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A New Perspective of the Fluctuation-Dissipation Theorem

Masakazu Ichiyanagi
Nagasaki Institute of Applied Science, Nagasaki 851-01

A new formulation is presented of the fluctuation-dissipation
(FD) theorem. It is stressed that the (time-independent) Hamil-
tonian plays a dual role in the derivation of the FD theorem. It
determines the ensemble to be used and governs the dynamic out
from equilibrium. By generalizing this point of view, a
fluctuation-dissipation theorem is derived for nonequilibrium

stationary states far from equilibrium.

§ 1. Introduction

Nonequilibrium statistical mechanics aims to derive macro-
scopic laws of systems not in thermal equilibrium, starting out
from the microscopic laws of motion. In general, macroscopic laws
are found for dissipative systems. Hence, we encounter here fun-
damental difficulties, because we must make a joint analysis of
dissipation and Hamiltonian dynamics.

It is fundamental that a mechanism of energy dissipation is
closely related to thermal fluctuations. An exact relation be-
tween the noise spectrum and the linear response of the system to
applied forces is the fluctuation-dissipation (FD) theorem. This
theorem is proved for a Hamiltonian system, without dissipation.
In practice, however, it is applied to non-Hamiltonian systems,
which are described by macroscopic laws of motion that explicitly
contain dissipation parameters.

The present article casts some light on the meaning of the FD
theorem. This theorem is one of the most fundamental cornerstones
supporting nonequilibrium statistical mechanics. Nyquistl) first
gave an example of fluctuation-dissipation relation and provided
a proof of it based upon the second law of thermodynamics. In

electrical circuits, thermal motion of electrons in conductors



gives rise to current fluctuations which can be heard by ear if
suitably amplified. More generally, every macroscopic observable
is accompanied by similar fluctuations due to thermal motion of
macroscopic degrees of freedom in the system under study. There
is, however, an ambiguity to the fluctuation-dissipation theorem
in that it does not make no difference as to whether the fluctua-
tions occur spontaneously from equilibrium or whether they are
the result of an imposed constraint. In other words, it is as-
sumed that near-equilibrium systems are insensitive to the way in
which fluctuations occur. In this article, we examine the exist-
ence of a fluctuation-dissipation theorem in nonequilibrium sys-
tems driven by external forces.

We'preface our remark by clearly stating the limitation of our
treatment. The limitation is that the present fheory strongly
hinges on our possibility to distinguish thermodynamical forces
from macroscopic currents in the nonequilibrium stationary states
which are arbitrarily far from equilibrium. This is to say that
we are developing nonequilibrium statistical mechanics in the
spirit of Onsager.2) Our main result is that a fluctuation-
dissipation theorem is established, as long as the response to
external perturbations is considered in férms of the generalized
response functions.

§ 2. Fluctuation-Dissipation Theorem for Systems
not far from Equilibrium

As is well-known, the fluctuation-dissipation (FD) theorem
provides us with a profound basis of experimental verification
that macroscopic motions are in fact related to the thermal mo-
tion of particles consisting macroscopic systems. In this sense,
this theorem is one of the most fundamental cornerstones for non-
equilibrium statistical mechanics.

According to Nyquist's theoreml?, the thermal fluctuations in
voltage (a generalized force) are related, not to the standard
thermodynamic parameters of linear electrical system, but to the

electric resistance. Therefore, Nyquist's theorem is of a unique



form correlating a property of a system in equilibrium with a
parameter which characterizes an irreversible process (i.e., the
electrical resistance). Generalizations have been made by many
authors.2-5) The generalized theorem establishes a relation be-
tween the impedance in a general linear dissipative system and
the fluctuations of appropriate generalized forces. Nyquist's
theorem thus obtained the name fluctuation-dissipation (FD)
theorem.

It should be pointed out that the fluctuation-dissipation
theorem is proved for Hamiltonian systems, which have no dissipa-
tion at all. This is due to the fact that a systematic treatment
is possible only for Hamiltonian systems. On the other hand, the
Kubo theory®), a large part of which can be carried over into
non-Hamiltonian dynamics, tacitly assumes that response currents
can be replaced by phenomenological currents. It is in this stage
of the replacement that phenomenological coefficients are accord-
ingly expressed in terms of equilibrium correlation functions.
Whether this is true or not depends upon the structure of the
system under study. '

As is well-known the fluctuation-dissipation theorem is the
statement of the equivalence between the correlation function and
the response function, since we represent thermal fluctuation by
the correlation function. It is essentially reflects the fact
that the quantum mechanical dynamics of a system is determined by
the Hamiltonian, while the equilibrium density matrix is
specified by the Hamiltonian. The fact is used to generate a
series of fluctuation-dissipation relations.6)

In order to see whether such a fact provide for a new perspec-
tive of the fluctuation-dissipation theorem, one must have a for-
malism in which the realization of the above mentioned equiv-
alence is clearly brought to the foreground. To do this, let us

introduce the quantity
FeWpa(x;t) = Tr p 17XAp XB(t), C Ixl <1y, (D

where



P o =K exp(-8H), (2)
and
B(t) = exp(iHt)Bexp(-iHt). (3)

Here, in (2), K is a normalization constant so that Trp =1 and
B =(kT)~1, k being Boltzmann's constant.
Since the trace operation is invariant under the permutation

of operators, we get from the definition (2)
F(eLp,(1-x3t) = Trp o1 XB(t)p XA = Fed) (x;t). (4)

Equation (4) is a formula which is equivalent to the so-called
KMS condition.”7) It is customary to use the KMS condition as the
definition of an equilibrium state. It is also known that with
suitably short-range forces the KMS and thermodynamic stability
conditions are equivalent. 4

It is fundamental to observe that in terms of the function
F(ea)p,(x;t) the three fundamental quantities of nonequilibrium

statistical mechanics are written in the following forms:
(1) The canonical correlation
8
(A,B(t)) = Tr§ dA p ceAH A e-AH B(t)/8
0
1
= §dx F(ed)(x;t). (5)
[/}
(2) The symmetrized correlation function

clead (t) = (1/2)Trp o{ AB(t) + B(t)A )

(1/2)¢ FeDpg,(o5t) + FLeW) p(05t) )

(1/2)¢ Flepga(o;t) + FDp,a(15t) ). (6)



(3) The response function
b ga(t) = (1/i)Trp o[ A,B(t) 1
= (1/i)¢ FeDpa(o;t) - FleWLga(1;t) ). (7)

We represent thermal fluctuation by the canonical correlation or
by the symmetrized correlation function.
It will be useful to introduce the translation operator p,

which is defined by

p= -i9/dx. (8)
Then, it is easy to verify that

FeQp, (x+y;t) = exp(iyp)F(ePpgp(x;t) (9)

for | x+yl &1, and | x| S 1.
By making use of eq.(9), the symmetrized correlation function

can be written in the form

CeWpa(t) = (1/2)C 1 + exp(ip) YFED (x;t) | 4=0. (10)
Similarly, for the response function we have

® ga(t) = (1/idC 1 - exp(ip) YF(eDpa(x;t) | x=0- (11)

In consequence, we see that it is the function F{(€L)pga(x;t) in
terms of which each of the tree fundamental quantities of non-
equilibrium statistical mechanics can be expressed. The function
F(ed)p,(x;t) bears all the informations needed to know these
functions.

This is the implication of the fluctuation-dissipation theorem
potential to generalize it beyond the near equilibrium cases. A
little thought shows that, in the fluctuation-dissipation
theorem, the Hamiltonian H of the system does play a double role:



It generates dynamics out from equilibrium and at the same time

it determines which ensemble has to be used.

§ 3. Fluctuation-Dissipation Theorem
for Nonequilibrium Stationary States

Many years ago, Bernard and Callen®) provided formulas for
second-, third-, and higher-order correlation moments in terms of
the response of extensive quantities to static external forces.
They showed that a knowledge of the response to a static force
provides a knowledge of all moments written in terms of an equi-
librium ensemble. In their theory, the usual fluctuation-
dissipation theorem is expressed as the relationship between the
linear response and the equilibrium second-moment. They found the
triplet of relationships which exists among the second-order
response, the first-order term in the driven second-moment, and
the third-moment of the equilibrium fluctuations. Such a triplet
can be thought of as a generalized fluctuation-dissipation
theorem.

The work of Bernard and Callen is not particularly helpful in
studying nonequilibrium fluctuations, since quantum mechanics
furnishes no unique a priori prescription for symmetrizing a
product of three (or more) operators. It is important to note
that the fluctuation-dissipation theorem establishes a power
balance between the rate at which energy is observed by the sys-
tem and the rate at which energy is dissipated in the system.
Therefore, the fluctuation-dissipation theorem is no longer ex-
pected to hold beyond the linear approximation, if the irrevers-
ible process happens to be nonlinear, since the process might not
be Markovian. The system should be assumed to be unable to store
energy.

Intuitively, we may say that once established the power
balance there exists a fluctuation-dissipation theorem regardless
of whether fluctuations are occurring from an equilibrium or a
nonequilibrium stationary staOte. Indeed, for linear processes it
was found that the regression of fluctuations to a nonequilibrium



stationary state is identified to the regression of fluctuations
to an equilibrium state.10)

In order to establish a fluctuation-dissipation theorem for
nonequilibrium states, we must first make it clear what kind of
irreversible processes we are formulating. The description of a
system in thermal equilibrium is, in principle, quite simple. For
fixed values of controllable constants of motion there is only
one state of equilibrium. Just as the equilibrium situation rep-
resents the time-invariant state of a closed system, which can
exchange energy with its surroundings, a stationary state charac-
terizes the time-invariant state of an open system which ex-
changes energy and matter with other systems. The latter situa-
tion is, in a sense, the simplest type of irreversible process
since, while there are currents, they are constant in time.

Then, the statistical mechanical treatment of nonequilibrium
stationary states can be implemented by assuming that the cur-

rents in the system can be expressed as
Jij = Tr DL iH,A; 13, (i=1,2,...,1f). ‘ (12)

where Aj; denote the corresponding operétors and D a nonequi-
librium density matrix. Here, by either measurement or design we
must determine the density matrix D. Such determination con-
stitutes data which must be incorporated into the density matrix
D. In appendix, we will give an example for such density matrix
devised in the spirit of the linear response theory.

Let us now study fiuctuations around a nonequilibrium station-
ary state described by the density matrix D. This study is
limited to normal situations. Fluctuations in the neighborhood of
an unstable state are not considered here. Nakano¥) has shown
that for such normal fluctuations about nonequilibrium state far
from equilibrium both Onsager's and Prigogine's types of varia-
tion principle can be applied. The variation principles can be
approached from a unified point of view of thermodynamical theory
of stochastic processes which uses the joint-probability concept.

Therefore, these variation principles are a very general and



transparent formulation of the second law of thermodynamics.
It is plausible to assert that the statistical properties of
nonéquilibrium fluctuations can be described by a symmetrized

correlation function of the form

Cpa(t) = (1/2)Tr D{ AB(t) + B(t)A }. (13)
Here, B(t) is a Heisenberg operator:

B(t) = U(t,—°°)BU£*(t,—°°), (14)
where U(t,-o0 ) is a solution of the equation of motion

(9/3t)U(t,-00) = -i[ H + V(t) 1U(t,-00) (15)
with a time-dependent perturbation V(t). We assume that

Iim V(t) = 0O,
+>-00 :
(16)
lim U(t,-00 ) = 1.
t9-00
The recipe given in the previous section can be adopted to es-
tablish a fluctuation-dissipation theorem for nonequilibrium sta-

tionary states. Let us introduce the quantity
Fpa(x;t) = Tr DI1-XADXB(t). (17)

This function bears the same properties as the function

F(eQ)p,(x,t) does. For instance,

Fpa(l-%;t) = Fpp(x;t) (18)

exp(iyp)Fpa(x;t). (19)

Fga(x+y; t)

Now let us introduce the (generalized) response function



$ pa(t) = (1/i)Tr DI A,B(t) 1. (20)

In terms of the new function Fgpa(x;t), we can write the two fun-

damental quantities as
Cpaf(t) = (1/2){ 1 + exp(ip) }IFpa(xi )| x=0> 21>
¢ ga(t) = (1/i1)( 1 - exp(ip) }Fga(x;t) | x=0. (22)

Equations (21) and (22) constitutes the generalized fluctuation-
dissipation theorem for nonequilibrium stationary states who have
well-defined phenomenological currents and their conjugate

forces.

Remark: In the previous paper,l2) the present author has estab-
lished that a generalized response function defines the so-called
generalized response which is defined as a derivative of the

response current with respect to the applied field.

§ 4. Summary

We may summarize by describing the procedure for establishing
a generalization of the fluctuation-dissipation theorem to non-
equilibrium stationary situations. First, we must take it for
granted that it is possible to distinguish phenomenological cur-
rents from thermodynamic forces in the (open) system under study.
This might be difficult to do for some systems far from equi-
librium. Let D be a nonequilibrium density matrix. Then, our as-
sumption tells us that stationary currents must be defined by J;
= Tr D[L iH,A; 1 (# 0). The thermodynamic forces are combined with
the boundary conditions imposed upon the system at its bound-
aries. The currents are the given functions of the forces.

The fluctuations in the nonequilibrium stationary state, which
is described by the well-defined density matrix D, are related to
the extra dissipation beyond the spontaneous, constant dissipa-

tion brought about by the external perturbation. We have postu-
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lated that the fluctuations are defined in terms of the sym-
metrized correlation function like (13). The key quantity in our
procedure is the function Fga(x;t). Then, we have proven the
generalized fluctuation-dissipation theorem which relates the
extra dissipation to the generalized response.l3) The generalized
response is defined as a derivative of response current with
respect to the strength of the external field. This is an inter-
esting difference between equilibrium states and nonequilibrium

stationary states who have well-defined currents and forces.

Appendix
Let p (t) be the density matrix giving the time evolution in
an external field f(t). Then, the Liouville-von Neumann equation

reads
(/9t)p (t) + il H - Bf(t),p (t) 1 = 0. (A.1)

After Nakano,l4) we shall consider two situations:
(1)>The time dependence of the external field is

f(t) = fexp(e t), for t < 0O, (A.2)

and the density matrix is required to satisfy the condition

lim p (t) = p 4. (A.3)
1>-0
(2)
f(t) = fexp(-¢ t), for t > 0, (A.4)
and
lim p (t) = p 4. (A.5)
4>+0

Here, f is a constant field and € an infinitesimal positive num-
ber.
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It is easy to get the solution

p +(t) U(t,-o0)p CU*(t,—OO), for t < 0, (A.6)
and

p (L)

"

U(t,00)p U*(t,00), for t > 0. (A.T)

Here, U(t,s) is given by (15). Accordingly, we obtain the density
matrix for the nonequilibrium density matrix in the constant
field f:

D= p _(t=0) = p 4 (t=0). (A.8)
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