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Periodic Stability of Nonlinear Flexible Systems

REAKSE - T, MNE F—8 ( Koichiro Naito )

1. Introduction

Let Q@ be a bounded domain in a finite dimensional Euclidean space and we
consider the class of the flexible systems that can be described by the following

second order damped evolution equation in X := L?(Q) with a nonlinear forcing
term under a periodic perturbation:

du(t \

;g) +20A dg) + Aut) = F(u(t)) + w(t), t>0, (1.1)

w(0) = o, w(0) =w, w(t+T)=uw(). (12)

We assume that A is a selfadjoint positive definite operator with dense domain D(A)
in L?(Q), and that A~! exists and is compact. Then it is well known that there exist
cigenvalues ); and corresponding eigenfunctions ¢; ;(z) of the operator A satisfying
the following conditions:

O< M <A< - < <+, lim ) = o0,

A‘ipijz)‘i<)0ij) j=1,---,m,~, 1= L2,

{¢i;(-)} forms a complete orthonormal system in L?(2).

For each constant 0 < ¢ < 1, the domain D(A?) of the fractional power A%, denoted
by X, is topologized by the norm:

oo m;

|27 = 14725 = 323" NIz, o), z € X, (1.3)

i=13=1

where | - |o denotes the norm of X.

The formulation (1.1) includes vibrations in mechanically flexible systems, e.g.
flexible arms of industrial robots or flexible structure such as antennas of space crafts
(cf. [1], [10], [11], [12] in alinear system: F' = 0). In this paper we treat the case with
nonlinear forcing, which is determined not only by the displacement u(t, z), but also
by the bending force u,,(¢,z). Our main object is to show sufficient conditions for
periodicity and stability of solutions under periodic perturbations w(t). We describe
some inequality relations by using system parameters, such as stability constants of
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the linear term, growth rates and (locally) Lipschitz constant of the nonlinear term.
While it  should be considerable that the first eigenvalue of the linear operator A
essentially determines these relations, we find that the eigenvalues A, A\z4; which
satisfies '

1
0<A1<---</\h<—2<>\h+1<---
64

have some significant properties for the stability of this system. If these values;
A1, Ak+1 — 25, 2 — A are sufficiently large, we can show the asymptotic behavior
of solutions; the existence of a global attractor, and periodicity or asymptotically
periodicity of solutions under periodic perturbations. Also we estimate some essential
relations among these system parameters; A;, Ay, Apy1, @, considering a system of
one-dimensional nonlinear flexible beam.

Our formulation depends on the method by Sakawa [10] in linear flexible systems,
using spectral properties of analytic semigroups (cf. [12]). To analyze nonlinear
systems we apply a variation of the Gronwall inequality, which was introduced in
[5] (see also [8]). As for the other methods to show periodic stability of nonlinear
systems we can refer to [4], [6], [7], which mainly depends on the monotone operator
theory.

In section 2 we give the formulation and prepare some Lemmas on analytic semi-
groups. In section 3, introducing inequality relations on system parameters, we show
periodic stability of solutions. In section 4 we investigate these inequality relations
in an actual case: one-dimensional nonlinear flexible beam system.

2. Formulation of Flexible System

First we introduce the formulation by Sakawa [10] in the linear case. Assume
that
N2 -\ #0, i=12---
and that o > 0 is so small:

-1
A < —. .
AA 20 (21)

Define a complex valued function g by
g()‘) =YV 02)? — >‘a

then, since A is selfadjoint, one can define an operator g(A) by

9(A)u= iigui)(u, 01555
D(g(A)) = {u € (@) : 33 1000w, 05)? < oo}.

=1 y=1
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Note that D(g9(A)) = D(A) and define the following two operators by
At :=aA—g(A), A" =ad+g(4),

then for each u € D(A)

o0 Mg

A*u =% (ad F (X)) (u, i) @i
=1 5=1
and the eigenvalues and the eigenfunctions of A* are given by

v; = ok — g(N), pi = ok +g(N),
Atu=vipy, ATu= gy, j=10,my, i=1,2,-0-.

From (2.1) it follows that there is an integer A > 1 such that
012)\%' - < 0, az)\iﬂ - )‘h+1 > 0.

In this paper we can show that the following three eigenvalues A, Ay, Ap41 are the
most essential parameters in the sufficient conditions for periodic stability.

Since —A*, — A~ generates analytic semigroups S;(2), Sa(t), respectively (cf. lemma
3.1in [10]) and, especially, A* is a bounded operator, we can consider the following
system of the semilinear equations:

£0) + 4%6(0) = g (AP +w(0), (2.2
() + An(t) = g (AFCED) + (), (23)

which can be described by
C(8) + AL(t) = F(C@) +w(), (2.4)

- (8], 4[4 2]

-1 §+n “1(Aw
Fen=| SN0 | wo=| S0 ]

where

and g~!(A) is the inverse operator of g(A), that is,

(o oBEN £ (71

g7 (A =323 (9(0)) 7 (w90

=1 j5=1
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and w € C(0,T : X). Also, their mild forms are described as follows:

60) = $i06 + [ St = ) AFCEE) +w(e)lds,  (25)
26) = Saltym — [ 56 = ) (AFCEELs) +w(s)lds  (26)

We consider the following conditions on the nonlinear function F for a given fixed
constant §:0< B < 1.

(F1) Fislocally Lipschitz continuous from X to X: there exists a constant k(c) > 0
such that
|[Fz —"Fylo < k(c)|z —ylg for |z]g, |yls < c. (2.7)

(Gl) There exists a constant Kj :

|F(z)lo < Ko(1 + |2lg), z € X

Under these conditions (F1), (G1) for a fixed constant 0 < § < 1, we can admit
the mild solution (cf. [9]):

[£(0), n()] € C(0, T : I(R) x D(4%)) N CH(0,T: I%() x LX) (2.8)

for each initial condition [£, o] € L%(Q) x D(AP). Furthermore, we can estimate the
regularity of the solutions as follows. If [&,no] € D(A) x D(A'*?) for some constant
0:0< B < o <1, then by multipling A\? and /\?(Ha) to the spectral expansion
of (2.5) and (2.6), respectively, and applying the direct estimation such as (1.3) we
have

£€C(0,T: D(A), neC(0,T: D(A™)). (2.9)
Then it follows from (2.2) and (2.3) that
£ € C(0,T: D(A)), 7€ C(0,T:D(A%). (2.10)
Now, define the functions u, v by
u = %——7-7-, vi= g—Tn, . (2.11)

then from (2.9) and (2.10) it follows that
u,v € C(0,T: D(A)) N C*0,T : D(A")). (2.12)
Hereafter, we consider the case ¢ = . From (2.2) and (2.3) we have

U+ 0+ (@l = g(A)(u+v) = g7 (A)(F(u) + w),
4— 0+ (A + g(A))(u—v) = —g HA)(F(u) + w)



and then the difference and the sum of the above equations give

1'4 = —aAu+ g(A)v, ' (2.13)
o — g(A)u+ adv = g7 (A)(F(u) + w). (2.14)

By modifying the argument in [10] without the assumption & € D(A) we have

b = g(A)u— adv+ g (A)(F(u) + w) (2.15)
= g*(A)g(A)7 v — aAg (A)g(A)v + g7 (A)(F (u) + w)
= (oA’ = A)g7 (A)u — aAg™ (A)g(A)v + g7 (A)(F(u) + w)
aA(g™ (A)adu — g7 (A)g(A)v) — Ag™ (A)u + g7 (A)(F(u) + w).

Thus, using (2.13), we have
b= —adg~ (A)d — Ag™H(A)u + g7 (A)(F(u) + w). (2.16)
Also we note that (2.14) and (2.16) give
aAv — g(A)u = aAg™ (A)i+ Ag~ (A)u (2.17)

Obviously, by differentiating (2.13) under the assumption that & € D(A) and
using (2.16) we can obtain the evolution equation (1.1). On the other hand, without
the assumption & € D(A), consider an initial condition

[u(0), 4(0)] = [uo, u] € D(A) x D(A?),
then, since (2.13) yields
v(0) = g7 (A) (v + aAuy) € D(A),

we have
£(0) = u(0) + v(0) € D(A). (2.18)
And also, since (2.13) yields
g(Au —g(A)y = —i—(adu—g(A)u)
= —u— Aty

we have

n(0) = u(0) —v(0)
= ¢ YA)(—us — Atup) € D(AMF). (2.19)

Thus, by applying the previous argument with (2.18) and (2.19), we can admit the
solution u = (£ + n)/2 in the mild sense such that

[u, 4] € C(0,T : D(A)) x C(0,T : D(AP)).
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In order to show the periodic stability we need the estimate of the norm of
[u(t), u(t)] by using the norm of [£(t), n(t)]. We can prepare the following Lemmas

by applying fundamental calculations with respect to the spectral expansions.

Lemma 1. Under the formulation above, let

£ € CY0,T: D(A))NC(0,T : D(A)),
n € CY0,T : D(A®))nC(0,T : D(A'#)),

then there exist constants Ny, Ny > 0 such that

Ny([u(®)ls + [a(®)ls) < [A*E@) s + [ATn(E)]s < Nallu(®)]s +1a(t)]s)-

Lemma 2. For the operators A, A%, A~ the following inequalities hold:

|[Az]|o
|A%yls
|A”z|g
|[A"w|g
|A€lo

v

1
VAlyls, v € X,
V)‘llz‘m 2 ele+ﬂa

(S X1+ﬂa
a/\i_ﬂ'/ﬁflﬂa

vV

vV IV IV

(2.20)

(2.21)
(2.22)
(2.23)
(2.24)
(2.25)

From Lemmal and Lemma 2 we can derive the estimate of the norm |u(t)|1 + |4(t)|s

by using the norms of £ and n: |A€|o + |47 ).

Lemma 3. There exists a constant K, > 0 such that

[u@®l + |a()]s < Kp(|AE(E)]o + |A7n(2)]6)

where K, is given by

K, = max{N;'+

(2.26)



Now we prepare the estimate, which corresponds to the well-known estimate of
the operator norm of an analytic semigroup and its generator. We need the following
notations:

A(B) = min{y/As, 743,
_ 1 RS

M;, = max{ =\ 2 — 1‘+ 1},
_ Ah Ah41

Ch - maX{\/l - oz2>\h’ \/OzzAh_H - 1}’

s, 1 B\ s
Mﬂth()\l—{-a-) (0&)\1—5) e (2.27)

where we fix a positive constant: § < a);. Since o), < 1, aC, < M;, holds. Thus
we have

B
) e P < Mj. (2.28)

B
(MhAl + Ch) (O[Al _ 5 -

Lemma 4. For a constant § : 0 < § < aX;, we have the following estimate:

|AS; ()97 (A)ylo + |A™APS2 ()97 (A)ylo < Mge™%t7Plylo, y € L*(). (2.29)

3. Periodic Stability

In this section we show stability and also periodic stability of a flexible system
by using the results of the previous section. First we show the existence of a global
attractor for system (2.5)-(2.6).

Theorem 1.  Under Hypotheses (F1), (G1), let [&,m] € D(A) x D(AF),
w € BC(R* : X), the space of X -valued bounded continuous functions with the usual
supremum norm |+ |, and assume that system parameters, é,a, f, A1, A, Ap+1, Ko,
satisfy the following inequality conditions: 0 < 6 < a);, 0 < < 1/2 and

A\ 1/B | |
6> 9= (%;)(ﬂ)) ’ (3.1)

where B=1— B. Then the following ’estimate holds

|[AE(®)o + [ATn(t)ls < K1(t)(|Alo + |A7m0ls) + K2|w|w + K (3.2)
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for some positive constants Ko, K5 and

e—-(t?—é)t NP
Ki(t) = B e"* T (). (3.3)

Consequently, the solution [u(t), u(t)], given by u = (£ +n)/2, has a global attractor
n X1 X Xﬂ.’ {[:r,y] € X1 X Xﬂ : IIL‘|1 + |y|p < Kp(KZleoo + K3)}

proof. From (2.5), (2.6) we have

€+n

AEDN < 1:0)AGl + [ 145 = ) (AIFCED) + w(s)la}ds,

4700l < 1207 mls + [ 14=A755(6 ~ 5)g *(A){F(f 1)+ w(s)}lods.

Summing up and using Lemma 2, Lemma 4 and (G1), we obtain

AE®)|o + |ATn(t)]s
< N Aolo +|ATolg) + [ Mpe 7t = 8) P (Ko + [uw(s)o)ds

+ [ Mae O = o) TS AG o+ AT (34)

Multiplying each term by e% and considering the estimate

t t
[ Mpe(t = 5P (Ko + [w(s)lo)ds < Ma(Ko + |wle) [ (¢ = 5) P,

and putting

a(t) = "M AL o + |Amols) + Mp(Ko + |w]e )/ “(t — o) ~Pdo,
y(t) = e(|A&(t)lo+ [A™n(t)]a),

_ MK,

T 2X(B)

in the Gronwall inequality, introduced in Appendix, we obtain the following estimate:

|A€(£)lo + |A7n(t)ls
< E(9t)e*(|Ablo + A7 m0ls)
+ /ot E(S(t — s)){Ms(Ko + |w|oo)e ¥ [6* As o Pe ¥ dg + s7P]
—6_6t(01)\1 - 6)('1460]0 + IA—T]olp)e_(akl_é)s}ds (35)



where, as we can see also in Appendix,

- = x* an ' e? -
9 =[rB)"?, E(z):= am, E(z) < ‘B—‘i‘ r'(p), z=0.

Thus, we have the following sequence of estimation:

|AE(t)]o + |4 ()]s
< (|Alo + IA-nolﬂ)e-“{% +T(B)}

eﬂ(t—s)

+My(Ky + fuloo)e™ [ (L T(B)) (65T + 5~P)ds

I(t—s) _
£ + I‘(,B))e'("’\"‘s)’ds

—e (e = 8)(|Akolo+ 1A7mls) [ (5

< Mp(Ko + |wlo)

1—e O TBA—e®), | _ut'™F o _soel2
x[6I‘1{ IB((S—’&) + 3 }+€ 6@]?(,3)'*"6 =9 ,—B—]
It _
(Al + 4 mla)e™ {5+ T(B)} = (@b = 6)(|A&olo + |4 m]s)
e~ (6=t ¢

t
_ —(9+aX; -—6).sd —6tl'\ e / -‘-(a)\l —é)sd
x[ 5 Jo e s+ e " T(B) € s]

< Mp(Ko + |w]oo)

1 — e—(6=9)t I‘(B)(l _ e—ét)}+ oot -8 F(B) i e_(a_o)t&]

=) ; -7 ;
- e~ (=0t (9 4 (o) — §)e~(FHati=d)t
HiAGah + 1Al (THE )
+T(B)e~*M*} (3.6)
where o o
_ -8 —és _ —B _—¥s
I‘l—-/o s e %ds, Fg-—/(; s e "°ds.
Hence, we have
|A£(2)] + [A7n(t)ls < K1(t)(|Aolo + [A7m0ls) + Ka|w|e + K, (3.7)
for the following constants
, 1 r'(8) ~(1-8) —Bp (7Y 4 L2
= = 1-— —_—
Ko = Myx [Talgpogs + -2} + (600201 = 9)7P0(E) + ),

Kg = KzKo. O (38)
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Remark. In case 1/2 < # < 1 the assertion of Theorem 1 holds if one substitutes
the constant I'(8) by IV(B) := I'(B)/(sin B7)? (cf. Appendix).

Let w € BC(R* : X) be a periodic function: w(t + T) = w(t) and then we
consider periodicity of solution [u(t),4(t)]. As in Theorem 1, we also use the pair
of functions [£(2), n(¢)] € X; x Xi145. Let [&(¢), m(t)], & = 1,2 be two pairs of
solutions, starting with initial states [£x(0),7x(0)], k¥ = 1,2, respectively, which are
corresponding to the solutions [uk(t), Uk ()], & = 1,2. Then, by following the proof
of Lemma 1, we can show the same estimate: '

Ni([ur(t) — ua(t)]p + |41 (2) — 2(t)]p)
<A (&) = &@))lp + 147 (m (@) — m(2))ls
< Ni(lua(t) = ua(t)lg + [91(2) — G2(2)ls), (3.9)

which yields the equivalence between [u(t), 4(¢)] and [£(¢), n(¢)] with respect to asymp-
totic periodicity and stability.
On the other hand, define the norm ||z, y]||1, by

Iz, ylll1,6 := |Az|o + |A™ylg,

which is equivalent to the X; x X;;1g-norm. Then, from Lemma 3 and Theorem 1,
we can show the periodicity or the asymptotic periodicity of [u(t), 4(¢)] in X; x Xj
by estimating the norm ||[¢(¢), n(?)]||1,6-

Theorem 2. Assume the same Hypotheses as theorem 1. For a given constant
r>0, let

weW, :={weBCR": X):|wlew<r}, wt)=uwt+T)

and take a constant d > 0:

d> 1(27‘ + Kg (310)
where K,, K3 are the constants, introduced in (3.8), and assume that
Mgh(d)L(B)\ "
5> = (-——”——— : 3.11
2(8) | (311
Then there ezists a unique T-periodic solution [€x(t), N (t)] such that
1{€eo (2); Moo (D)]ll26 < ) 220, (3.12)

and consequently, there exists a unique T-periodic solution [Ue, Ueo):

luoo(t)ll + Ii‘oo(t)lﬂ <Ky, t>0.
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proof. From Theorem 1 we can assume that there exists a solution [€,7] with
an initial condition [, o] in X7 x X145:

EE), n@lls < d, £20.

Then we show that [€,(2), n.(2)] := [£(¢t + nT), n(t + nT')] converges to a T-periodic
solution [£x (%), N (t)] as n — oo.
By using (2.5) and (2.6), we have

|A(€n - §n+m)(t)'0
< ISl(nT) (€ = &n)(B)o

+ [ 14T = 5)gAIF(E s +0) = PRI 4 g)ods,
IA ( nn+m)(t)|.5
< 1S,(nT) A" (1~ na) D)o
+ [T 1A A5, nT  5)g (AL + 1)) = FE2E2(5 4.4))fods.

It follows from Lemma 4, (F1), (3.10) and Lemma 2 that

|A(&n = &nsm)(@)lo + [A™ (M — Thnsm ) (2) 5
< e (A = &n)B)o + A7 (1 = 1) (t)]6)

4 [ Maga e 7T = )A€ = n)(s + D+ 1A™(1 = )+ D).

Thus the Gronwall inequality and the same argument as’in Theorem 1 give
|A(&n — &ntm)(®)lo + [A7 (10 — Dntm ) (t)]s
e—(6—19 T \onT
+ D (B)e™*M](|A(€ - €m)(t)|o+lA (17— 7m) (£)1)

—(6—9")nT

<[

< 2d] + D(B)e=NT). | (3.13)

It follows that the sequence [fn (t), n(t)] is a Cauchy sequence in BC(R* : X; x Xi.4p).
Hence, there exists [£.(2), N0 (?)] : ,

[€a(2); 1 (2)] = [€c0s M0] in BC(R+ : X1 X Xi4p)-
By taking the limit n — oo of the mild formulas:

£(t +nT) = Sy()E(nT) + /Ot Sit— S)g—-l(A)[F(E‘;

(6 +nT) = $yAn(aT) ~ [ Syt = )97 WFe (s + ) + w(s)lds

n(s + nT)) + w(s)]ds,
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we can show that [£,(t), 7. (t)] satisfies the mild formulas (2.5), (2.6) with the initial

state [£0(0), 700 (0)].
Furthermore, T-periodicity of [£.(t), 70 (¢)] holds, since

oot +T), M0t + T)] = lim[eo(t + T + nT), noo(t + T + nT)]
= Jlim[éw(t + (n+ 1T), 7o(t + (n + 1)T)]
= [€o(t), Moo ()]

Also, we can obtain the uniqueness of the T-periodic solution by using the following
estimate for a sufficiently large N.

W€t + NT), oalt + NT)] = [€La(t + NT), 1/ (¢t + NT)]l15
= o (£), 7o ()] = (€10 (8), 7 ()]0

e—(6=9")NT

< ['——5—— +T(B)e™ M M €0 (2), 00 (t)] = [€60 (2), Tloa (t)ll16-

With respect to the stability of the periodic solutions, or aymptotical periodicity,
we can prove the following theorem.

Theorem 3. Assume the same Hypotheses as Theorem 2 and if w € W, and
|w(t) = Weo(t)fo = 0 ast — oo

for some T-periodic function we, € W,, then the solution [u(t : w),u(t : w)], start-
ing with any initial state [uo,u1] € Xy x Xj, converges to the T-periodic solution
[Uoo (t : Weo), Uoo(t : Weo)] under the periodic perturbation we,;

[u(t : W) = Ueo(t 1 Weo)|1 + |4t : W) = Uoo(t : Weo)|g = 0 ast — oo. (3.14)

proof. From Lemma 1 or from the previous remark, in stead of estimating the
solution u(- : w), it is sufficient to show the convergence of the pair of functions
[£(2),n(?)] to a pair of T-periodic functions [€x, 7o) in X7 X Xj4g-norm. Here we
can also assume that .

€@, n(@)llp < d, 0.
Let N be a large integer which satisfies

e—(6—9')NT B
—F —* L(B)e~*M T < 1



and define the following sequences

wm(t) = w(t+mNT),
En(t) = &(t+mNT),
mm(t) = nlt+mNT), m=0,1,2,---,

then applying the same argument as that in the proof of Theorem 2 to the difference
of the mild solutions,

[€(t + (m + 1)NT),n(t + (m + 1)NT)] — [(t + (m + 1)NT), 0o (t + (m + 1) NT)],
starting with the initial values,
[€(t + mNT), n(t + mNT)], [ (t + MNT), o (t + mNT)),

respectively, we have

(Em+1 = €oo) (), (Mmt1 = M0 ) ()]l

= |I[(§ =€) + (m+1)NT), (n = 1oo)(t + (m + 1)NT)]||1,
e—(6=9)NT _
< {_B_ +T(B)e NI — €w) (t + mNT), (1 — noo)(t + mNT)]l1,

Hn g + Ty (50001 - gy P0(B) +

x Mgsup{|w(s) — weo(s)|o: t + mMNT <s<t+(m+1)NT}.

Put
Pm = ”[(gm - 600)(t)) (r)m - nw)(t)]ul,ﬂ’

e—(6—9)NT _
K =[——=—+T(F)e" ] < 1
g
and for a small constant ¢ > 0, take a large number my : m > my =

1 I'(8) —a- —Bp(7y 4 L2
[51“1{[—3(5_19)‘* 5 }+ (6e)" A (1 - B) ﬁI‘(ﬁ)+?]

X Mgsup{|w(s) — weo(s)| : t+ mMNT < s <t+(m+1)NT} <e,

then we have o

1-K°
Since o = ||(€ — €0 )(2), (1 — 100 )()]ll1,8 < 2d, we can conclude that for every small
€ > 0, there exists a large number m; : m > m; =

om < K1+ < "‘SKm§00+6

W[EE + mNT), n(t + mNT)] — [£o(t + mMNT), neo(t + mNT))ll15 < €
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for every t € [0, NT1], that is,
I€(), n()] — [€oo (£), oo (]Il < &

for everyt > m;NT. O

4. Flexible Beam

We consider the equation of motion of slender and flexible structures with internal
viscous damping and with nonlinear forcing, determined by displacement u(¢, z) and
bending force u,,(t,z), under a periodic perturbation:

O?u(t Au(t Otu(t ?u(t
u(’x)_*_za u(7$)+ u(’$)=f(.’1:,u(t,$), 'U;(’.T)
ot? otozt Ozt 0z?

where 0 < z < L. The beam is clamped at one end, z = 0, and at the free end,
z = L, the bending moment and the shearing force vanish. Then the boundary
conditions and the initial conditions are given by

)+ w(t, z), (4.1)

_ 0u(t,0)

u(t,0) = b 0,
?u(t, L)  , Ou(t,L)

922 T e O
Au(t, L) 0tu(t,L)

2 T (42)

du(0,

u(0,2) = wn(a), 20 _ (o), (4.9

and the periodic perturbation satisfies w(t +7T') = w(t). We define an operator A in
L?(0,L) by

D(A) ={u e H*0,L) : u(0) = u,(0) = 0, uzs(L) = tppe(L) = 0},
_ 0%y
9zt

Let «; are the solutions of

Au (4.4)

coshycosy+1=0
such that 0 < 9; < 7, < -+, then the eigenvalues of A are given by

(cf. [10]).



We assume that the nonlinear function f(z,u,v): R x R x R — R satisfies the
growth condition

|f(z,u,v)| < ko(Ju| + |v]) for some ko > 0 (4.5)

and the following Lipschitz and locally Lipschitz continuity: there exists positive
constants ko(c), & such that

|f(z,u,v) = f(z,u,v")| < kolc)|u—u'|+ klv—2'| for |u|,|u| <c, v, €R. (4.6)
Define a nonlinear mapping F : D(A7) — L2(0, L) by
F(u)(z) = f(z, u(z), uss()),
then, since the following injections
D(A?) — H*(0,L) = C(0, L)

are continuous, the condtions (F1), (G1) hold for the constant § = 1/2 and some
constants Ky, k(c).

Now we investigate the inequality conditions in case where § = 1/2. Our pur-
pose is to find some relations among the constants: A1, Ap, Ant1, @, Ko, k(d) where
d > Kyr + K3 and K>, K3 are given in (3.8). Let § := a\;/2, then we can describe

(2.27) by
s = M+ 2) (=)

o’ o

=

-1
2

M

€

and it follows that

VT )2
2V
1 Kim

1
= MO

Thus the condition a);/2 > ¢ can be described by

9 = (MyKo

1 K2rn
212 M2 1 240 .

Taking the square root of each side above yields

1
a(y/M)® - Ko,/;—th\/I— Koy /%M"E > 0. (4.7)

Hence we can admit the first eigenvalue A; : 0 < A; < 1/(2a?), which satisfies the
condition § > 9, if

1 7r 1 T 1
—)° — Koy| —Mp—=— — Ko/ —M;— > 0. 4.8
Of(ﬁa) Voo "V V2 ta (48)
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It follows that

aM; < (49)

1
(\/§+ I)KO\/—Z—?"

Hereafter, we use the notations

k= (V24 l)Ko\/-?,

K = (VZ+1)k(d) 27”

Considering the definition of M} and (4.9), we have

o

[ S . 4.10
'\/1 - a2/\h < ( )

042)\h+1
\/——————- 1
oz( Olz)\h+1—1+ ><

| =

x|= X

: (4.11)

From(4.10) we can derive the conditions on A, o, k:

1 2
Ah<a3-—n, ak < 1 (4.12)

and, assuming ak < 1/2, from (4.11) we obtain

1 K2
Ahg1 > — +
o

. 4.13
1—-2ak ( )

We note that, as the values

1 1
J-Aha Aht1 — 72

become sufficiently large, M, | 2.
When (4.12) and (4.13) are satisfied, the first eigenvalue A; can be estimated as
follows. The third order algebraic inequality

b
az® —bz —=>0, a,b>0 (4.14)
a

admits a solution

1
b (b B b2\’
z > 4+ —+ + —

3
30 (s + V= + )
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in the positive real z > 0. For sufficiently small a > 0, a rough estimating,

¥ 8 b [ 4ab
@t T @\ T
b
~ o

gives a sufficient condition for (4.14)

2
3

z >

+

Q | o
wpo|

T
3a3

where we take a positive real value of each fractional power 1/3. Considering the

case
a=a, b= \/lKth
2e

and « is sufficiently small, then we can estimate \;, which satisfies our inequality
conditions, as follows:

1 Lo o\? 2 (T\5[1\F 1
(1 + 5(KOM,,oz)a(-2—6-)s) (KoM)3 (2—6-) (;) <h<ss (4.15)
For sufficiently small o > 0, it follows that
KoM, 2 1
C A < —
1( a? )P <A< 202

for some constant C; > 0. Furthermore, if the values 1/a? — )\, and \y41 — 1/a? are
sufficiently large, for instance,

1 . K

o2 hT g2
1 K

)\h+1_§:5§;

for some large K > 0, we have

[
Mh21+ 1+I—

Then we can estimate the stability condition for the first eigenvalue:

Ko
o’

1

2
T < —=
) 1™ 942

Co( (4.16)

for some constant C; > 0.
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For the condition § > ¥, we can derive the same estimate as above, substituting
Ky by k(d) and by «'. Here, using a sufficiently small constant «, we can estimate
the condition on the first eigenvalue \; as follows. Assume that 6 — ¥ ~ § ~ al;,

then it follows from (3.8) that we can estimate the order of the constants K, K3 ~

My 6712, When the perturbation of w is comparatively small: r << o~!, we can

con51der that d ~ M l5 1/2 Since we can roughly estimate M, L = a~32\TH? )t

follows that d ~ « 2)\1 . Assume that k(d) = kd, then under the same conditions
for the other parameters as those, which gives (4.16), we have

)\1 > C3a_§[a'2)\1'1]%, C5; > 0.

It follows that the periodic stability condition is possiblly satisfied if the value A; has
the order between o~ % and a2

5. Appendix
In [5] the following Gronwall’s inequality was proved:

Suppose b > 0, 8 > 0 and a(t) is a nonnegative function locally integrable on 0 <
t < +00, and suppose that y(¢) is nonnegative and locally integrable on 0 <t < +o00
with . '
y(t) < a(®)+b [ (¢ = 9P y(s)ds

on this interval, then

y(t) < a(t) + 9 /0 B3t — 5))a(s)ds,

where 3
_ 2\11/8 — = z_n dE(z)
If a(t) is differentiable, we note that, since

di(i’%—_z)_) = E'(3(t — ) - (=),

integration by parts gives

v) < o)~ [ @%i—sﬁa(sws

= at) = [E((t - 5))a(s)]} + / E(S(t — 5))d'(s)ds

= E(5t)a(0) + /0 E(S(t — 5))a'(s)ds. (5.1)
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Here we consider the estimate of the entire function E(z). If 0 < z < 1, we can
estimate

E(z) <1+ (5.2)

z
Fo(l - Z'B)’
where Ty := inf1<,<, I'(z) = 0.8.

On the other hand, for a constant o : 0 < & < 1, it is known [2] that, if z > «,

e? 1 uPlev
E(z) << —/ i
() < Jo} t 2mt N Y

where the contour [ : (—oo — 07,0, —oco + 0i) is the negative real axis described twice.
Since elementary calculations give

inf{|u” — 2°| : v € (~00,0), 2> a} > { ?ofsinﬁ’?r)ﬁ g(%)fg: ;:
we have 2.
E(z) < A
e TOo
if /2< B < 1and —
B() < %+ —LP)

= B w(asinpr)?
if 0< B < 1/2. It follows from (5.2) that for every constant o : 0 < ap < 1, which
satisfies

B a o
14 —0 < ey F(ﬂ_),
To(1—0f) = B mad’
B ag (7
% € I'(6)
1+ < 47
[ To(1—af) = B m(agsinfm)?
the following estimate holds
e T(P)
F(z) < =+ =
(=) < B xdf
() < G+ —— )

B w(apsin Br)B
for every z > 0if £ < B < 1[0 < B < 1]. For instance, taking o = 7~1/?, we have

P
+T(B) [E(z) < IB + (sinBW)B]

z

E(z) <

i
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foreveryzZOif%§B<1[0<,B<%],since

B

To(1 - of)
I (ﬁ)

—IB—+ (smﬁw) B 'n'a!o > 15
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