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Existence of Feasible Potentials on Networks

Werner Oettli (= ¥~ A4 LK)
Wy i # A (BIRAE)

1. Introduction and problem setting

Let G:= {X, Y, K} be a directed, locally finite graph without
self-loops.. Here X is the countable set of nodes, Y is the
countable set of arcs, and K is the node-arc incidence function of
G. For eVery arc y € Y the initial node x—(y) and the terminal
node x' (y) are uniquely defined by the relations K(x (y), y) = - 1,
K(x+(y), y) =+ 1. » Local finitenéss of G means that, for every x
€ X, K(x, +) has finite support in Y.

Denote by L(X) the space of all real-valued functions defined
on X, by_Ld(X) the set of all f € L(X) having finite support. Let
L+(X)(resp. LB(X)) denote the subset of L(X)(resp. LO(X)) which
consists of the non-negative functions. For f € L(X) and g €
Ly(X), let

<f, g>:= 2 x T(X)gx).
‘Replacing X by Y, we define L(Y), L (Y), L'(Y), L (Y) and the
bilinear functional <-~;.- > on L(Y) x LO(Y) similarly.

To the function K(x, y), we associate two mappings K from L(X)
to L(Y) and K~ from L,(Y) to L,(X) through

(Kf)(y):= zxeX

(K'w)(x):= Eer

K(x, y)f(x) = £(x'(y)) - £(x (y)) (tension of f),

K(x, y)w(y) (divergence of w).
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Note that < Kf, w > = < f, K'w > for all f € L(X) and w € Lo (Y) .
Let A, B € L(Y) be given such thatbA(y) < B(y) on Y. Let 8 €
L(X) be given such that 0 < 8(x) on X. We are concerned with the
following feasible potential problem:
(FPP) Find a function u € L(X)(potential function) satisfying
the constraints:
(1) 0 < u(x) < B(x) on X,
(2)  A(y) < Ku(y) < B(y) on Y.
We want to find a necessary and sufficient condition for the

existence of the solution of (FPP).

2. Existence result

For w € L(Y), let w' (y):= max{0, w(y)}, w (y):= max{0, - w(y)}.
Similarly we define f*, £~ for f € L(X). Let us define
functionals £ and p on LO(Y) by

L(w):

+ —-—
<A, wW > - <B,w >

n
A

p(w):= < 8, (K'w)" >.

Notice that

{ and p are sublinear. In particular, we have
p(wl + wz) < p(wl) + p(wz), l;(wl + WZ) > £(wl) + {(Wz)-
Now we have the following result.

Theorem 1. (FPP) has a solution if, and only if, the

following condition holds:

(N1) L(w) < p(w) for all w € LO(Y).
Proof. To prove the necessity, let u € L(X) be a solution of
(FPP) . Then for every w € LO(Y) we have

t{w) < < Ku, wo> - < Ku, w. > = < Ku, w >
=<u, Kw><<u, Kw'><<8, KW > =pw).

Thus (N1) holds. We turn to the sufficiency.
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If w, € LS(Y), w. € Lg(Y) and w = w, - w,, then

2 1 2’

<A, W >-<B,w >2c<A, W, > - < B, W, >

Moreover, if f € LS(X), w € LO(Y)7and f > K*w, then p(w) < < 8, f >.

Therefore from (N1) we obtain:

(N1#) 0 << 8, £ > - <A, w, >+ <B, w, > for all f € LS(X),

1 2

W, € LB(Y), W, € LS(Y) satisfying f - K*wl + K'w, € LB(X).

1 2 2

To proceed with the proof, we need a certain generalization of
Farkas' Lemma [2; p. 134]. For a real topological vector space E,
let E* be its continuous dual. For a convex cone P c E, let P° be
the polar cone defined by

O

PY := {£& € E*; < e, £€>2=20 for all e € P}.

Lemma 1. Let the following assumptions hold:
- E is a real topological vector space, F is8 a locally convez
topological vector space;
- PcEand Q €¢ F are convexr cones, P° c E* and Q° ¢ F* are their
\polar cones;
o T is a linear mapping from E to F, T is the linear mapping
from F* to E* sueh that
<Te, ¢ >=<¢e, T'g > for all e € E, ¢ € F';
- f € F is a fized élement:

0
T(P) + Q ig8 closed in F.

o

Then f0 € T(P) + Q if the following condition holds:

(F) < fy @ >20 for all ¢ € Q° with T ¢ € P°.
Proof . Assume, for contradiction, that fo is not an element
of the closed convex cone T(P) + Q. Then from the strong

separation theorem in a locally convex space [3; p. 65] there

exists ¢ € 12 such that



67

< fy. ®><0<<Tp+q,¢>=<p, To>+<aq, ¢ >
for all p € P, q € Q. It follows that T ¢ € P° and @ € QO. Thus

(F) does not hold.

We continue with the proof of Theorem 1. In order to apply
Lemma 1 we provide L(Y) = RY/with the product topology. Then

Ly(Y) can be identified with the topological dual of L(Y) and

(L"(¥))® = Ly(Y). Likewise L(X) is provided with the product
topology. We substitute in Lemma 1:

E := L(X), F := L(X) x L(Y) x L(Y),

P := L'(X), @ := LY(X) x LY(Y) x L"(Y),

T := (I, - K, K)(I denotes the identity mapping of L(X)),

£, 1= (B, - A, B), |

P® = Lo(X), Q% & Ly(X) x Lg(Y) x Ly(Y),

T (£, oK wz) = f - K*w1 + K*wz. |
Notice that (N1#) implies (F). | The conclusion of Lemma 1 gives

(B, - A, B) € (I, - K, K)(L"(X)) + L"(X) x LY (V) x L' (V).
So there exists u € L*(X) such that

Beu+L"(X), -A€-Ku+L"(Y), BeKu-+L"(Y).
Then u is a solution of (FPP).

It remains to verify the closedness of the set T(P) + Q in

Lemma 1.

Lemma 2. The set C := (I, - K, K) (LY (X)) + LY (X) x L*(Y) x

LY (Y) is elosed in L(X) x L(Y) x L(Y).

Proof. Recall that L(X) and L(Y) are endowed with the
product topology. So the convergence in L(X) and L(Y) means the
pointwise convergence. Let (a, b, ¢) be an element of the closure

of C. Since L(X) and L(Y) have countable neighborhood bases of
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zero, there exist countable sequences‘{fn} C L+(X), {gn} c L+(X),
4h )} € L'(Y), {k } € L'(Y) such that

f, g, —oa, - Kfn'+ h, — b, Kf + k — c pointwise as n — o,
For every x € X, it is easily seen that the sequence {fn(x)}
remains bounded. Namely there exists d(x) > 0 such that fn(x) €
[0, d(x)] for all n. Then {fn} C Moex [0, d(x)], and the latter

set - a product of compact intervals - is compact in L(X) according

to Tychonoff's theorem. So there exists a subsequence, again
denoted by {fn}, which converges pointwise to f in L(X). Then f €
L+(X). It is clear that g —4‘g € L+(X) such that f + g = a.

Since G is locally finite, Kfn — Kf, and hence hn — h € L+(Y)
such that - Kf + h = b. Likewise kn — k € L+(Y) such that Kf + k
= C. So (a, b, ¢c) € C, and C is closed.

The proof of Theorem 1 is now complete.

3. Alternative approach

We suppose now that the graph G is finitely connected, and we
give for this case another proof of the sufficiency of (N1) which
does not employ Farkas' Lemma, but relies instead on paths and
cycles. We recall the following. A path P in G is a triplet P =

{X(e), Y(P)f p}, where

o X(P) = {XO, X1, 0t xn} is a finite nonempty sequences of node,
o Y(P) = {yl, e, yn} is a finite sequence of pairwise different
arcs with K(Xi—l’ yi)K(Xi’ yi) =-1fori-=1, ---, n,

o p € LO(Y)(the path function) 1is givén by

p(yi) K(Xi, yi) for 1 = 1, DRI ¢ I

p(y) 0 for y ¢ Y(P).

A path from a € X to b € X is a path with Xg = &, X = b. A cycle
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is a path with Xo = X, We denote by Pa b the set of all paths
from a to b, and we denote by Z the set of all cycles. Finite

connectedness of G means that P # @ for all a, b € X.

a,b
Henceforth we identify a path P with its path function, and we
write accordingly p € Pa,b' p €Z, y€ Y(p), etc. The empty path p
= 0 belongs to Z as well as to Pa,a for all a € X. We fix now a €
X and conduct the proof of the sufficiency of (N1) as follows.

From (N1) we have {(w) < p(w) on LO(Y), where { is superlinear and

p is sublinear. From the Sandwich Theorem [2; p.112] there exists

a linear functional & on LO(Y) such that

(3) L(w) < E(w) < p(w) on LO(Y).

For two paths Pq- Py € Pa we obtain from (3), since K*(pl - p2) =

X
0, that &(pl - pz) < p(p1 - p2) = 0. Likewise we obtain
f;(p2 - pl) < 0. Since £ is linear, this implies E(pl) = &(pz).

From this follows &(p) = 0 for all p € Z (since every cycle p can be

represented as p = pl - P, with Py, Py € Pa,x for a suitably chosen
x € X). We can now define unambiguously u € L(X) by

u(x) := £(p) for some p € Pa,x'
This implies in particular u(a) = 0, since 5 =0 € Pa a” We show
first that u fulfills (2). Let y be any arc, and set Xqi= x (y),
Xpi= x+(Y). Denote by Py the path from X4 to X, consisting only
of the arc y. There exists Py € Pa,xl such that u(xl) = g(pl).
Then P; * Py = Py *+ P, where p, € Pa,xz and p € Z. Consequently

u(x,) = E(py) = &(py + B) = £(p; + Dy) = ulx;) + £(p,)

+

2 u(xy) t(p,) [from (3)]

u(x1) + Aly).

Thus u(x2) - u(xl) 2 A(y). Likewise we obtain u(Xl) - u(xz) >



70

]

- B(y). Since (Ku)(y) u(xz) - u(xl), we have A < du < B, and u

fulfills (2).

Now we verify that u fulfills (1). Let p € Pé,x‘ By (3),
u(x) = g(p) < p(p) = B(x).

Assume for the moment that 8(a) = O. Then
- u(x) = - E(p) = E(- p) < p(- p) = B(a) = 0.

Thus 0 < u < 8, and u fulfills (1). If 8(a) > 0 we proceed as

* *

follows. We form an extended graph G*:= {xX ., Y, K*} by adding to
G a new node a* and a new arc y* which has a* as the initial node

and a as the terminal node. We define the additional data B(a*):=

1}

0, A(y*):= 0, B(y*): g8(a). We denote ¢t* and p* the corresponding
extensions of ¢ and p to G*. Then, for w € LO(Y*)

¥ (w)

L(w) - B(yH)(w(y™))™ = t(w) - B(a)(- wiy" )",
p(w) - B8(a)k® + 8(a)(k + w(y ' )",

o™ (w)
where k:= (K*w)(a). From the subadditivity of the function (-)+
follows £*(w) - p"(w) < &(w) - p(w). Thus, the validity of (N1)
carries over from G to c*. On G*, since B(a*) = 0, the previous

reasoning applies, and we obtain a feasible potential u” on x*= X vu

{a*}. The restriction of u* to X satisfies the original>
requirements.
4. A particular case

We consider the case where the potential u is only requested

to have property (2). We can prove the following result by using
Lemma 1: \
Theorem 2. Let G be finitely connected. Then there existls

u € L(X) satisfying (2) if, and only if, the following condition
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holds:

(N2) tw) <0 for all w € L,(Y) with K*w = 0.

If p is a cycle, then K*p = 0. Hence (N2) implies the
following condition:
(N3)  &(p) <0 for all p € Z.
For finite graphs it is shown in [1; p. 157] that (N3) is necessary
and sufficient for the existence of a potential u € L(X) which
satisfies (2). Below we extend this result to finitely connected
graphs and — what is more important — give a constructive proof
for the existence of a feasible potential.

Let us agree to call two paths or cycles Py and P, parallel if

pl(Y) = pZ(Y) for all y € Y(pl) n Y(pz).

If 1 and p, are parallel, then £(p1 + p2) = {(pl) + L(pz)- It
follows from (N3) that for fixed a € X
(4)  t(py) + (- py) <0 |
for all plf p, € Pa,x and for all x € X. In fact, p, - p, can be
represented as a sum of parallel cycles ﬁi and therefore

t(py) + (- py) < t(py - Py) = (35 By) = Z; t(py) < 0.

Theorem 3. Let G be finitely connected. Then condition
(N3) is necessary and sufficient for the existence of a funciion u

€ L(X) which satisfies (2).

Proof. Assume that (N3) holds. Fix a € X. For every x €
X we define

u(x):= sup{i(p); p € Pa,x}.
From (4) follows u(x) < « for all x € X. Moreover we have uf(a)

0, since {(p) < 0 for all p € Pa a with equality holding p = 0 €

Pa é. We show that u fulfills (2). Let y be any arc, and set
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L — - . — + N
Xq:= X (y), Xo1= X (y). Let Py be the path from Xq to X,
chsisting only of the arc Yy. Let € > 0. There exists pl €
Pa,xl_SUCh that L(pl) > u(xl) - £. Then P; * Py = Py + D, where
p, € Pa,xz' p € Z, and P, and p are parallel. So

t(py) + £(p) = t(p, + P) = L(p; *+ Py) = L(py) + L(py),
and therefore
u(x,) 2 €(p,) = L(py) + £(P) 2 L(py) + L(p,)
>u(xy) - & + t(py) = ulxy) - & + A(y).
Since € > 0 is arbitrary, u(x2)4— u(xl) > A(y). Similarly we

obtain u(xl) - u(x2) > - B(y), and u satisfies our requirement.

5. Generalization
We consider now discrete potential problems in somewhat at
greater generality.  Let X and Y be countable sets, and ¥ be a
real-valued function defined on X x Y such that
- for each x € X, ¥(x, +) has finite support on Y;
o for each y € Y, ¥(-, y) has finite support on X.
The notations L(X), L(Y) etc. have the same meaning as before. We

define the discrete derivative d and discrete Laplacian A through

(du) (y):= 2, cx ¥(x, y)u(x),
(Au) (x):= Eer ¥(x, y)[(du)(y)]. |
In case ¥(x, y) = - r(y)_lK(x,py) with a positive function r on Y,

du and Au are studied in [4].

Given oo, 8 € L(X), A, B € L(Y), A, s € L(X) such that ¢ < 8, A
< B, x £ u, we consider the following generalized feasible
potential problem:

(GFPP) Find u € L(X)(potential function) satisfying the
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constraints:
(5) «<u< B8 on X,
(6) A < du<B onY,
(7) AL Au < on X.

We obtain a feasibility condition for this problem by Lemma 1.
To formulate this we introduce the following notations. Define
the mapping d* from Ly(Y) to L,(X) by

(d*w) (x):= 3 ¥(x, y)w(y).

YEY

Then < du, w > < u, d*w > for all u € L(X) and w € LO(Y). If u €

LO(X), then Au € LO(X). Let A* be the restriction of A to LO(X).
Then we have
< Au, £ > =< u, A*f > for all u € L(X) and f € LO(X).

By the same reasoning as in Theorem 1, we can prove

Theorem 4. (GFPP) has a solution if, and only if, the
following condition is fulfilled:
(N4) 0<<8,h">-<a,h” >+<B, w >-<A, w >
+<p, g >-<2a, g >

for all w € LO(Y). g € LO(X), h € LO(X) éatisfying h + d*w + A*g = 0.
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