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1 Introduction

In this communication we are concerned with two-phase free bound-
ary problem for incompressible viscous fluid which is formulated as fol-
lows: Let QU and Q® be two bounded domains in R® which are filled
with fluids (1) and (2), respectively, at the initial moment. We as-
sume that QY =T, 90® = SUTl, T'NX = @ (I'(0) = T is the
initial interface between fluids (1) and (2), X is fixed). Then, our prob-
lem consists in determining the domain QU)(¢) occupied by the fluid ()
(' 1,2) at the moment t > 0 together with the velocity vector field
v(z,t) = (v, o) W )(a: t), the pressure pU)(x,t) and with the abso-
lute temperature 8U)(z,t) satisfying the system of Navier-Stokes equa-
tions:
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<v<1>,9“>>lt=0=<v6”,eé”><w> z € QM(0) = QO),

(v, 63)] o = w?, 6N (z) z € Q®(0) = Q®,
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(v =@ POy — POy = 5(06))Hn 4+ VEIo(0),

— 0 xOTI0 .p — kAT .y =0

|z eT(t), te(0,T),

W =0, 0P=0, ze% te(0,1),

[z%](l) F(z,t)=0 ze€I(t), te(0,T)

(if T'(¢) is given by F(z,t) =0),
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where [E] =5 + (v V) is the material derivative with respect to

w0,V = (V,Ve,V3), Vi = oo, ,3), PU) (v, pl)y =

—p T+ 249 D(vV)) is the stress tensor I is the 3 x 3 unit matrix, D(v)
is the velocity deformation tensor with (7, k:) components

(DO = 5 (o + 55 ik = 1.2.3), 19 = (A7, 17, ) (w,0) axe
given vector field of external mass forces. pl), uU) kU are, respectively,
the density of the fluid, the coefficient of viscosity and the coefficient of
heat conductivity, which are all assumed to be positive constants. Here
and in what follows we shall use the well-known notation of vector analysis
and the summation convention. n = n(z,t) is the unit normal vector
pointing QW (¢) to Q®)(t) at z € T'(¢), H(x,t) is the twice mean curvature
of D(t), 0 = a(8), (89 = 3 G )’F(t)) is the coefficient of surface

tension between fluids (1) and (2), Vg = Vo —n(n- Vo) is the surface
gradient on I'(t) and 6, is a given temperture on fixed boundary X. The
signature of H is chosen in such a way that Hn = A(t)x, where A(?) is
the Laplace-Beltrami operator on I'(t).

The aim of the present note is to announce various existence theorem
to the problem (1.1)U) — (1.5). Namely, in §2, we first discuss the tem-
porarily local existence theorem and next it will be shown in §3 that the
solution exists for all time near the equilibrium rest state provided that
the data is sufficiently close to the rest state and finally the stationary
motion of the problem will be studied in §4. For the proof of Theorems
1-3, see the original paper [1]-[3].

2 Local existence

In order to construct the temporarily local solution, it is convenient to
choose £ = X(0;z,t) € Q) as new independent variables and reduces
the problem to that of given initial domain QU), where X(7;z,t) is the
solution of the system of ordinary differential equations
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o) L X (ri0,6) = o (X (ri2,8),7),

X(tyz,t) =2 (0< 1< t).

If vU) has suitable smoothness, then the fundamental existence theorem
of ordinary differential equations yields that (2.1) has a unique solution
curve X (7;z,t), ¢ € QU)(t), 0 < 7 < t. Whence this gives the rela-
tionship between so-called the Eulerian coordinate x and the Lagrangean
coordinate &:

:ch(t'f 0) g+/ 7Ydr=X,0 (€, 1),

where 90)(¢,1) = vU)(X(t;€,0),t) = v( )(:z:,t). According to the kine-
matic condition on F( ) and the boundary condition on X, this trans-
formation is one-to-one mapping from QU)(¢) [resp. T'(t), Z] onto Q)
[resp. T, ] for each t. Transforming the problem (1.1)U) — (1.5) by this
mapping and setting (p, §)(€,¢) = (p, 0)(Xs(€, t),t), we obtain

1

Theorem 1([1]) Let I''Y € W7/2+l with 5 < | < 1and 0 €
Wyt (R,), Ry = {z € R, z > 0}, (¢ > 0). For arbitrary (v(()j),ﬁ(()j)) €
W22+I(Q(j)), f9 e W25+l’5/2+l/2(R%), 6. € W25/2+l’5/4+l/2(ET) satisfying
6(()] ) S 0, 6, > 0 and the natural compatibility conditions (we omit them
here) the problem (1.1)%) —(1.5) in Lagrangean coordinate system has the
unique solution (8¢, V), §1)) defined on ngj = Q) x(0,Ty) for some T} €
(0,T) such that 50, 40) € Witt*2H2(Qy "wp() e w, A2 Q)
ph) — ﬁ(Q)‘F € W§/2+l74/2+l/2(FTl) and .

2 . Ay .
]E:l ( ||(ﬁ(1), H(J))HW23+1,3/2+1/2(Q(T;'1)) + ”Vﬁ(l)||W21+1,1/2+1/2(Q(1?‘1))> +

~(1) — ﬁ(z)IIW;/2+l,4/2+l/2(FT1) S

2 : . .
<o | X (I8 gy + 15Dl gessnrn g ) +

j=1

o Bellygrssnsings,, + lIooHolyaan, )]
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where o = 0(9((,8)), Hj is the twice mean curvature of initial interface I.

Here, anisotropic Sobolev-Slobodetskii space Wzl’l/ 2(QT) (Qr = O2x(0,7))
is defined by

Wy'2(Qr) = Ly((0,T); Wi(Q2)) N La(Q; W30, T))

3 Global existence

Let the domain Q) be deffeomorphic to a ball and its boundary ' be
given by the equation |z| = r = Ry(w) (w € §?) in the spherical coordi-
nate system (r,w) with the origin at the center of gravity of QM) U Q®
and let r = R(w,t) describes the interface I'(¢f). The equilibrium rest
state of the problem (1.1)V) — (1.5) is (v, pM), 40 () p2) 6> R) =
(0,,8,0,—p,0, R), where § are some positive constant, R is determined
by 3m(R)* = |QW], |QW)] is the volume of Q), (note that |QM)(2)] = |QW)]
is true for all t) and p = & (6 = o(6)).

Define

2 . . _ .
Ey, = Z (”(v(()]), 9(()]) — H)”W22+I(Q(j)) + ||f(])||W25+1,5/2+1/2(Rgo)+

=1
+ I'f<])||L1(0,oo;L2(R3))) +||Ro - RIlW;/2+l(52)'

Theorem 2([2]) Under the assumptions of Theorem 1, suppose also
that f0) € WSS T2(RE), O € L1(0, 00; Lo(R?)), and pV) # p@. I
Ey be sufficiently small, then the solution (v(V,p™M, 61 v p> 92 R)
of the problem (1.1)U) — (1.5) exists for all ¢ > 0 and satisfies

2 . . _
i‘;}f 21 “(’U(]), ) — 9||W§+’(Q<f))(t) + ||P(1) - ﬁ”wg“(a(n(t)) +
]:

+ “p(Q) + ﬁ”Wf”(Q(?)(t)) + ”R - R”W;/ZH(SQ) < cFEy.
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The similar theorem in the case of constant ¢ but non-homogeneous
fluid is already established by the present author ([4]).

4 Stationary motion

Our final interest is the following stationary problem of (1.1)U) — (1.5):

PO . 7@ = v . PO 4 ;00§ .0 =g,

(4.1)M
(M- = v - (kYD) £ € QW)

pD(W® . V)@ = v. PO 1,00 v.4@ =

(4.1))
(@ . V)I?) = V. (x@VID) z € Q@)

v =@ PWp — POy = (0 Hn + Vg (),
(4.2)
V) =9 xOTeN) . — AVHR) . =0, zel,

(4.3) v® =0, ¥=9 zex,

(4.4) vV .n=0 zel.

Theorem 3([3]) Let [, &, o be as in Theorem 1 and fU) € Wy+(R?),
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9. € Wo'** (%), 6. > 0. If the quantity
1 p0) j
E = Zl | fY “W25+1(R3) + (|6, — QHW;/ZH(E)
J:
be sufficiently small, then the problem (4.1)U) — (4.4) has the unique so-

lution (v, pM, oW, 22, p@ 9@ R) satisfying v\, 80 — 0 € WH(QO),
vpl) € Wit (W), p) — p® — Zﬁ\F e W), R € W;/ZH(Sz) and

2 : , _ ,
Zl ( ||(v(])4, 6 — O)HWSH(QU)) + HVP(]) W.ZHI(Q(]‘))) +
J:

+ [l - - 2Dllyypreviry + 1R = Rllyrsg2) < B,

where p, R are same as Theorem 2 and the uniqueness of the interface R
implies modulo all rotationary symmetric one.
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