have

Lemma 2.5. Let x € HY. Then, for every n € N, there exist two

2 _ 2 -2
elements Y, and z, € H such that x = Y%y Ilynll2 < n“ + IIXII1
and Hznﬂg <n 2+ Hle. Further, if x € Hé, then we can choose the
element =z such that =z € Hz.

n n 0

Lemma 2.6. Let f € Hé. Then, for every n € N, there exist two
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2 -2 2
elements g, hn € K such that Hgnﬂz < Hle + n °, thﬂz < Hle +
n_2 and t(afw') = (SL g, hn), a € H”. Conversely, if g, h € K,
a

then there exists an element f € 'Hé such that t(afw*) =

(SL g, h), a € H .

a

Proof. Let f € Hé. By Lemma 2.5, for every n € N, there

. 2 2 _ 2
exist two elements v, € H® and z, GvHO such that f = YnZpne llynll2
< Hle + n_2 and Hznﬂg < llflll + n-z. Hence we have for every a €
H”,

* * *
Tt(afw ) = r(Laynznw ) = (Layn’ Wz ).
A L L

Since Zn* € (Hg)* = (Hz) , we have wznf € w(Hz) = (WHZ) =

2,1 * 2.1 . _ *
K & (H®) . Hence we have (I—PK)WZn € (H®) . Putting hn = Pszn ,

then we have, for every a € Hm;

* *
(Lyy,» wz, ) = (Lyy , Pewz ") = (L )y, ., h ).

. 2 2
Further, since yn - PKyn € wH®, we have La(I—PK)yn € wH®. We now
put g, = PKyn' Then (Layn’ hn) = (La(I_PK)yn_ + LaPKyn’ hn) =
_ 2 2
(Lagn’ hn) = (SLagn’ hn)' Therefore, we have IIgnM2 < Ilynll2 < Hle +
_2 2 2 —2 * _ (Vs
n ~, thﬂz < Hznll2 < Hfﬂl +n and <t(afw ) = (SLag , hn), a€H .

L
Conversely, let g, h € K. Then wh € (Hz) and so h'w € Hg.
Putting f = gh*w, then we have, for every a € Hm,

t(afw’) = r(Lagh*ww*) = r(Lagh*) = (L,g, h) = (sLag; h).

"This completes the proof.
Proposition 2.7. The natural isomorphism a of Hm/me onto
ﬁ+(K) is norm preserving.

Proof. Let any a € H”. For every b € Hm, we have IISL I =

a

"PKLaPK“ = HPK(La+LwLb)PKH < lla+wbll and so l¢(a)ll < la+twH II. Take
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any a € H such that lla+wH Il = 1. Since Hm/wmw is isomorphic to

the dual of Héw*/ml, for every €& > 0, there exists an element f €
0

Hé such that Hf”l =1 and It(afw’)l > 1-sg. By Lemma 2.6, for any

n € N, there exist two elements g, hn € K such that Hgnﬂg < 1 +

-2 2 -2 . o

n °, thH2 <1 +n and T(cfw ) = (Schn, hn), ¢ € H . Thus
*
1 -8 < Ilt(afw )| = I(SL g, hn)l < IISL HHgnHthH
a a
< Is; (1 + 0%y,
a
Therefore we have 1-g < IISL I and so lle(a)ll = HSL I = 1. This
a a

completes the proof.

Proposition 2.8. For any a € Hm, there exists an element b €
H® such that la + wbll = lla + wHIl.

Proof. For every n € N, there exists bn € H® such that la +
wan < lla + wH Il + 1/n. Since {bn} is bounded in Hmv and the unit
ball of Hm is compact with respect to the weak=*-topology, there

0

n(k) - bO' Then it is clear that lla + waH = fla + wH 1.

This completes the proof.

exist an element b e H and a subsequence {bn(k)} such that

weak#-1imit b

By Propositions 2.7 and 2.8, we have

Corollary 2.9. Let T € B(K) such that T = SL for some a €
a
H”. Then there exists an element b € H~  such that T = SL and
b
Tl = Hbl.

Proposition 2.10. The natural isomorphism G of Hm/me onto
9+(K) is a homeomorphism relative to the weaks#-topology on ]Hm/W]HOD
and the weak operator topology on E+(K).

Proof. Suppose that {aj} is a net in H and a an

JEA
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operator in H” such that cp(aj) - (p(ao) in the weak operator
topology. By Lemma 2.6, for any f € Hé, there exist two elements g,
h € K such that t(afw*) = (p(a)g,h), a € H”. Hence we have

(fw*+Hé, aj+me) = (fw*, aj) = t(ajfw*)

(w(aj)g,h) - (w(ao)g,h) = t(aofw*) = (fw',a,)

0
= (fw*+Hé; a0+me). o
This implies that aJ.+leOD - aO+WIHOo in the weak*-topology.
Conversely, suppose that {aj}jEA is a net in H® and ao an
operator in H” such that aj+WHw - aO+WlH°o in the weakx*-topology.

For any g, h € K, put f = gh*w. By Lemma 2.6, we have
t(afw”) = (¢(a)g, h), a € H .

Therefore, it is clear that (w(aj)g, h) - (w(ao)g, h). Thus w(aj)
- w(ao) in the weak operator topology. This completes the proof.

Our aim in this section is the following

Theorem 2.11. ﬁ+(K) is a weakly closed subalgebra of B(K).

Proof. Suppose that {aj} is a net in H® such that {w(aj)}
converges weakly to an operator T in B(K). If f € Hé, by Lemma
2.6, then there exist operators g, h € K such that Hgﬂg < Hfﬂl+l,
Hh"g < HfH1+l and t(afw*) = (¢(a)g, h), a € H”. Thus we have
() (Tg, h) = 1im (¢(a;)g, h)) = lim t(ajfw*).
It follows that 1lim r(ajfw*) exists for all f € Hé and is no
larger in absolute value than HTH(HfH1+1). Moreover, the limit (#)

depends only on the coset of fw"© in Héw*/Hl. Thus (%) defines the
0 ‘
bounded'linear functional on HéW*/Hl and this functional induced
0

by an operator a in H”. Thus, we have aj+wﬂ1oo - aO+WHm in the

weak#*-topology. By Proposition 2.10, w(aj) - w(ao) in the weak
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operator topology. Therefore, we have w(ao) = T and so E+(K) is

weakly closed. This completes the proof.

3. Interpolation in analytic crossed produqts

In this section,‘we study the interpolation theorem in the case
of analytic crossed products. At first, we define the algebras. Let
M be a o-finite finite von Neumann algebra. That is, there exists a
faithful normal tracial state @ on M. Let L2(M,¢)- be the
noncommutative Lz—space associatéd with M and ¢. For every X € M,
let QX (resp. rX) be the left multiplication on LZ(M,¢): that is,
Qxy = Xy (resp. r.y = yx). Put 2(M) = {Qx: X € M} and r(M) = {rx
X € M}, respectively. Also, we fix once and for all a #-automorphism
¢  of M which preserves ¢. Then there is a unitary operator u
on L2(M,¢) induced by . To construct a crossed product, we

consider the Hilbert space Lz defined by & Z —

2

9 is the norm of LZ(M,¢). For x

L2M,6): 3 1f(m)
nez

< o}, where "'“2

€ M, we define operators LX, RX, L6 and R5 on Lz by the

formulae (LXf)(n) = Qxf(n), (Rxf)(n) = r n(«)f(n), (Laf)(n) =
o (x

uf(n-1) and (Raf)(n) = f(n-1). Put L(M) = {LX: X € M} and R(M)
- {R: x € M}). We set £ = {L(M), Ly} and R = {ROD, Ry} and
define the 1eft_(resp. right) analytic crossed product ﬂ+ (resp.
m+) to be the o-weakly closed subalgebra of £ (resp. R) generated
by L(M) (resp. R(M)) and LB (resp. Ré)' Let En ~ be the
projeption on Lz defined by the formulae (Enf)(k) = f(n), if k

n, and 0, if k # n. We also define the integral Sn(T)

Iée—znintﬁt(T)dt, T € ¢ or R, where {8 is the dual action

t}teR
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of {an} Furthermore, we define HZ = {fELZ: f(n) = 0, n < 0}.

nez:
We refer to the reader to [6, 7] for discussions of these algebras
including some of their elementary properties. Putting T = ¢-80,
then Tt 1is a faithful normal tracial state on £ and #R. Thus we
have

Proposition 3.1 (cf. [6]). ﬁ+ (resp. m+) is a finite maximal
subdiagonal algebra of £ (resp. %) 'with respect to 80 and <.

As in 8§82, we take a unitary operator W in Q+ such that WHZ
is two-sided invariant. Put K = HZGWHZ. The orthogonal projection

in Lz with range K will denote by P Then, for every A € Q+ or

K
R+, the operator SA is defined by

SAf = PK(Af), f € K'.
Then our goal in this section is the following

Theorem‘3.2. If T 1is a bounded linear operator on K that
commutes with ﬁ+(K) (resp. ﬁ+(K)), then there exists an operator A
in B+ (resp. m+) such that T = SA and IITH = HAll. Therefore,
L, (K)' = R (K) and R _(K)' = £, (K).

To prove this theorem, we need some notations and some
preliminaries. Fof a positive integer r, we consider the Hilbert
spaces L%eC”  and H%eC', where ¢" is an r-dimensional Hilbert
space. If A € B(Lz), then A®I 1is the ampliated operator of A on
L2®@r. Then the commutant of £®I is isomorphic to %®Mr, where Mr
is the algebra of rxr-matrices.

We now study the form of invariant subspaces under Q+®I in
L2sCT. That is, we say that a closed subspace M of L2®Cr is

Q+®I—invariant if (ﬁ+®I)W c M. Let M be an ﬂ+®I—invariant subspace

of L2®Cr. Since L6®I is the shift oprerator on L2®@r, we consider
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the wondering subspace ©§ = ﬂe(L6®I)M. Since M is L(M)®I-invariant,
the orthogonal projection P{g onto ¥ 1is contained in (L(M)®I)' =

L(M)'@Mr. Then we have

Lemma 3.3. (E,®1)(L(M)'®M ) (E,®1) = (R(M)®M,) (E 81).
Proof. Since EOL(M)'E0 = R(M)EO by [13, Lemma 2.3], we have
this lemma. '

Let M be an D+®I—invariant subspace of E2®Cr. Then we shall

say that M is pure if nr(L5®I)nM = {0}. As in the proof of [13,
n=0

Theorem 3.1], we have the following theorem.

Proposition 3.4. Let M be a pure D+®I—invariant subspace of

L2®€r. Then there exists a sequence {Vn}:=O of partial isometries
in ER®Mr with mutually orthogonal ranges such that m =

S evn(ﬁzgﬁr).
n=0
We consider the closed subspace KoCh of H2®Cr. Put Kr = KoCr.

The orthogonal projection in L2®Cr with range Kr will denote by

Py - Then, it is clear that K_ = (H2oCT )o (We1) (H2eCT). Further, for
r

every A € B(L2)®Mr, we define the operator SA on Kr by

SAf = PK (Af)? for every f € Kr'

r

Then we have the following lemma and the proof is routine and will
be omitted.

Lemma 3.5. If T is an operator on K that commutes with
ﬁ+(K), then T®I commutes with SA for all A € m+®Mr}

We put E+(K) = {S A € ﬁ+®I}. Then we have

A
Proposition 3.6. Let M be a closed subspace of Kr that is

invariant under §+(K). Then there exists a sequence {Vn}z=0 of
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partial isometries in %+®Mr with mutually orthogonal range such

that M = 2 ®Sy Kr.
n=0 n

Proof. Put @, = N®(WeI) (H2®CT). Then it is clear that n, is

a pure 1invariant subspace under B+®1. Therefore, by Proposition

3.4, the exists a sequence {V_n}z= of partial isometries 1in ﬂ+®Mr

0 -
with mutually orthogonal range such that mo = §‘®VD(H2®Cr). Then
n=0
we can prove that ( > &V (H2®Qr)JnK = S @#S. K_. We take any
n r V.'r
n=0 n=0 n
element T € ( > 8V (H2®Cr))nK . Then we can write f = > V_g. for
'n r n®°n
- n=0 n=0
w . 20T R
some sequence {gn}n=0 in H“®C" . Since Vn € m+®Mr, we have
Vn(W®I)(H2®€r) c (WweI) (H%sC"). Hence V_(1-P, ) (H28CT) < (weT) (H2eCh)
r
and so PK Vn(l—PK )gn = 0. Thus we have
r r
= 2 Vngn - PK ( 2 VngnJ = ; PK VnPK €n
n=0 r n=0 n=0 r r

> Sy (PK gn] € > ®S, K.
n=0 n r =
Conversely, we take any f € 2 @S K _. Then there exists a sequence

[gn}n=0 in K. such that f = g Sy &,- Since (1-Py )V g €

(W®I)(H2®€r), we have

(1-Py )( S Vngn) € (Wel) (H2eCT) ¢ 3 evn(mz®mr).

r mn=0 n=0
Therefore, there exists a sequence {hn}zzo in H2®Cr such that
(1_PK ) > vV g, = > vV h . Hence we have
r-n=0 n=0
f= 2 SV gn = 2 PK Vngn
n=0 n n=0 'r



e 2 AT
= g $Vn(H aC ))ﬁKr

. Vn(gn—hn) € ( g

0 n=0

Thus we have M = 2 &V _K . This completes the proof.
n=0
Proof of Theorem 3.2. Let T be a bounded linear operator on

K that commutes with m+(K). We take any elements €15 895" s 8L,

hl’ h2,~-', hr in K. Put G = gl®g2®---$gr. Let M be the closed
subspace of Kr generated by {(A®I)(K)G: A € ﬁ+}. Then M is

invariant subspace under §+(K). By Proposition 3.6, there exists a

4] . 9 _ *
sequence {Vn}n=0 in R+®Mr such that % = 2 @SV Kr' Since T®I
n=0 n
commutes with SV , we have (T®I)M < M. Since (T®I)G € M, there
n
. m . — .
exists a sequence {An}n=O in B+ such that (T®I)G = iig SAn®IG'

Hence there exists an element An € 94 such that I(Tgk, hk)

(S,

gy hk)l < 1 for every k (1 £ k < r). This implies that T is
n
in the weak closure of B+(K). By Theorem 2.11, we have T € Q+(K).

This completes the proof.

4. Caratheodry-Fejer Theorem
In this section, we generalize the Caratheodry-Fejer Theorem to
analytic crossed products as an application of Theorem 3.2. We

consider two-sided invariant subspace Lsnﬁz (= RSHHZ ) of HZ. Then

put K = HzeLanHZ. As a generalization of Caratheodry-Fejer Theorem,
we have
Theorem 4.1. For every XO, Xl, e, Xn, € M, we define the

operator T on K by

T = 8 5 -
(k=0kaL5 )



45

Then ITH < 1 if and only if there exists an element A € Q+ such

that T = SA and Al < 1.

k .
= S S , T commutes with
Zoly L k) k=0 Ux L3
= Xk S k

ﬁ+(K). Therefore, by Theorem 3.2, we have this theorem.

MB

Proof. Since T = S(
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