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A NOTE ON MILNOR AND THURSTON’S
MONOTONICITY THEOREM

TSUJII MASATO
(辻井 正人)

The aim of this note is to give a simplified proof of the so-called Milnor and
Thurston’s monotonicity theorem. We begin with stating the theorem.

Let us consider a family of maps $Q_{a}(x)=a-x^{2}$ from $\mathbb{R}$ to itself. The kneading
sequence for $Q_{a}$ is an infinite sequence $K(a)=(e_{1}, e_{2}, \cdots)$ of three symbols $L,$ $C$

and $R$ defined as

$e_{i}=\{\begin{array}{l}L,ifQ_{a}^{i}(0)<0\cdot C,ifQ_{a}(0)=0\cdot R,ifQ_{a}(0)>0\end{array}$

On the set $\{L, C, R\}^{N}$ , the so-called signed lexicographical order $\prec$ is defined as
follows: for three sequences with the same first n-entries,

$I_{L}=(e_{1}, e_{2}, \cdots e_{n}, L, \cdots)$ ,
$I_{C}=(e_{1}, e_{2}, \cdots e_{n}, C, \cdots)$ ,
$I_{R}=(e_{1}, e_{2}, \cdots e_{n}, R, \cdots)$ ,

we decide $I_{L}\prec I_{C}\prec I_{R}$ if the number of the symbol $R$ in $\{e_{1}, e_{2}, \cdots , e_{n}\}$ is even,
and $I_{R}\prec I_{C}\prec I_{L}$ otherwise. Milnor and Thurston’s monotonicity theorem is

Theorem. The correspondence $a\mapsto K(a)$ is monotone increasin$g$.

This surprisingly strong theorem was conjectured by Milnor and Thurston, and
proved firstly by Duady, Hubberd and Sullivan. The proof we give here is a modi-
fication of the proof in [2].

The theorem follows from

Proposition. If $K(a_{0})=(e_{1}, e_{2}, \cdots , e_{n}, C, \cdots)$ and $e_{i}\neq C$ for $1\leq i\leq n$ , then

(1) $\frac{\partial_{a}(Q_{a}^{n+1}(0))|_{a=a_{O}}}{DQ_{a}^{n_{o}}(Q_{a_{O}}(0))}>0$

wher$eDQ_{a}^{n_{o}}$ den$ote$ the derivative of the n-times iteration of the map $Q_{a_{O}}$ and
$\partial_{a}(Q_{a}^{n+1}(0))$ denote the derivative of $Q_{a}^{n+1}(0)$ as a function of the parameter $a$ .

In fact, suppose that $a_{0}$ satisfies the assumption of the proposition and that the
number of $R$ in $(e_{1}, e_{2}, \cdots , e_{n})$ is even (resp. odd). Then the denominator in the
left hand side of (1) is positive (resp. negative) and, from the proposition, so is the
numerator. This implies that $e_{n+1}$ varies as $Larrow Carrow R$ (resp. $Rarrow Carrow L$ ) when
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the parameter $a$ pass $a_{0}$ from the left to the right. Now consider the truncated
kneading sequence $K^{(n)}(a)=(e_{1}, e_{2}, \cdots , e_{n})$ for each $n$ . For each parameter at
which $h^{\prime(n)}(a)$ changes, we can find the situation in the proposition. Thus the above
observation shows that [$\backslash ^{r}(n)(a)$ depends on $a$ monotonously. Letting $narrow\infty$ , we
get the theorem.

Let us denote $w_{i}=Q_{a}^{i}(0)$ for $i=1,2,$ $\cdots$ , $n$ and put $\omega=(w_{1}, w_{2}, \cdots , w_{n})\in \mathbb{R}^{n}$ .
Consider the so-called Thurston map:

$T(z_{1}, z_{2}, \cdots z_{n})=(\sigma_{1}\sqrt{\approx\iota-z_{2}}, \sigma_{\sim^{)}}\sqrt{\approx\iota-z_{3}}, \cdots\sigma_{n-1}\sqrt{z_{1}-z_{n}}, \sigma_{n}\sqrt{z_{1}})$

where $\sigma$; is the sign of $w;$ . Then $T(w)=w$ and $T$ is defined on a neighborhood of
$\omega$ . By easy calculations, we obtain

Lemma 1. $\frac{\partial_{a}(Q_{a}^{n+1}(0))|_{a=a_{O}}}{DQ_{a}^{n_{o}}(Q_{a_{O}}(0))}=\det(I_{n}-D(dT)$ where $I_{n}$ denotes the $n\cross n$ unit

matrix and $D_{\omega}T$ the derivative of $T$ at $\omega$ .

So we reduce the proposition to

Lemma 2. No eigenval $ue$ of $D_{\omega}T$ is $cont$ain$ed$ in $[1, \infty$ ).

Let $X=$ { $(z_{1},$ $z_{2},$ $\cdots z_{n})\in \mathbb{C}^{n}|0<|z;|<3$ , and $z;\neq z_{j}$ if $i\neq j$ } and
$Y_{\epsilon}=$ { $(z_{1},$ $z_{2},$ $\cdots$ , $z_{n})\in X||z_{i}|>10^{i}\epsilon$ and $|z_{i}-z_{j}|>10^{\min\{\mathfrak{i},j\}}\epsilon$ if $i\neq j$ }

for $\epsilon>0$ . Then the (multi-valued) complex extension of $T$ ,

$T_{\mathbb{C}}(z_{1}, z_{2}, \cdots z_{n})=(\sqrt{z_{1}-z_{2}},$ $\sqrt{z_{1}-z_{3}},$ $\cdots\sqrt z\urcorner_{1}$ : $\mathbb{C}^{n}arrow \mathbb{C}^{n}$ ,

maps $X$ into itself in the sense that, for every $x\in X$ and every branch of $T_{\mathbb{C}}$ , the
image belongs to $X$ . Moreover, if $\epsilon$ is sufficiently small, $T_{\mathbb{C}}$ maps $Y_{\epsilon}$ into a compact
subset of $Y_{\epsilon}$ in this sense. Take $\epsilon$ so small that $\omega\in Y_{\epsilon}$ . Let $M_{\mu}$ : $\mathbb{C}arrow \mathbb{C}$ be a map
defined by

$M_{\mu}(z_{1}, \cdots z_{n})=(w_{1}+\mu(z_{1}-w_{1}), \cdots w_{n}+\mu(z_{n}-w_{n}))$ : $\mathbb{C}^{n}arrow \mathbb{C}^{n}$ .

We choose $\mu>1$ so close to 1 that the composition $S:=M_{\mu}oT_{\mathbb{C}}$ maps $Y_{e}$ into
itself. Let $\pi$ : $\tilde{Y}_{\epsilon}arrow Y_{\epsilon}$ be the universal covering and let $\tilde{\omega}\in\tilde{Y}_{\epsilon}$ be a point such that
$\pi(\tilde{\omega})=\omega$ . Then there is a (single valued) lift $\tilde{S}$ : $\tilde{Y}_{\epsilon}arrow\overline{Y}_{\epsilon}$ of $S$ such that $\tilde{S}(\tilde{\omega})=\tilde{\omega}$ .

Now consider the Kobayashi metric $|\cdot|_{K}$ on $\tilde{Y}_{\epsilon}$ , which is defined as
$|v|_{K}=[ \sup\{r\geq 0|$ there is a holomorphic map $\phi$ : $D_{r}arrow\tilde{Y}_{\epsilon}$ s.t. $d\phi(e)=v.\}]^{-1}$

for any tangent vector $v$ where $D_{r}=\{z\in \mathbb{C}||z|<r\}$ and $e$ is the unit vector at
$0\in D_{r}$ . (See [1] for generalities.) Then it is easy to check that I . $|_{K}$ is equivalent to
the Euclidean metric at each point. From the definition, we have 1 $d\Phi(v)|_{K}\leq|v|_{K}$

for any holomorphic map $\Phi$ : $\tilde{Y}_{\epsilon}arrow\tilde{Y}_{\epsilon}$ and any tangent vector $v$ . So it follows that
the spectral radius of $D_{(\tilde{d}}\tilde{S}$ is not bigger than 1. Since $D_{t\overline{d}}\tilde{S}=\mu\cdot D_{\omega}T$ and $\mu>1$ ,
the spectral radius of $D-\tilde{S}$ is smaller than 1. We have proved lemma 2 and so the
main theorem.
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